From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from mail-vk0-x234.google.com (mail-vk0-x234.google.com [IPv6:2607:f8b0:400c:c05::234]) (using TLSv1.2 with cipher ECDHE-RSA-AES128-GCM-SHA256 (128/128 bits)) (No client certificate requested) by lists.bufferbloat.net (Postfix) with ESMTPS id ADCEA3B2A0 for ; Wed, 21 Sep 2016 17:58:37 -0400 (EDT) Received: by mail-vk0-x234.google.com with SMTP id 192so1040738vkl.0 for ; Wed, 21 Sep 2016 14:58:37 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20120113; h=mime-version:in-reply-to:references:from:date:message-id:subject:to :cc; bh=IFKTJcaiiUB6eVJi8Hh8x/x9c056ix9oU7HUGNR5iEg=; b=JTNc8gk/l2DA1OSETGqIkZ8Hrauo03GCXczSOKhmzMn5sx0pMGaJvHbrFB7siBveNL 6lJhvALFoOiZR8/uimdoCrwMO5VLL7LJGE4cCxOfflC65u3m4aI3vrh2mXbKNXJKusVl KMnq/i+yXzkqWsJivpSVQlXa3cwymvcNk2jXNDUAGtZI/8eGvyyXnk6SxA0GPjzeerZ8 PCreIsZ/X6fY28KthTM7r8HcA4OFrQOXrjQz7kHeFPFOaMVr/US2UViBifo8ecIXBRnS p5IbWvHhZ4ocwCFO1c17HE9Xydh2HdC20I6qrD4kdNMNWupNPTtQVafr361VfxyGdVLK 8Uzg== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20130820; h=x-gm-message-state:mime-version:in-reply-to:references:from:date :message-id:subject:to:cc; bh=IFKTJcaiiUB6eVJi8Hh8x/x9c056ix9oU7HUGNR5iEg=; b=jEVHImoYVS2TV8K9SjzLY2iEeCKo2sVW2mdVLIxAOO1y7Orkh3dZjnpxeE1KmbAbW/ l8u1aiQyJ3Pe8925FY803kJDvBdp+H2E7QNgyXiY4O2wfhuJ/c1luCApHDXDkGkOPqe7 FRCrwnkgQEYpb8iySChnzMq3WtxZojdJ6ch1Exp47e13X54p/q3RCvBWNI1IhxOwlh/T +S5bWeh6LmjxDtIn13H4uGufUrWC0iXdOVYNAqtlXxsj/LlMup1VihVCD6U9eyLj9GK+ bjOGaInTKuFiyftCQGFUi7tpHLHpI9EiXbW/jQgGZlKhDd8JgzdWxkUy9xmXyUzJPsAW Gn5Q== X-Gm-Message-State: AE9vXwPedjmGYMO4OxBss8l5aw4L7T7F/29uB6vlYXMnX4WSNiTiPazUc1WautEMELFRC8HQ01J/8t4EDbKc9A== X-Received: by 10.31.51.70 with SMTP id z67mr143556vkz.170.1474495117207; Wed, 21 Sep 2016 14:58:37 -0700 (PDT) MIME-Version: 1.0 Received: by 10.103.117.214 with HTTP; Wed, 21 Sep 2016 14:58:36 -0700 (PDT) In-Reply-To: References: From: Aaron Wood Message-ID: To: =?UTF-8?Q?Dave_T=C3=A4ht?= Cc: bloat Content-Type: multipart/mixed; boundary=001a1144a82eafacee053d0ba540 X-Mailman-Approved-At: Thu, 20 Oct 2016 12:52:10 -0400 Subject: Re: [Bloat] iperf3 and packet bursts X-BeenThere: bloat@lists.bufferbloat.net X-Mailman-Version: 2.1.20 Precedence: list List-Id: General list for discussing Bufferbloat List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Date: Wed, 21 Sep 2016 21:58:37 -0000 X-Original-Date: Wed, 21 Sep 2016 14:58:36 -0700 X-List-Received-Date: Wed, 21 Sep 2016 21:58:37 -0000 --001a1144a82eafacee053d0ba540 Content-Type: multipart/alternative; boundary=001a1144a82eaface8053d0ba53e --001a1144a82eaface8053d0ba53e Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: quoted-printable And I just pushed a branch that calculates a timer interval based on the throttle rate and the buffer size, with a cap on the timer frequency that can be changed via the command-line. It _seems_ to work well, and give really smooth pacing. Incredibly smooth pacing, actually (at least at 1ms time bucket intervals). The branch is here: https://github.com/woody77/iperf/tree/pacing_timer -Aaron On Tue, Sep 20, 2016 at 4:32 PM, Aaron Wood wrote: > On Tue, Sep 20, 2016 at 3:03 PM, Dave T=C3=A4ht wrote: > >> Groovy. I note that I am really fond of the linux "fdtimer" notion for >> tickers, we use that throughout the high speed stats gathering code in >> flent. >> >> I'd really like a voip or ping tool that used those, and I've always >> worried about iperf's internal notion of a sampling interval. >> >> On 9/20/16 3:00 PM, Aaron Wood wrote: >> > I modified iperf3 to use a 1ms timer, and was able to get things much >> > smoother. I doubt it's as smooth as iperf3 gets on Linux when fq paci= ng >> > is used, but it's a big improvement vs. the nice small buffers in >> switches. >> > > Thanks! > > For rates of <1000 packets per second, the 1ms timer I put in will give > something like that (it fires every ms, but that's just a check for sendi= ng > or not). If you want to use it to model a 120pps flow of 64-byte packets= : > > iperf3 -c -u -l 64 -b 61440 > > And then it will pace those out at roughly every 80ms (just verified this > on my box) > > -Aaron > --001a1144a82eaface8053d0ba53e Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable
And I just pushed a branch that calculates a timer interva= l based on the throttle rate and the buffer size, with a cap on the timer f= requency that can be changed via the command-line.=C2=A0 It _seems_ to work= well, and give really smooth pacing.=C2=A0 Incredibly smooth pacing, actua= lly (at least at 1ms time bucket intervals).


-Aaron
--001a1144a82eaface8053d0ba53e-- --001a1144a82eafacee053d0ba540 Content-Type: image/png; name="sub-millisecond-pacing.png" Content-Disposition: attachment; filename="sub-millisecond-pacing.png" Content-Transfer-Encoding: base64 X-Attachment-Id: f_itdg5bp70 iVBORw0KGgoAAAANSUhEUgAACFgAAAIwCAYAAAC4bk1vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz AAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3Xm8XVV9N/7PNwTCFOZJVCYZHIoK/CwIPhDAgoiCVKii FcFZW6tQUKlVY1UeUGzr00db9BEUpUURRUBFxoKY2lIZrAIqCAhiGBISEiAYkvX74+wbLpd7c26S CzfD+/16nde6Z+/13WvtfQPnRc6Htaq1FgAAAAAAAAAARjZhvCcAAAAAAAAAALC8E7AAAAAAAAAA AOhDwAIAAAAAAAAAoA8BCwAAAAAAAACAPgQsAAAAAAAAAAD6ELAAAAAAAAAAAOhDwAIAAAAAAAAA oA8BCwAAAAAAAACAPgQsAAAAAAAAAAD6ELAAAAAAAAAAAOhDwAIAAAAAAAAAoA8BCwAAAAAAAACA PgQsAAAAAAAAAAD6ELAAAAAAVjhVdXRVLayqK8Z7LgAAAMCqQcACAAAAViBVtW5VHVJVn6iqH1TV /V3QYGFV7TjKa6xRVR+oquuram5VzaqqaVX19lHWH1FVl1fVjKp6uKpu6uaz7mJqbh80zxtGMcY/ DOq/sKq2GqFrG82cl0dDnsmSvG4b77mPtap6TVVNrap9xnsuAAAAMJKJ4z0BAAAAYIm8PMm3hzk+ qqBBVa2X5PIku3aHHkoyKckeSfaoqlcnOay1tmCE+i8meVv3dn6SeUl2SvLhJEdW1f9qrf2+zzR2 rqoXtdaGDVpU1cQkbxh0aIUNUfRxb5I1hjm+QZI103u+M0aoW9m8JslRSRYmuXKc5wIAAADDsoIF AAAArFhael+wfy/J1CTvWML6L6UXrpiR5FWttclJ1klydHphiVcl+fhwhVX17vTCFQuSHJ9k3dba +kn2SnJHku2SfLPP+L/t2qMW0+cVSTbtrrnSaq39cWtty6GvJN/ouvx4uPOttd3Hc94AAACwqhKw AAAAgBXLBa21LVprr26t/V2SS0dbWFW7JDkivZDGMa217ydJa21ha+3MJB/quh5bVZsOqZ2UXqAj ST7XWvv71tr8rv4/khzWXXevqnrVYqZxVtfvyKoa6e8lBsIXXx/tva1karwnMI5W5XsHAABgOSdg AQAAACuQ1trCZSgf2Hbjl621C4c5/8UkDyZZK8mfDjn38vRWlViY5LPDzOv6PB72eONi5vDb9LaA 2CLJAUNPVtUGSV6d3tYl31rMdYbWvbmqflJVD1bV7Kq6tKoOHKHvNlW1sKoWdu/3qqoLq+q+qnq4 qq6rqr+oqmG/7K+qNarqfVU1rapmVdX8qrqnqm6oqv9bVXuMdt5LqqqeVVXHV9VFVfXrbr4PdnOe WlXrj1A3pbvn27r3B1XVD6rq3u74+4b0f3NV/WdVPVRVM6vq8qo6uDt3e1ezzwhjrVtVf1NV13S/ i3ndXD9XVc8abl55PFTzsYHfzeDfEQAAACwPBCwAAABg1bFv11483MnW2rwkV3Vv9xuh9uettd+P cP0fDuk7kq917XDbhPxZkklJzksyt891kqSq6h+SnJFktyTz09vyZL8kP6iqv15Mbauq1yb59yQH pff3JKsleVGSf0pyblWtNmSwiek9v39IskeSddMLpWyYZOck70nyhLDCGPvHJJ9OL5zyrPSCKGt1 c/5okv+uqmcupr51z+R7Sf4kvft9LL1VRZIkVfWl9J7nS5Ks0Z3bJ8kFXRCjDXo9QVU9L8nPk3wy vd/Hmkn+kN72Me9NckNV7Tmo5NEk96S3PU26+5k+5AUAAADLBQELAAAAWAV0qzE8t3v7i8V0vbFr nzfk+POXoHbTqtpohD4tyTnpfaF+SFVNHnJ+IHRxZka3XcQu6QUaTk6yUWtt4/SCB2d15z9dVXuN UFtJ/l96gYntutoNk3wgvZU6XtP9PNgbkuydXhDgz5Os3dVNSrJ1kr9Mcv0o5r20bkwvqLBDa22t 1tqm6YUYpiS5Jslzkpy2mPot0ntWn0/yjG7uk5OcmyRVdUySt6b3ezopjz/TLZJ8Ob1wx6YZ5nfT rZ7x/SRbJflmkhcmWbO1tl6S7ZP8a3rP99yBlTZaa//RWntGkm90l/lMa23Lwa8lf0QAAADw1BCw AAAAgFXDeknWTu+L87sX029gdYpnDDk+8H40tcPVL9Jam5vkO918Dh84XlXbJdmzG+PS4aufZL0k X2qt/U1rbU53/emttTcluSK9IMDUxdTfmeQ1rbU7utqHW2unJvlEd/6DVbXWoP4D23+c2Vr719ba H7q61lq7s7X2hdbaKaOc+xJrrX20tfb51tqtg44taK1dleQVSe5LclBVbT3CJdZM8o3W2ntba/d1 9Y+21n7XhXA+2vX7Umvtbwc90/taa29Pckl6v7fhnJBeyORfW2uvb639vLXWuvrbWmt/nuSiJJsn eduQ2tGEaQAAAGBcCVgAAADAqmGdQT8/sph+D3ftuiPUj6Z2uPqhzuzawduEDPx81sAX86MwsNLC cP531+5bVRuO0OezrbX5wxz/+/S2r5ic3nYcA2Z37XK3skJr7YEk/5FeWGHPkbol+cwI53ZNLyDR 0lupYjgD4ZHhfj9v7o7//WKm+W9d+/LF9AEAAIDlkoAFAAAAMB4uSTI9yd5V9ezu2JvS+4L+zBGr nuy3A6tPDOPq9Lb6qCQvHuZ8S/LvwxV2Kzdc19XuMujUD7r20Kr6blUdtpjtUJ4SVfXHVXV6Vd1c VXOrauHAK8khXbeRVhB5pLV2wwjnBu5zemvtNyP0+c8kjw0zp2cneWZ6z+sHVTV9uFeSz3UlW/W7 TwAAAFjeCFgAAADAquGhQT+vNWKvx7d/mDtC/Whqh6t/gtbawiRnpfeF/Juq6mVJtk1yfWvtF4ur HeJ3ixljXpIHujE2WdL6Qec2HXTNq9LbRuOxJK9Ocm6S+6vqpqr6TFVtvwRzX2JVdXySnyQ5OskO SdZIMjO9sMr0JPO6rusMV59kxmIuP/CMfj9Sh25LlBl58pYegwMdm6T3zIZ7rZ9esGVxf44AAABg uSRgAQAAAKuGB9PbwqOy+O0tBs4N/ZL97iHnF1c7XP1wBlaqeFMe3x5kSVavGBettU8m2THJiUl+ mN62ITsl+eskN1bVm56KcavqBelt0dGS/FOSFySZ1FrbpLW2ZWtty/QCH8mTAxADFjwVc8vjf8fU kmzYWlutz2u7p2geAAAA8JQRsAAAAIBVQGutJbmxe/tHi+n6/K69ccjxgVUlRlN7X2tt5ijm9D9J fpZeOOHN6a0K8a/96oYYMfBRVWsm2TC9L/3vG6HbM0dx7SfVttZub62d0lo7KMnGSfZNclWSiUm+ UFWbDq0ZA69NLzjxw9ba+1prN3e/18E2X4brD9znSNuLpKrWSO9+h447fdDPWy/DHAAAAGC5JWAB AAAAq44ruvZPhjvZBRL+V/f2shFqn19VW4xw/QNGqF2cgRUrVk9ycWttpCDESLauqpG+0H9Zen/3 0ZJcP8z5SrLPcIVVNTnJrt3baxc3gdbawtbalUlelV5IZO0k/1//qS+xZ3XtdcOdrKp1kuyxDNcf uO4WVTXSChO7pxcieYLW2u1J7knvmR60FGMv7NqRVt4AAACAcSdgAQAAAKuOf+va51bVwcOcf3uS 9dLbSuQ7Q85dluTeJKultxXGE1TVi5K8PL0ww1lLMKevJflsklOTfGoJ6hYNnd5WHUPnU0k+1L29 rLU2a4T6v66q1Yc5/v4kk9Lb/uPiQdcdru+A+eltwVFJ1ug/9SU2cA8vHOH8h5OsuwzXvy7JHenN //gR+nyga4cLQnyla4+vqsWtLFJVtf6Qww927YajmyoAAAA8/QQsAAAAYAVTVZsMvPLEL6Q3HHyu Cxks0lq7Psk3u7dfqaqDuuutVlVHJTmlO/cPrbX7h9T+IcnU7u2xVXVct11Equql6QUyKsmPW2vf H+29tNbua62d0Fr7QGvtP0ZbN8iDSd5RVZ+qqvW6+WyR5KtJ9ktvZYSPL6Z+qyTfGVgFo6rWrqq/ zuP3ekprbd6g/l+rqtOr6oBulYt0ddt0Y05KL6Dyo6W4l34u6dqDq+pDVbVWN/amVfWZ9AIlM5b2 4t12I5/o3r6rqv5u4B67Mb6Y3iolD49wiZOT/CbJJkmmVdUR3aoo6a6xbVW9O73VRF4zpPbnXfuK xayQAgAAAOPqSUs6AgAAAMu9e4c5VkmGBhS2SfLbIcfenuQ5SXZL8r2qeiS9VSkGVly4IMnHhhu0 tfYvVbVLd41Tk5xcVY8mWafrcmuSP1uiOxmdxW0bcV33OjHJB6pqTpINBqac5AOttWkj1LYkb0ny jSS3VdXs9FaAWK07f16STw+pmZTePR6dJF3NGknW6s4/luSdrbWZo7qzJdBau6Sqvp3kT5OclOSk qpqVx+/3/6W31cqbl2GM06tqryTHJPnbJH9TVQ92Y7Qk70tyQnrboDw6pHZ2VR2Y5Pwkz0vvuS7s 5rhOes8u3XUW5om+k15AY8ckv6uqe7vrt9batkt7PwAAADCWrGABAAAAK6Y2iteTi1qbk2TP9FY7 uCG9LS0eSS+c8Y7W2qGttaFffg+uf2eS1yW5Ir3VIyYkuSnJJ5O8uLU2vc98l8ZwdQPHWmvtuPQC AT/t5vNgksuTHNRa+/vFXri17yTZN8n30tvi4w/prbDwl621Px3mWXwovW0yfpDklvT+55Xqfj49 ya6ttSXZImXYaWXkZ/W6bg43pQsgpLdaxlGttXcMqh/umqMbvLW3phc8uSa9Pxstvd/3q1tr/ze9 bWRaHt+yZHDtrUl2SfKermZGksndXG9IclqSgzNkG5nW2oz0fg/fTnJPko2TPDu9FUYAAABguVC9 1R8BAAAAVg3ddh6/SS+csdriezNYVT0nya/TC0xMbq09Ns5TAgAAgKeNFSwAAAAAGK0PdO1VwhUA AACsalaogEVVHV5V/1RVP6qqB6tqYVV9rU/NnlX1/aqaWVUPV9UNVfW+qhrx3qvqzVX1X1U1p6pm VdUVVXXwYvqvVVUfr6pfVtUjVXVPVX2jqp67LPcLAAAA8HSrqjOq6rVVtdGgY9tW1ReSvD297UE+ O24TBAAAgHGyQm0RUlXXJ3lhkjlJfpfkuUm+3lo7aoT+hyY5N8nDSb6RZGaSQ5LslORbrbU/G6bm 1CTHJbkzybeSTEry+iQbJXlva+3zQ/pPSnJZevvXXpPeHq9bJTkivX1b92ut/dcy3TgAAAAwZmwR snhVdWeSZ3ZvH06yMMm63fuW5JOttY+Nx9wAAABgPK1oAYspSe5srd1aVfskuSIjBCyqar0ktySZ nGSv1tq13fFJ6YUgXprkyNbaNwbV7Jnk6q7uJa212d3xrZP8NMk6SZ7bWrtjUM2JST6V5JzW2usG HT8kyXlJbkyyc1uRHjQAAACsxAQsFq+qXp/k0CQvTrJ5krWT3JfkP5J8obX27+M3OwAAABg/K9QW Ia21f2+t3dq9rT7dD0+ySZKzB8IV3TUeTfK33dt3D6l5V9d+aiBc0dXckeTz6a1mcczA8aqqrqbl 8T1IB2rOT/KjJM9Psk/fmwMAAACeFq2121trE4QrhtdaO7u1dmRr7XmttY1aa2u21p7dWvsz4QoA AABWZStUwGIJ7de1Fw1z7qokjyR5aVWtMaSmjVDzg67dd9Cx5yR5dpJfDV7VYpia/YY5BwAAAAAA AACsIFbmgMVOXfuroSdaawuS3JZkYpLtkqSq1kmyZZK5rbV7hrneLV2742jGGFKzw+inDQAAAAAA AAAsb1bmgMX66a1GMXuE87PT22Zk/UH9B46P1D9JNhgyxpLWAAAAAAAAAAArmInjPQF6qqqN9xwA AAAAAAAAYEXSWquna6yVeQWLoStUDDVwfNag/oOP9+u/tDUAAAAAAAAAwApmZV7B4pdJdkuyU5Lr Bp+oqolJtk0yP8lvkqS19lBV3Z3kGVW1RWtt+pDr7dC1vxp07Oau3XGEOQxXs1itWcgCgKVTVT5H AFgqPkMAWBY+RwBYFj5HAFhaVU/bwhWLrMwrWFzWta8Y5tzeSdZKMq21Nn9ITY1Qc1DXXj5woLV2 a5LfJtmpqrYZTQ0AAAAAAAAAsOJZmQMW30pyf5LXV9VuAweras0kn+ze/vOQmn/p2g9X1QaDarZJ 8hdJ5iU5Y4SaT9egiExVHZrkZUl+0Vq7cpnuBAAAAAAAAAAYV7UiLbtUVa9J8pru7RZJDkhvi4+r u2P3tdZOGNT/0PSCFvOSnJ3kgSSHpLelxzmttdcNM8apSY5LcleSc5OskeR1STZM8t7W2heG9F8j vRUq9kzy393PWyU5oht3v9baNaO4t5bYIgSApWc5RQCWls8QAJaFzxEAloXPEQCW1sD6B621p22v kBUtYPGxJB9LMnTSAw/s9tbadkNq9kzy4SQvTbJmkl8nOT3J/2kj3HxVvTm9FSuen2RBkmuTfKa1 9v0R+q+V5ENJjkwvXDE7yb8n+Vhr7eZR3puABQDLxH+MArC0fIYAsCx8jgCwLHyOALC0BCxWYQIW ACwr/zEKwNLyGQLAsvA5AsCy8DkCwNIaj4DFhKdrIAAAAAAAAACAFZWABQCsJD72sY+N9xQAWEH5 DAFgWfgcAWBZ+BwBYEVii5DlhC1CAAAAAAAAAGB0bBECAAAAAAAAALAcmjjeEwAAAAAAAABYngz8 n/HA02953vXBChYAAAAAAAAAAH1YwQIAAAAAAABgGMvz/0kPK5sVYeUYK1gAAAAAAAAAAPQhYAEA AAAAAAAA0IeABQAAAAAAAABAHwIWAAAAAAAAAAB9CFgAAAAAAAAAAPQhYAEAAAAAAAAA0IeABQAA AAAAAABAHwIWAAAAAAAAAAB9CFgAAAAAAAAAAPQhYAEAAAAAAADAmJk7d27OP//8fOQjH8lBBx2U TTbZJBMmTMiECRPyq1/9arG1X/nKVxb1HcmCBQvy53/+55kwYUImTpyYL3/5y4vOHX300YvqB79W W221bLTRRnnZy16Wz372s3nkkUfG7H6Hmj17dj7xiU/kJS95SdZbb72svvrq2WyzzXLggQfma1/7 Wlprw9Yty3Mb8JOf/CSve93r8sxnPjOTJk3KFltskUMPPTSXXnrpWN7iKmvieE8AAAAAAAAAgJXH pZdemj/90z990vGqGvU1Ruo7f/78vOENb8i5556biRMn5owzzsgb3/jGJ/VbffXVs/HGGy96P2/e vMyePTvTpk3LtGnT8uUvfzlXXnllNt1001HPaTRuueWW7LfffrnrrruSJKuttlomT56cGTNm5JJL Lskll1ySr3/96zn//PMzadKkJ9Qu63M75ZRTcuKJJyZJJkyYkA022CAzZ87MBRdckAsuuCB/8zd/ k09+8pPLeIerNitYAAAAAAAAADBmqiqbbbZZDj744EydOjVf/OIXx+S6jz76aA4//PCce+65WWON NfJv//Zvw4YrkmSvvfbK3Xffveg1c+bMPPDAAzn11FMzYcKE3HzzzfnQhz40JvMa7E1velPuuuuu bLLJJvnWt76VRx55JDNnzszMmTPz8Y9/PElyySWX5NOf/vSTapfluZ1//vmLwhVve9vbMn369Nx/ //2ZOXNm/u7v/i5VlZNOOilnn3322NzoKqpGWn6Ep1dVtSQjLgcDAAAAAAAAPD0GVgzw3d3SWbhw 4RO2+Lj99tuz3Xbbpapy0003Zccddxyx9itf+Ure8pa3pKqyYMGCRccfeeSRHHbYYbn44oszadKk nHPOOXnVq171pPqjjz46Z555ZqZMmZLLL7982DHe+c535ktf+lI222yzTJ8+fRnu9Iluu+22POc5 z0mSfO1rXxs2/HHMMcfkq1/9al70ohfluuuue8K5ZXluu+yyS2644Ybsueeeufrqq590/q1vfWvO OOOMbLXVVrn11luz2mqrLe1tPmWW9J+7Qf1HvzTKMrKCBQAAAAAAAABjZnBIYCw89NBDOfjgg3Px xRdn7bXXzvnnnz9suGK0dt5550XXHUv33HNPkt4X/7vsssuwfXbdddckycMPP/ykc0v73H7/+9/n hhtuSJK8//3vH7bPcccdlyS58847c+WVVz7h3NSpUzNhwoQcc8wxI45x9NFHZ8KECYtW4Rjstttu y7vf/e7suOOOWWuttbL22mtn6623zpQpU3LyySdnxowZS3Vfy6OJ4z0BAAAAAAAAABjOgw8+mFe+ 8pWZNm1a1l133VxwwQXZZ599luma//M//5Mk2X777cdiiotsu+22SXorMFx77bV5/vOf/6Q+P/3p T5M8HrQYC7/97W+T9IIdO+2007B9tt9++1RVWmu55JJLst9++z2pz8CKEIsztM+1116bKVOmZO7c uamqrL766ll77bVz11135c4778xVV12VXXfdNQcccMBS3NnyxwoWAAAAAAAAACx3Zs2alT/5kz/J tGnTsv766+eHP/zhMoUrHnzwwfzjP/5jvvzlL6eqcuyxx47hbJPNN9980coaxx57bM4999zMnz8/ Se9ePvGJT+TMM8/M+uuvn6lTp47ZuINDD4O3VRls4cKFi7beuPHGG8ds7OOPPz5z587NHnvskWuv vTbz5s3LjBkz8tBDD+Waa67Jsccem/XXX3/MxhtvVrAAAAAAAAAAYLnSWst+++2X66+/PhtttFF+ +MMfZrfddht1/Y9//ONsscUWi97PmzcvDz74YJJkl112yXHHHZc3vvGNYz7v008/Pa997Wvzox/9 KEcccUSqKpMnT86DDz6YiRMn5rDDDstJJ5004koTS2PrrbdO0ntmv/jFL/LiF7/4SX1uuummRT// /ve/H7Oxf/KTn6Sq8rnPfS4vetGLFh1fc801s9tuuy3R72xFIGABAAAAAAAAMMbe+aN/He8pPMFp /+sN4z2FJXb99dcnSU444YQl/qJ+/vz5ue+++55wbGCLjJkzZ+aee+4Zs3kOtskmm+TCCy/Me97z npx11llJkjlz5qSqsmDBgsyZMyf333//mAYsNt9887zwhS/Mz372s3z2s5/NG97whidt5XHKKacs +nnOnDljNvZ6662Xe++9N3ffffeYXXN5ZosQAAAAAAAAAJY7e+yxR5Lkox/9aC644IIlqp0yZUoW LFiw6PXYY4/l1ltvzRe+8IXMnTs3xx9/fN72treN+Zx/8pOfZPvtt8+3v/3tnHzyyfn1r3+duXPn 5vrrr89RRx2VSy+9NPvvv38uvPDCMR33Ix/5SJJeKOW1r31tbrzxxsyfPz933HFH/uqv/irnnHNO Vl999STJhAljFxM4+OCDkyRHHXVUTjzxxPznf/5nHnvssTG7/vLGChYAAAAAAAAAY2xFXDFieVJV ueiii7Lffvvl2muvzRFHHJHvfve7OfDAA5f6ettss03e9a53ZbvttssrXvGKnH766TnmmGOy1157 jcmcH3zwwbz61a/OjBkz8vWvfz1veMPjfwZ23nnnnHHGGVlttdVy+umn5y//8i9zwAEHZI011hiT sV/72tdm6tSpmTp1as4777ycd955Tzh/0EEHZdKkSTnvvPOywQYbjMmYSfKZz3wmv/zlLzNt2rSc csopOeWUUzJp0qTsueeeOeKII3L00UdnzTXXHLPxxpsVLAAAAAAAAABY7qy33nq5+OKLs/POO+cP f/hDDjvssFxxxRXLfN0DDjggm2++eZLkm9/85jJfb8DXv/71zJgxI5tuuukTwhWDHXvssUmSO++8 M9ddd92YjZ30VvqYNm1ajjrqqLzgBS/I1ltvnX322SennXZaLrzwwsycOTNJssMOO4zZmBtttFGu vvrqXHLJJfmrv/qr7LrrrnnsscdyxRVX5D3veU/+6I/+KL/73e/GbLzxZgULAAAAAAAAAJZLG220 US699NJMmTIlN910Uw455JBcdNFFy7zqxFZbbZV77rknt9122xjNNLnpppuSJNtuu+2IfQafu+OO O7L77ruP2fhJb1uVga1VBluwYEF+9rOfJUle+tKXPuHcxIm92MC8efNGvO7s2bMXO+7++++f/fff P0kya9asnHPOOTnxxBPzm9/8Jscee+yYBlnGkxUsAAAAAAAAAFhubbrpprnsssuy/fbb56GHHsor X/nKXHPNNct0zYFVFVZfffWxmGKSZMKE3tfvv/3tb0fsc8cddyRJWmuZPHnymI3dz0UXXZRZs2Zl 0qRJOfzww59wbmDLkLvuumvY2tZafvrTn456rA022CBvf/vbc9JJJyVJrrrqqqWc9fJHwAIAAAAA AACA5doWW2yRyy+/PNtss03mzJmTAw88MNdff/1SXevHP/5x7r777iTJrrvuOmZzfPGLX5wkmT59 ei688MJh+3zpS19K0gtjvOQlLxmzsRdn9uzZOeGEE5Ikb33rW7Pxxhs/4fwLX/jCJMk111yT6dOn P6n+rLPOGjZ80VrLY489NuK4a665ZpLk0UcfXeq5L28ELAAAAAAAAAAYU/fff/+i1wMPPLDo+AMP PPCEc621UV/zWc96Vi6//PI861nPyqxZs3LAAQfkxhtvHHX9I488kvPOOy9HHnlkkmSdddbJW97y lif1mzJlSiZMmJB999131NdOksMPPzybbLJJkuToo4/OV7/61Tz00ENJknvvvTcnnnhiPve5zyVJ Xv/61y/qO9jSPrd77703H/zgB3Pttdcu2upj/vz5+f73v5+99torN998c3bYYYecfPLJTxpzr732 ypZbbplHH300Rx55ZG6//fYkycMPP5zTTjst73jHO7Lhhhs+qW727NnZfvvtc9JJJ+XnP/95FixY kCRZuHBhLrvssnz4wx9Okhx44IFL9ByXZ7Ukf2B56lRVS7JE/wIBAAAAAAAAxl5VJfHd3bIY2C6j n9tvvz1bbbXVovdf+cpX8pa3vCVVtegL+6FuueWW7L333pk+fXo233zzXHnlldlxxx2T9IINZ555 ZlZfffUnhAIWLFiQGTNmLHq/7rrr5uyzz84rX/nKJ11/ypQpueqqqzJlypRcfvnlo7qPAVdddVUO PfTQzJ4meM5sAAAgAElEQVQ9+wljzZ07d9H73XffPRdffPGwW4Qs7XO7/fbbs9122y16v8EGG2TO nDmLnuGLX/zifO9738sznvGMYa933nnn5fDDD8/ChQuTJJMnT87DDz+cBQsW5K1vfWsee+yxfPWr X83UqVPz0Y9+NEkya9asbLTRRouuMXHixEyePDmzZ89edJ3nPOc5ufLKK7Plllv2vacl/eduUP8a VcEYsIIFAAAAAAAAAGOuqvq+hqvpZ/vtt89ll12WTTfdNPfee29e/vKX57bbbntC/WOPPZb77rtv 0WvmzJmZPHlyXvSiF+X444/PL37xi2HDFUny+9//PkmWaguPvffeO7/4xS/ywQ9+MLvsskvWW2+9 PProo9lkk02y33775bTTTsvVV189bLhiwNI8t8022ywf//jHM2XKlGy55ZZ5+OGHs/HGG2f//ffP F7/4xfz3f//3iOGKJHnNa16Tiy++OPvuu2/WW2+9tNay66675vTTT1+0rcnQcddff/1ceOGFef/7 35/dd989m2++eR566KFMnjw5f/zHf5yTTjop119//ajCFSsKK1gsJ6xgAQAAAAAAAMsHK1isuqZP n54tt9wy66yzTm677bZht/HgqWEFCwAAAAAAAABYQVx55ZVJkne9613CFTyJgAUAAAAAAAAAJPnR j36UtddeOyeccMJ4T4XlkC1ClhO2CAEAAAAAAIDlgy1C4OlnixAAAAAAAAAAgJWAgAUAAAAAAAAA QB8CFgAAAAAAAAAAfQhYAAAAAAAAAAD0IWABAAAAAAAAANCHgAUAAAAAAAAAQB8CFgAAAAAAAAAA fQhYAAAAAAAAAAD0IWABAAAAAAAAANDHxPGeAAAAAAAAAMDyqKrGewrAcsQKFgAAAAAAAAAAfVjB AgAAAAAAAGCQ1tp4TwFYDlnBAgAAAAAAAACgDwELAAAAAAAAAIA+BCwAAAAAAAAAAPoQsAAAAAAA AAAA6EPAAgAAAAAAAACgDwELAAAAAAAAAIA+BCwAAAAAAAAAAPoQsAAAAAAAAAAA6EPAAgAAAAAA AACgDwELAAAAAAAAAIA+BCwAAAAAAAAAAPoQsAAAAAAAAAAA6EPAAgAAAAAAAACgDwELAAAAAAAA AIA+BCwAAAAAAAAAAPoQsAAAAAAAAAAA6EPAAgAAAAAAAACgDwELAAAAAAAAAIA+BCwAAAAAAAAA APoQsAAAAAAAAAAA6EPAAgAAAAAAAACgDwELAAAAAAAAAIA+BCwAAAAAAAAAAPoQsAAAAAAAAAAA 6GOVCFhU1cFVdXFV3VVVD1fVrVX1zaraY4T+e1bV96tqZtf/hqp6X1WN+Lyq6s1V9V9VNaeqZlXV FVV18FN3VwAAAAAAAADA06Vaa+M9h6dUVZ2S5IQk9yc5r2t3SHJIkolJjmqtnTWo/6FJzk3ycJJv JJnZ9d0pybdaa382zBinJjkuyZ1JvpVkUpLXJ9koyXtba58fxTxbkqzsvw8AAAAAAAAAWFZVlSRp rdXTNubK/IV+VW2R5HdJ7knywtba/YPOTUlyeZLbWmvP6Y6tl+SWJJOT7NVau7Y7Pqnr+9IkR7bW vjHoOnsmubqre0lrbXZ3fOskP02yTpLnttbu6DNXAQsAAAAAAAAAGIXxCFis7FuEbJ2kkvzn4HBF krTW/j3J3CSbDDp8ePf+7IFwRdf30SR/271995Ax3tW1nxoIV3Q1dyT5fHqrWRyzzHcCAAAAAAAA AIyblT1g8askf0iye1VtPPhEVe2dZN0klw46vF/XXjTMta5K8kiSl1bVGkNq2gg1P+jafZd86gAA AAAAAADA8mLieE/gqdRae6CqPpjk75PcWFXfTTIjyXOSvDrJxUneOahkp6791TDXWlBVtyV5XpLt ktxcVesk2TLJnNbaPcNM4Zau3XEs7gcAAAAAAAAAGB8rdcAiSVprn6uqO5J8OcnbBp26JclXh2wd sn56q1HMzvBmp7flyPqD+g8cH6l/kmywpPMGAAAAAAAAAJYfK/sWIamqDyQ5J8kZ6a08sXaS3ZL8 JslZVXXKOE4PAAAAAAAAAFgBrNQBi6qakuTkJN9trR3fWru9tTavtXZdksOS/C7JX1fVNl3J0BUq hho4PmtQ/8HH+/UfzZxHfE2dOnW0lwEAAAAAAACAFdrUqVNH/P58PKzUAYskr+raK4aeaK09kuSa 9J7BLt3hX3btTkP7V9XEJNsmmZ/e6hdprT2U5O4k61bVFsOMv0PX/mq0E26tjfgSsAAAAAAAAABg VTF16tQRvz8fDyt7wGJS1242wvlNu/YPXXtZ175imL57J1krybTW2vxBxy9Lb9WL4WoO6trLRzVb AAAAAAAAAGC5tLIHLK7q2ndU1ZaDT1TVQUn2SvJIkmnd4W8luT/J66tqt0F910zyye7tPw8Z41+6 9sNVtcGgmm2S/EWSeUnOWNYbAQAAAAAAAADGT43X0hlPh+ptvPLDJC9PMifJd5Lck+R56W0f0pK8 v7X2T4NqDk0vaDEvydlJHkhySJIdk5zTWnvdMOOcmuS4JHclOTfJGklel2TDJO9trX1hFHNtScZt KRMAAAAAAAAAWFH04gBJa62etjFX9i/0q2pieitJvD7J85OsnWRGkv9K8n9aa5cOU7Nnkg8neWmS NZP8OsnpXf9hH1hVvbkb5/lJFiS5NslnWmvfH+U8BSwAAAAAAAAAYBQELFZhAhYAAAAAAAAAMDrj EbCY8HQNBAAAAAAAAACwohKwAAAAAAAAAADoQ8ACAAAAAAAAAKAPAQsAAAAAAAAAgD4ELAAAAAAA AAAA+hCwAAAAAAAAAADoQ8ACAAAAAAAAAKAPAQsAAAAAAAAAgD4ELAAAAAAAAAAA+hCwAAAAAAAA AADoQ8ACAAAAAAAAAKAPAQsAAAAAAAAAgD4ELAAAAAAAAAAA+hCwAAAAAAAAAADoQ8ACAAAAAAAA AKAPAQsAAAAAAAAAgD4ELAAAAAAAAAAA+hCwAAAAAAAAAADoQ8ACAAAAAAAAAKAPAQsAAAAAAAAA gD4ELAAAAAAAAAAA+hCwAAAAAAAAAADoQ8ACAAAAAAAAAKAPAQsAAAAAAAAAgD4ELAAAAAAAAAAA +hCwAAAAAAAAAADoQ8ACAAAAAAAAAKAPAQsAAAAAAAAAgD4ELAAAAAAAAAAA+hCwAAAAAAAAAADo Q8ACAAAAAAAAAKAPAQsAAAAAAAAAgD4ELAAAAAAAAAAA+hCwAAAAAAAAAADoQ8ACAAAAAAAAAKAP AQsAAAAAAAAAgD4ELAAAAAAAAAAA+hCwAAAAAAAAAADoQ8ACAAAAAAAAAKAPAQsAAAAAAAAAgD4E LAAAAAAAAAAA+hCwAAAAAAAAAADoQ8ACAAAAAAAAAKAPAQsAAAAAAAAAgD4ELAAAAAAAAAAA+hCw AAAAAAAAAADoQ8ACAAAAAAAAAKAPAQsAAAAAAAAAgD4ELAAAAAAAAAAA+hCwAAAAAAAAAADoQ8AC AAAAAAAAAKAPAQsAAAAAAAAAgD4ELAAAAAAAAAAA+hCwAAAAAAAAAADoQ8ACAAAAAAAAAKAPAQsA AAAAAAAAgD4ELAAAAAAAAAAA+hCwAAAAAAAAAADoQ8ACAAAAAAAAAKAPAQsAAAAAAAAAgD4ELAAA AAAAAAAA+hCwAAAAAAAAAADoQ8ACAAAAAAAAAKAPAQsAAAAAAAAAgD4ELAAAAAAAAAAA+hCwAAAA AAAAAADoQ8ACAAAAAAAAAKAPAQsAAAAAAAAAgD4ELAAAAAAAAAAA+hCwAAAAAAAAAADoQ8ACAAAA AAAAAKAPAQsAAAAAAAAAgD4ELAAAAAAAAAAA+hCwAAAAAAAAAADoY5UJWFTV/lX1naqaXlXzqup3 VXVRVR00TN89q+r7VTWzqh6uqhuq6n1VNeLzqqo3V9V/VdWcqppVVVdU1cFP7V0BAAAAAAAAAE+H VSJgUVWfTnJJkl2TnJfk1CTfS7JJkn2G9D00yVVJXpbk3CT/lGSNJP+Q5OwRrn9qkjOSbJ7ki0m+ nmTnJBdU1V+M/R0BAAAAAAAAAE+naq2N9xyeUlX19iSnJflKkne01h4bcn7iwLGqWi/JLUkmJ9mr tXZtd3xSksuTvDTJka21bwyq3zPJ1V3dS1prs7vjWyf5aZJ1kjy3tXZHn3m2JFnZfx8AAAAAAAAA sKyqKknSWquna8yVegWLLhjxqSR3ZJhwRZIMOXZ4eqtanD0Qruj6PJrkb7u37x5yiXd17acGwhVd zR1JPp9kUpJjlvFWAAAAAAAAAIBxtFIHLJL8SXqBiW8naVV1cFV9sKreV1V7DNN/v669aJhzVyV5 JMlLq2qNITVthJofdO2+SzV7AAAAAAAAAGC5MHG8J/AUe0nXPprk+iQvGHyyqq5Kcnhr7f7u0E5d +6uhF2qtLaiq25I8L8l2SW6uqnWSbJlkTmvtnmHGv6Vrd1ymuwAAAAAAAAAAxtXKvoLFZl17QpIF SV6WZN0kL0xycZK9k5wzqP/66a1GMTvDm52kun4Z1C6uf5JssKQTBwAAAAAAAACWHyt7wGLg/uYn OaS1Nq219nBr7edJDktyV5J9qmr3cZshAAAAAAAAALDcW9kDFrO69rrW2m8Hn2itPZLkh93bP+7a oStUDDVwfOC6s4cc79cfAAAAAAAAAFgBrewBi5u7dqSAw8Dxtbr2l12709COVTUxybbprYbxmyRp rT2U5O4k61bVFsNcf4eu/dVoJ1xVI76mTp062ssAAAAAAAAAwApt6tSpI35/Ph5W9oDFZUlakufX 8E/4j7r2tkH9k+QVw/TdO70gxrTW2vwhY9QINQd17eWjnXBrbcSXgAUAAAAAAAAAq4qpU6eO+P35 eFipAxbdtiAXJNk6yfsGn6uqA5IcmOSBJBd1h7+V5P4kr6+q3Qb1XTPJJ7u3/zxkmH/p2g9X1QaD arZJ8hdJ5iU5Y9nvBgAAAAAAAAAYLzVeyY6nS1U9M8m0JM9Ob7WJ69Pb6uM1SRYkeX1r7TuD+h+a XtBiXpKz0wtgHJJkxyTntNZeN8wYpyY5LsldSc5NskaS1yXZMMl7W2tfGMU8W5JxS9oAAAAAAAAA wIpiYBOL1trTtl/ISh+wSJKq2iTJR9MLSjwjyewkP0ryv1tr/z1M/z2TfDjJ/8/encdJctb34f88 u7P3am/dFzqQQEhCJyCMjQA7QMBgjGKHxA7GRxIHxwexX7Z/2I6chNgJhzh8ggzG4CCDCbExGIOR QCAJhA5WWkm70urYU3vfx+xc9ftjunt7eqanZ3Zmd7S77/frta/eqq6qp6q7v/18n+rvVN2QZHaS J5J8PMmHqzYvWCnl7Rm8YsVlGSzceCDJe6uq+vIY91GBBQAAAAAAAACMgQKLk5gCCwAAAAAAAAAY m6kosJh2rBoCAAAAAAAAADheKbAAAAAAAAAAAOhAgQUAAAAAAAAAQAcKLAAAAAAAAAAAOlBgAQAA AAAAAADQgQILAAAAAAAAAIAOFFgAAAAAAAAAAHSgwAIAAAAAAAAAoAMFFgAAAAAAAAAAHSiwAAAA AAAAAADoQIEFAAAAAAAAAEAHCiwAAAAAAAAAADpQYAEAAAAAAAAA0IECCwAAAAAAAACADo5qgUUp ZWYp5epSyqVHsx0AAAAAAAAAgKNpUgosSik/UUr5bClladO8i5I8kuT+JI+WUr5QSumajPYAAAAA AAAAAI6lybqCxc8meWFVVdub5r0/yUVJ7kjyUJI315YDAAAAAAAAADiuTFaBxWVJvlefKKUsTPIv k3yuqqrXJHlJkpVJfmaS2gMAAAAAAAAAOGYmq8Di1CQbm6ZflqQryW1JUlVVb5KvZfCKFgAAAAAA AAAAx5XJKrDYl2Rh0/Qra4/fbprXnWTBJLUHAAAAAAAAAHDMdE3Sdp5I8vpSyuwkA0l+IslDVVVt bVrm/CRbJqk9AAAAAAAAAIBjZrKuYPHnSS5M8niSx2r//0TLMtckeWSS2gMAAAAAAAAAOGYmpcCi qqpPJvnDJPMyeKuQj9T+JUlKKT+Q5OIkd0xGewAAAAAAAAAAx1KpquroN1LKzCRzk+yrqqrvqDd4 HCqlVElyLN4PAAAAAAAAADielVKSJFVVlWPVZtexaKSqqp4kPceiLQAAAAAAAACAyTapBRallAuS /HSSqzJ4q5DdSR5M8umqqp6ezLYAAAAAAAAAAI6VSbtFSCnl15O8J8mMEZ7uTfL/VVX1/klp7ATk FiEAAAAAAAAAMDZTcYuQSSmwKKW8LclfJ9mZ5MNJvpFkc5IzktyY5JczeEWLf1tV1W0TbvAEpMAC AAAAAAAAAMbmeC6wuC/JhUmuqarqmRGevyDJA0merKrqugk3eAJSYAEAAAAAAAAAYzMVBRbTJmk7 lyX57EjFFUlSVdXTST5bWw4AAAAAAAAA4LgyWQUW+zJ4e5DR7Eqyd5LaAwAAAAAAAAA4ZiarwOKf kry23ZNl8NocP5Lkq5PUHgAAAAAAAADAMTNZBRa/mWRxKeW2Usr5zU/Upj+TZHGS35ik9gAAAAAA AAAAjplSVdXEN1LKHRksoLgySV+StUk2Jzk9yXlJupI8lGRH67pVVb16wjtwAiilVEkyGe8HAAAA AAAAAJzIBm+kkVRVVY5Zm5NUYDFwpOtWVTVZV9E4rimwAAAAAAAAAICxmYoCi67J2IgiCQAAAAAA AADgRKYwAgAAAAAAAACgAwUWAAAAAAAAAAAdTGqBRSnlp0opt5dSdpRS+mqPXy+l/NRktgMAAAAA AAAAcCyVqqomvpFSZiT5fJI31mYNJNmWZFkOF3H8Q5K3VlXVO+EGT0CllCpJJuP9AAAAAAAAAIAT WSklSVJVVTlWbU7WFSx+O4PFFd9J8qoks6uqOiPJ7CSvTvLd2vO/NUntAQAAAAAAAAAcM5N1BYvV Saokl1dVdWiE52cnWZEkVVVdPOEGT0CuYAEAAAAAAAAAY3M8X8HinCT/b6TiiiSpqqo7yd/VlgMA AAAAAAAAOK5MVoHFs0lmdFimK8nGSWoPAAAAAAAAAOCYmawCi79O8q9KKQtHerKUsijJTbXlAAAA AAAAAACOK6WqqolvpJSZST6X5NIk/z3JN5NsTnJ6khuT/G6SR5P8RFVVvRNu8ARUSqmSZDLeDwAA AAAAAAA4kZVSkiRVVZVj1uaR/KBfShlI0rpi605XI82rqmr6uBs8CSiwAAAAAAAAAICxmYoCi64j XO/OI1xP9QAAAAAAAAAAcNyZlFuEMHGuYAEAAAAAAAAAYzMVV7CYdqwaAgAAAAAAAAA4XimwAAAA AAAAAADooOtIVyylvD3JuO9nUVXVXx1pmwAAAAAAAAAAU6FU1bhrJAZXLGXgCFarqqqafkQNnuBK KVWSHOn7AQAAAAAAAAAni1JKkqSqqnKs2jziK1jU9CX5YpJHk4xlp1UPAAAAAAAAAADHnYlcweKO JK+sTd6V5GNJPltVVfck7dtJxRUsAAAAAAAAAGBspuIKFkdcYJEkpZTnJ/n5JD+T5NQku5P8dZKP VVW1fDJ28GShwAIAAAAAAAAAxua4K7BobKSUGUnelOQXkvxIBm8Xcl+Sjyb5TFVV+yfcyAlOgQUA AAAAAAAAjM1xW2AxZIOlnJ/Bq1q8I8lZSfYleW1VVfdMakMnGAUWAAAAAAAAADA2U1FgMW2yN1hV 1Zokv5fk3yfZkGR+Bm8fAgAAAAAAAABwXOqazI2VUs5O8rO1f+cnOZjkU0kenMx2AAAAAAAAAACO pQkXWJRSpid5YwZvC/K6JNOTPJzkl5N8qqqq3RNtAwAAAAAAAABgKh1xgUUp5cIkP5fkHUnOSLI/ yV8m+VhVVfdOyt4BAAAAAAAAADwHlKqqjmzFUvqTlCT3JflYks9UVbVvEvftpFJKqZLkSN8PAAAA AAAAADhZlFKSJFVVlWPW5gQKLAaS9CXZnGTMG6mq6rwjavAEp8ACAAAAAAAAAMbmeCywGLeqqqYd UYMnOAUWAAAAAAAAADA2U1Fg0XWkKyqUAAAAAAAAAABOFookAAAAAAAAAAA6UGABAAAAAAAAANCB AgsAAAAAAAAAgA4UWAAAAAAAAAAAdKDAAgAAAAAAAACgAwUWAAAAAAAAAAAdKLAAAAAAAAAAAOhA gQUAAAAAAAAAQAcKLAAAAAAAAAAAOjgpCyxKKT9VShmo/fu5Nsu8vJTy5VLKjlLKgVLK8lLKr5RS 2r5mpZS3l1LuLaXsLaXsKqXcUUp5w9E7EgAAAAAAAADgWDjpCixKKecm+aMk+2qzqhGWeXOSO5O8 Isnnk3wkycwktyS5rc1235fkE0lOT/LRJJ9OckWSL5ZS3jm5RwEAAAAAAAAAHEulqobVF5ywSikl ydeSnJ/kC0l+PcnPV1X18aZlFiRZneSUJD9QVdUDtfmzktye5IYkb6uq6m+a1nl5km/X1ru+qqrd tfnnJ7k/ybwkL6iqas0o+1Ylycn0fgAAAAAAAADAkRj8+T+pqqocqzZPtitY/HKSVyV5R5IDbZa5 KcmyJLfViyuSpKqqQ0l+pzb5iy3r/Mfa43vqxRW1ddYk+eMks2ptAgAAAAAAAADHoZOmwKKU8sIk f5jkg1VVfXuURV9de/zKCM/dmeRgkhtKKTNb1qnarPOPtcdXjW+PAQAAAAAAAIDnipOiwKKU0pXk U0meSfL/dVj80trj461PVFXVn+TpJF1JLqxte16Ss5Lsq6pq8wjbW117vGTcOw4AAAAAAAAAPCd0 TfUOHCO/l+SqJD9Qu9XHaBZm8GoUu9s8vztJqS2XpsfRlk+SRWPbVQAAAAAAAADgueaEv4JFKeWl SX47yXurqvruVO8PAAAAAAAAAHD8OaELLGq3BvmrJKuS/Nd2i7VMt16holV9/q6m5Zvnd1p+VKWU tv9uvvnmsWwCAAAAAAAAAI57N998c9vfz6dCqapqSho+Fkopi5LsGOPiH6qq6tdKKZ9O8m+S/Juq qm5r2V5XBgsqupLMr6qqtzZ/fZIzk5xdVdWmlnVuSHJXkm9VVfXKUfa1SpIT+f0AAAAAAAAAgMlQ L7KoquqYVVt0HauGpkh3kr9IMlLVwrVJrk7yrQxe4eLu2vyvZ7DA4nVJbmtZ54eSzEnyzXpxRdM6 P11b5y9b1nl97fH2IzoCAAAAAAAAAGDKndBXsBhNKeXmJL+X5Oerqvp40/xTkjyZZEGSH6iq6v7a /NkZLJJ4WZJ/XVXVZ5vWqV+l4skk11dVtas2/3lJ7s9gUcYLqqpaO8r+uIIFAAAAAAAAAIyBK1g8 B1RVtbeU8gtJ/jbJN0optyXZmeRNSS5J8rnm4oraOveUUj6Q5F1JHiqlfD7JzCQ/mWRRkv88WnEF AAAAAAAAAPDcdjIXWFQZ+dYhqarq70opr0zy7iRvTTI7yRNJfi3Jh9us8+ullIeTvDPJLyTpT/JA kvdWVfXlyd99AAAAAAAAAOBYOWlvEfJc4xYhAAAAAAAAADA2U3GLkGnHqiEAAAAAAAAAgOOVAgsA AAAAAAAAgA4UWAAAAAAAAAAAdKDAAgAAAAAAAACgAwUWAAAAAAAAAAAdKLAAAAAAAAAAAOhAgQUA AAAAAAAAQAcKLAAAAAAAAAAAOlBgAQAAAAAAAADQgQILAAAAAAAAAIAOFFgAAAAAAAAAAHSgwAIA AAAAAAAAoAMFFgAAAAAAAAAAHSiwAAAAAAAAAADoQIEFAAAAAAAAAEAHCiwAAAAAAAAAADpQYAEA AAAAAAAA0IECCwAAAAAAAACADhRYAAAAAAAAAAB0oMACAAAAAAAAAKADBRYAAAAAAAAAAB0osAAA AAAAAAAA6ECBBQAAAAAAAABAB11TvQMAz0Urd23KU3u2J0kuWXhaLl546hTvEQAAAAAAADCVFFgA tOgfGMgfPfLN9A70J0nmd83K+2946xTvFQAAAAAAADCV3CIEoEV/NdAorkiS7v7eKdwbAAAAAAAA 4LlAgQVAG2WqdwAAAAAAAAB4zlBgAQAAAAAAAADQgQILAAAAAAAAAIAOFFgAAAAAAAAAAHSgwAIA AAAAAAAAoAMFFgAAAAAAAAAAHSiwAAAAAAAAAADoQIEFAAAAAAAAAEAHCiwAAAAAAAAAADpQYAEA AAAAAAAA0IECCwAAAAAAAACADhRYAAAAAAAAAAB0oMACAAAAAAAAAKADBRYAAAAAAAAAAB0osAAA AAAAAAAA6ECBBQAAAAAAAABABwosAAAAAAAAAAA6UGABAAAAAAAAANCBAgsAAAAAAAAAgA4UWAAA AAAAAAAAdKDAAgAAAAAAAACgAwUWAAAAAAAAAAAdKLAAAAAAAAAAAOhAgQUAAAAAAAAAQAcKLAAA AAAAAAAAOlBgAQAAAAAAAADQgQILAAAAAAAAAIAOFFgAAAAAAAAAAHSgwAIAAAAAAAAAoAMFFgAA AAAAAAAAHSiwAAAAAAAAAADoQIEFAAAAAAAAAEAHCiwAAAAAAAAAADpQYAEAAAAAAAAA0IECCwAA AAAAAACADhRYAAAAAAAAAAB0oMACAAAAAAAAAKADBRYAAAAAAAAAAB0osAAAAAAAAAAA6ECBBQAA AAAAAABABwosAAAAAAAAAAA6UGABAAAAAAAAANBB11TvADA+mw7szv6+nsyc1pVz5i1KKWWqdwkA AAAAAADghKfAAo4jy7evz588emdj+qYLrs6PnPPCKdwjAAAAAAAAgJODW4TAcWR79/4h09u6903R ngAAAAAAAACcXBRYwHHITUEAAAAAAAAAji23CAEAAACASfbknq15as+2JMlFC07NhQuWTfEeAQAA MFEKLAAAAABgEg1UVT684o509/clSeZ2zcgtN/yrKd4rAAAAJuqEvkVIKWVJKeXnSylfKKWsLqUc KKXsKqV8q5Tys6WUEe+0UEp5eSnly6WUHbV1lpdSfqWU0vb1KqW8vZRybyllb62NO0opbzh6RwcA ALYg/dwAACAASURBVADAc1PVKK5IkgN9vVO4LwAAAEyWE7rAIslPJPlokuuT3JPkliSfT3J5kluT fLZ1hVLKm5PcmeQVtWU/kmRmbd3bRmqklPK+JJ9IcnqtvU8nuSLJF0sp75zUIwIAAADguDDiX/YA AABw3DrRCyxWJfnRqqrOqarqp6uqendVVT+X5AVJ1iV5aynlx+sLl1IWJPlYkt4kN1ZV9QtVVf1m kqsyWKBxUynlJ5sbKKW8PMm7kqxOcmVVVf+lqqpfSnJtkh1J3ldKOf/oHyonoxU7N+bWlXdl4/7d U70rAAAAAAAAACe0E7rAoqqqO6qq+tII8zcn+bPa5CubnropybIkt1VV9UDT8oeS/E5t8hdbNvcf a4/vqapqd9M6a5L8cZJZSd4xkeOAVgtmzkmSbOven+9tXZNvbXpiivcIAAAAAAAA4MR2QhdYdNDX 8pgkr649fmWE5e9McjDJDaWUmS3rVG3W+cfa46smsJ8wzNVLz8m7rnhNXnHGRUmS/qqa4j0CAAAA AAAAOLGdlAUWpZSuJP+uNtlcGHFp7fHx1nWqqupP8nSSriQX1rYzL8lZSfbVrorRanXt8ZJJ2G1o KKXk0kWn59x5i6d6VwAAAAAAAABOCidlgUWSP0zyoiRfqqrqa03zF2bwahS7R1xrcH6pLZemx9GW T5JFR76rAAAAAAAAAMBUO+kKLEopv5zkXUkeS/LTU7w7AAAAAAAAAMBx4KQqsCil/FKSDyZ5JMmr qqra1bJI6xUqWtXn19fb3TK/0/Jj2ce2/26++eaxbgYAAAAAAAAAjms333xz29/Pp8JJU2BRSvnV JB9O8nAGiyu2jLDYqtrjpSOs35XkgiS9SZ5Kkqqq9ifZmGR+KeWMEbb3/Nrj42Pdz6qq2v5TYAEA AAAAAADAyeLmm29u+/v5VDgpCixKKb+Z5ANJHsxgccW2Not+vfb4uhGe+6Ekc5LcXVVVb8s6pc06 r6893j7unQYAAAAAAAAAnjNO+AKLUsrvJvmDJPcleU1VVTtGWfxvk2xL8q9LKdc2bWN2kv9Rm/zT lnX+rPb47lLKoqZ1npfknUm6k3xiAocAAAAAAAAAAEyxrqnegaOplPL2JL+fpD/Jt5P86gj3Ynm6 qqpPJklVVXtLKb+QwUKLb5RSbkuyM8mbklyS5HNVVX22eeWqqu4ppXwgybuSPFRK+XySmUl+Msmi JP+5qqq1R+sYAQAAAAAAAICj74QusEjyvNrjtCS/2maZbyT5ZH2iqqq/K6W8Msm7k7w1yewkTyT5 tSQfHmkDVVX9einl4QxeseIXMljQ8UCS91ZV9eUJHwUAAAAAAAAAMKVO6AKLqqp+P4NXsBjvencn ecM41/lkmgo1AAAAAAAAAIATx7Sp3gEAAAAAAAAAgOc6BRYAAAAAAAAAAB0osAAAAAAAAAAA6ECB BQAAAAAAAABABwosAAAAAAAAAAA6UGABAAAAAAAAANBB11TvAM8tX1v/WO7e/FSS5Nz5i/OOS25I KWWK9woAAAAAAAAAppYrWDDE1zeuysYDu7PxwO58d8sz2XnowFTvEgAAAAAAAABMOQUWDFWNOgkA AAAAAAAAJyUFFozITUEAAAAAAAAA4DAFFgAAAAAAAAAAHSiwAAAAAAAAAADoQIEFAAAAAAAAAEAH CiwAAAAAAAAAADpQYAEAAAAAAAAA0IECCwAAAAAAAACADhRYAAAAAAAAAAB0oMACAAAAAAAAAKAD BRYAAAAAAAAAAB0osAAAAAAAAAAA6ECBBQAAAAAAAABABwosAAAAAAAAAAA6UGABAAAAAAAAANCB AgsAAAAAAAAAgA4UWAAAAAAAAAAAdKDAAgAAAAAAAACgAwUWAAAAAAAAAAAdKLAAAAAAAAAAAOig a6p3AAAAAHju6envy6aDe5Iky2bPz9yumVO8RwAAY7fl4N509/dm5rTpOX3OgpRSpnqXmIDm3PTU 2fMzR24KwBRRYAEAAAAM8/6H/jnP7NuRJJnfNSt/+NIfy4xp06d4rwAAOntg29r8+WPfbkz/24uv zw+d+fwp3CMm6n8t/2rW79+VJFk4c07+4CVvzvTiIu0AHHsnfO9TSrmplPKRUsq3Sil7SikDpZRP dVjn5aWUL5dSdpRSDpRSlpdSfqWU9r11KeXtpZR7Syl7Sym7Sil3lFLeMPlHBAAAAEfflu59jf/v 6zuU7r7eKdwbAICx23Jw36jTHH+2Nr2Hu3sOpqe/fwr3BoCT2QlfYJHkd5K8M8mVSdbX5lXtFi6l vDnJnUlekeTzST6SZGaSW5Lc1mad9yX5RJLTk3w0yaeTXJHki6WUd07KUQAAAMAUKHE5bQDg+CSL OfF4TwGYaifDLUJ+Ncm6qqqeLKW8Mskd7RYspSxI8rEkvUlurKrqgdr830tye5KbSik/WVXV3zSt 8/Ik70qyOsn1VVXtrs1/b5L7k7yvlPIPVVWtmcyDWrN3R57cszVJcsEpS3PBgmVJknX7duaJ3VuS JOefsiQXLTh11O1s3L8rK3dtTpKcM2/RsOc3H9yT5dsH61LOnLswL1x8RpLB+9c9snNjqio5Y+6C XLb4zCHrbevel4d3bEjVVMpy6pz5uWLJ2UmSHd37s3zHhlRVlaWz5+Xc+Yvz0PYNGaiqLJk1Ny9e ek5KKdl56ECWb1+fgarKollzc3Vt/u6eg/n+tvXprwaycOacXL3s3Ewb5R56+3q788C2dekbGMgp M2bl0kWn5/vb16dvYCDzZ8zKCxadUZvub0wv374+vQP9mTdjZq5ddl66pk3Pwb6e3L9tbXr6+zO3 a2auPfW8ES+R293fm/u3rs2h/r7M6ZqRa5edl5nTu3Kovy/3b1ub7r7ezJreletOPT+zpnelpzb/ YG3+tcvOy+yuGaO+dyPpG+jPA9vWZV/voXRNm56rlp6Tlbs21aan5Zpl52X+jFmN5Qeqgdy/bV32 9nRn+rRpuXrpuVkwc3YGqioPbluX3T0HM71My1XLzsnCmXOGtVdVVb6/fX12HjqQaaXkxUvPyeJZ c1NVVZbv2JAd3ftTSsmLl56dJbPmJUke2r4h27r3pZSSK5ecnaWzB+ev2LExWw7uTSnJ5YvPzqlz 5idJHt35bDYd2JNSkhctPiunzTklSfLYzk159sDuJMmLFp+Z0+cuSJKs2rU5G2qXinvh4jOyt6e7 cem4Fyw6PWfVPuerd2/J2n07kySXLDot58xbPOpr+/TebXl6z/YkyUULTs35pyxJ0hKLC5bmglMG Y3Htvh1ZvXtw/vmnLMnMaV2N2Dxv/pJcvHD02Hz2wO48tnNTkuTseYty6aLTkySbDuzJozufTXLk Mdkci612HNqf5dsHY3PJ7Hl58ZKzh8Xi4llzc1UtFltNJDbnz5iVa089b9RL+x3o68n9W9emd6A/ c2ux2RyDB/t6azE6GHuXLz4rD+3YMGIs3rd1TQ719w2JxXZ6B/pz39Y1OdjXm5nTu/LiJWfnkZ3P 5kBfT2ZOn55rl503pvs+9g8M5P5taxsxedXSc7Jq1+bsrU1fvfTcnDJzdmP5IbFYW3717q3DYrOq qjy4fX12jRKL00rJlUvPzrp9O7O9HptLzs6SWgw+vGNDth4cjM0rlpyVZbMHY3BobJ6VU2sxWNca izt7DmTj/sHpyxafkTPmLkySPL5rc8dYvHTR6Tm7Nv/JPVuzZu/gJcmfv/C0nDt/MEaf3rMtT+8d HovP7N2ep/ZsS5JcuGBZppXSiMGx9JMb9u/Kqlp/eO78xXn+wtNGfS/bxWInWw/uy4qdh2PxzLkL 8/COjamqatR+8rz5Sxox2NxPttMuFvf0dOfB7evSPzCQBTNn55pl52ZaU8y1xmRr/3jtsvMyfdrw GG3tH1+0+Mws37EhPf19jWWaY7Cuub+cXXu+3i/e19RfXrnk7KzYubFtP9k70J/7t65txOSLl5yT R3c9m/29PZkxbXquPfW8zO2a2RKD03PtsnMzb8as9FcDeWDr2kYsXrPs3MyfMTvtjNRPPrlna3Yd Gpx+8dKzs2jW3MbyVVVl+fb12dEUo2v37RgxFusOx2RyxZKzGzH5yM6N2XzgcExu7d7X6CcvW3xm Tp8z2B82x2bdZYvPyO6e7kY/+YJFZ+SseQtHPMbVu7dmbe22AM395FN7tuWZWgxevPDUnDd/SdvX KWmfs9a1xuTs6TMasXje/MW5uBaLrTnrJY1+cXcerfWXZ81bmBcsGozFzQcHY7Rdv1jXrn/c3r0/ DzXF4IuXnjPqcY43Zx1PLB7OXTcMi8X9vT15YNvaYTlrq9b+8bpTz8+MadOHxeB1LTHaarw5a+9A f+7ftjYHWmKxNWetx2Jdc0zWNfeTA9VAHti2LnsaOew5WTBzTgaqKt/fvq4Ri6057EixuLgWq8u3 rx8Sk+v37xoxZ21nLDnrZYvPzBntctbeQ1lf6w/HkrO27ScnmLN2Gj+20zYWD+zJI7X+8oy5C7Js 9vxRc9ZWzbG4bPb8XLm01k+OM2cdb466txaj9Ri8ppaj7us9VIvN0ceN7XLWtrFYmz/WnLVdLLbm rIM5avsY7avFaL2/fPGQ8eP0Wn84vJ/sFIvtjCdn7TR+bO4nm8ePrZpjs7mfXLlr06TkrOPVnLO2 i8XnnbI0F9b6y/X7d+bxXcPHkUP6xfmLM79rVlbumvj4sTlXPW3OKbl8yVmjHk9rznrlOGJx0aw5 uWppvV88mAe3r0//wMgx2hyTdc2xub/3UO5vis16Pzne8eNI/WPruHK0nPXaU8/L7OkzhsTokYwf x5uzDo/F8Z3bqZuMnHXTgT2jjh/rOo0j2+WsT+zeknXjGD+20zp+fN4pS5MMj8UZ06aPep51rOPI 8easWw/uzYpajDbH4mDu2nn8WM9dm2PxSMaRFy88Nd+vxeZIOWurdrHYTrvzrN19vbmvKTZbx5Gt 2sViq96B/nxn89O1WOzKtcvOHRKLrf3iNcvOy7wZw2N1vLFY1xyTdZOZs7Y/l9P5PGtda/842bHY 7pxOXbuctZ0N+3c2+ufm8WPdxv27h/SPC2fOnsRYnPg4ctehA/n+COPIuk457Fhz1k7jx9HO6Yw3 Z60by7mcVs3jx5nTB2OwPn4cGpu1frHlPGv9t4/+WizWf/O4ppG7Dj3PWs9dB3PUdUPO6Ty1d/uw nHU04/3No52x/uZx5tyh53LaxWTdeMeP481ZO2k9p3PKzNkj/vbRPH5sl7uePveUvGjxyDlqcz/Z PH6s23Fo/5DfIc8/Zem4ctZ2hsTizNm5ttZfDsbi2sO/fbSJxRcuOrMxrhw6fuzJ/dvWpae/b1g/ OVIsjvU8a7ucdbzjx3o/2Zq7DhlH1mKx/lvI47u3tO0nW7WOH69aes7w8621ceRUOOELLKqq+kbT ZKfixpuSLEvyyXpxRW0bh0opv5Pk60l+McnfNK3zH2uP76kXV9TWWVNK+eMkv5vkHUluPtJjGMmH V9yRfX2DJxxnT+/KLTfclGllWv7okW9kVy1JmzFtem654aZR75H75499O5sO7kmSTCslM1uWvXXl Xdnf15Nk8K+W3vvSt+SUmbPz8VV3N5KhJPnDl/zYkE7mrx7/blbt3jysvf9+3Y/mtDmn5K9Xfy8r dm5szD919vxsbbr87O9c/fqcO39xPvfUA7l/29rG/N968b/IBQuW5fNPP5jvbnmmMf/Xr/zhUX8M +/s1D+ebzz7Rtr3TZs8fcvnb1uenpeT6056Xr21YmS+tXdGYX6XKDadfOKy9b258Iv/3me83pg/1 9+XGsy7Jtzetzmefany0crC/Nz989gtyz5an839Wf68xf29vd1537ovaHk87y7dvyF+sursx/dX1 jw45jmcP7M5PXnRdY/qxXZty68q7GtNr9+3ITz//pXli95Z8dOXhexQ+vXdbfubSG4a1t2bfjvzZ Y99qTK/atTn/4bIfzIYDu/Knj97ZmP/ozmfzzhe9MpsO7MkfP/rNxvyHtq/Pr1zx6mzr3pePPPKN xvxLFq7Lf7nyh7Pz0IF8aMXhmqgLTnkmv3XVa7OnpzsfWnF741I0581fnHdf/frs7+3JBx++PQO1 ZxbPmpvdPQczUKv0OX3OKflv1/1oevr7csvDt6evGjw5s3TWvPzPl7y57es6kCoffPj2dNeSxHld M/OBG25Kknxoxe2NGBkai99sDJhmTpue2dNnZE9vd5LB2PzAy9466uDwo499OxtrydS0lLzvZT+e eTNm5S9W3dUYOJQk//ulP54FM2fnE6vuyVN7tzXW7xST/+O6Hx3xRMdnVt+Xh3ZsaEz/7jWvzznz FuezT92fB7ata8z/7ate2zgB0ewLT38/92x5ujH9rite00iQRvIPa1fkjo2PN6ZnTe8adfDx1fWP 5R/XPdKYLkleetoFjenbN67K3695qDHdGts9/f155VnPz7c2rc7nRojFdr675Zl86onvNqa/0vId saP7QN70vCvbrl/38M6NQ2L0a+sfG7J/6/fvyr+5+PrGdGssfm39Y0PafXLv1vzspS/PM/u258+b YvHx3Vvy71/4iqzfPzQW/3nDyiHrr9ixMf/58huz+eCe/NEjh2Pz+9tPz69d8Zrs6N4/JDYvXrA2 v/HiH2lM7+k5OCQWl86alx2HDqSqzTln3qL87jX/Mgf7enLLitsbsXjGnAX5/eveOCwWl82el/dc /+b0DfTnlodvT+/A4KUeF82ck//10rdkoBrILStubwzY5nXNygdueGuS5EMr7siBRizOSFeZ1ugn Z9Vic3qZlj9+5JvZ2XMgydB+8k8fvbPx2nSVaXn/DW8d8YRM3a0r78q6/fVYPNw/dvJXT3wnj9dO 0CXD+5v/du0bc/rcBfk/T34vD+9o30++++rXjfrD9v99+vv5TlMs/pcrXpNLFp2ev1uzPN/e9GRj /q9c/qohP261xmRru/UBa6uvrV+ZL6073D+2xl5d38BAfvDMixvT33p2df726Qcb0919vXn12Zfm rs1P5bYn72u7H3t6u/P6pn7yvq1r8pePf6cx/U+zHx3S/rbufXnLBVdl+Y71Q2Jw08Hd+YkLr80j O57NrU3zW2Ox1eo9W4fG5oahsfnEni35+Rf8QGN63f6d+dOmGG2NxUd2bswvvejGxvSWg3uHxOSD 29bnXVe+JjsO7c+HV3yjMX/Z7JXZ1jSIuOCUpfmtq16bvT3d+dCKOxqxWLd01rzs7DnQiMUz5yzI zde9cdjx9fT35YMrDsfgkllz8wcv+bH0Dwzkgw/fnkMDgzG4YMbsvPdlP972dUra56x1f/zoN7Pz 0OGYnNc1s5HLdpVp+cANN2XW9K5hOesHXvbWzOmamY+tvKvxQ1hJyfte9pbMnzE7H191T6MQpCT5 Xy99y4g/KAzvH9+UU+fMz1+vvrcxqE+Sm699w7ATGM3Gm7P+v2eW567Nh2PxVy9/9ZBCrS+uWZFv PDtaLA4OWP9p/aP5p/WPNubXc9ZWrf1jfzWQV5xx8Yg566vOuqTtcY43Z31g29p8YtU9jelth/bl Lc+7aljOuuXgntx04TWN6Ud3Do3JunX7dubfPv8leXz3lnysKYd9Zu/2vP2Sl+WpPduG3Gd79Z4t +blRYvGxXZvyi5f9UDbu35U/aeovv94So/WctZ2x5qznzluc37lmeM66ZNbc7O7pTn+tP+yUs/YN 9OeDD9+enlqMLpw5J//7pW/JQDVaznpH9o84fhyas95yw00jFul0MjwWfzzzZ8zKX6y6O2tqxVol ydLZ84Z8b7XmrK0+vfrexo/DSfL7174hZ8xdOCxnrY8f2+Wsf/vUg7l36zON+b9x5Q8POwHf7O/X PJQ7N61uTP9S14xcseTsfGntity+cVVjfmt/11UGC4lac9YkedlpF+TrG1bmi2sfbswbqKr8wBkX 5RvPPpEvNMVip5z17s1P5TNN/eTe3kN53bmXDctZd/ccyBvOu6LtcS7fviEfb4rRf2oZP246sDs/ cdG1w2Ky3k+u2jU0Ftfs3Z5/d8nL2rY31pz10Z3P5j+96JXZdGD30PHjjg35lctfla0t/WR9/Nhq d8/BfHjFHY0YfN78Jfntq1+Xfb3d+eDDd0w4Zz0SrTnrYCyWfGTFNxrjxVnTarnrtGn5k0fuzPZD gzHTPI78s8e+lc0H9yYZ/HFuwczZjf50Wil5/8vemrldM9vmrO3O6Xzy8e/kiT2Hc9X3XP+mxo91 I2nNWX/vmn+Zs+ctymefvD8PbB8ei5976oF8b+vhvz/6jSt/JBcvPDX/95nluWfzU435rePIL64d ek6n7j/Vxo9fXvdI/nnDysb8es76T+sfzVfWDe0nX9LUT96+cWX+fs3hmOyvqrzijIuG9Y+t/XC7 nHVf36G89pzLcu/WZ/KpJ+5tzG8dP+48dCA/en778ePyHRvGlbOu3LV5SCzWz+205qxP7d2ad1z6 8rbtTjRn/fqGVUOWbx0/1rX2j63jyCWz5mZX07mces56qL8vHxwSi/PznuvflN4248fRfGjF7TlQ u+3VnFoslhFicdb0riHnclrPs/7Zo3c2+oHRxpHjzVn/8vHvZHXtR+Yk+Z/XvzlLZ8/Lp5+4N4/V fixOkv923Rtz+pwFw86z1mPxtifvy/e3r2/M7zSObD2n0/rZb81ZW31p3Yp8fcPhfrKes7bT7jzr 7Rsfz9+tWd6Y3zswkB9qGke2+vamJ/M3T93fmN7f15N/cc4Lhy33va1rhuTYg7F4uJ98cNu6If3i 1u59+fELrhq2nRU7Ng6JxQ37d+dtF1/XNhbrnmyJybrJylmXbz8jv3oE51nrWvvHpbPmZeehA42c 9cy5C3PztW9Id39vbnn49kbuetrs+fnvI8Ti4llz84cv+bHG9lvP6czvmpX3187p1LXLWdv5k0fv bJyX7SrTcssNNw053/rRx76VZ5vGkYtmzsmOWn/ZnLN+fOXdeaYpZ63H4ice/06j4CNJ/uD6N2fJ 7Hltz7P+n9X3ZkVT7vpfr3lD2z9qSJLPtowjf/PF/2LID9adzrOONWedMW16rl52br6y/pF8df1j jfnTyrRcf+r5w87ptMZ+vX8ca85a15or13PWdu5vHT9278+PPe/Fw3LWzQf35qYLr86KlvOsGw/s zr++6Lo8tnPobx7r9u3MTz3/JSP85rE9P3PJy/LU3qHjyNZzPKt2b85/eOEPtt3v9jnryLHYTut5 1vPmL8m7r35d9vceGjJ+PGvuwvzXa9/QWK+7v3dI/3jq7Pn5H9e/qfH8aOdZh44f259n7ZSzdtJ6 TmfhzDmHc9em3z5uXXV34499hvaL9+TJPe1/+6hr7Sd//9o3Nv7IIUluW31fljeNI1s/64fHjw/k 3hFy1nZaY3HOi27M5UvOypfWPpzbm86zzpzelauWnjMsFkf6PfIlpz0v/7xhVf5hbXOuOlAbPz6e LzxzuJ/sGejPK898/rDzrAf7evKas18w5px1d8/BvOG8y9se54Pb1w+JxS3de/PWC67Owy256+Dv kNcOi8Wvtvy2sWbvjvy7Sw73k62e2Tvy+LGu9XfIY+1kuEXIeNTPmn1lhOfuTHIwyQ2llObS1Vdn 8JYjI63zj7XHV03aHtbUv9ySpLu/rzHoaJ7fO9Cf/qbq/k7bGaiqHGq5b1nz81WqdPf31uYPvffu wZbp+nrXLTsvN555SU6p/UVafX7zdpPBHz5GWr91uf1t5rdOt+rU3taWCqfh+1M/7pH3p1N77Y7n QO/oxzleY31dW9vvuJ9jPM7G+zPO7babf3DY/MH3obu/d8hPRvXlDw30NhKNZLAKuB4bzcv1DvQ3 Eo7Rjq+uqtJINFqXb43FenPN83sG+of8BWZr+yMZEpupGoOPoTGZppgcegzDX7sj/Oy2+YyO9TMx 3tic6PKt062x3ekzOtZ2W2NrrDHbaf86vU9j/a4c73dtu+/wA/2jv04HW2Jxx6H9Q37Qre//oaZ+ qnk7PW1isa8aaCT9zdsZ7KfGEou9Q167Q6P0k321dprn91UD6e1wH892/WMnY+//ese03FjbOdDm s9/6GRtvP9JuO/XP9kULTs2NZ16Sc2t/cd0pZtv18x37szHG1vD1Rv4OnezvhIkeT7tY3d7mOLv7 +1KlyuzpXbnxzEtyQ60QbUdLv9juu6s1Buvb7a8GGsUVI+3nSNrlrCM93zvQn9093S37Mbz/G6iq Rr88PBZH7i9b+8V2xzDeXKjd851y1vH2Z2P//h/5u+ho5dSd+r8jzSvq2z19zim58cxLclntL8sm +rruH2OOOt7v3OH96Phy1p2HDjZOUDcv15oz1o+/v6oaxRXNyzfHQOt+jzVn7ZSjttP8WRg6bhwa i63fW+1ic6T9bm5nvJ+BCX9222ynba45zs/+VB3nZOeak/W61rfTrj9t/a5rF6MH+0aOwXo/2dre eHPWI9Gas9b3o3n+oYG+xndC82vQO9Cf3to5nubl+6uB7KqdoE6G5sztctZ253TG3y8M3U7n9+7I Pkv15y9bdEZuPPOSxpVIOm63Q+471v1sl+u1a3essdXOeHPWsX7njDdGx5uzbuswvq1r7R9bx5E7 2+SsvQN9I48fB0bOXUfT/NltHte2xuLe3sO56UjnWfc3baevGkhPm3Fkaywe7Bs9Zx3rZ2vcsdU7 uZ+B4euP7fu53fOTlaO2W75zDj62/R/v+9M6vXTWvNx45iW5onY1hMnOWdu12y5nrWvtH3cc2j8k Z230i/39Q3LXehz0DfSPGoujndMZaV5zztpO8/J91cCQHHlw3w4/P1BVjR90k9Fz1rb9Yv+R5S5j 2f+xTI/1Mzbe+UeaE7bG7PPmL8mNZ17S+KO8Tuc9W7U7XzvR777xbme8333ttnuww3nVVq3nWevL H+rvGzEW63r7R89V251nHftvHp1z1k6a1xuoqqG56yjncrrrsTjGc/njjaHxfo+2M9HP6ERzvz6+ 5AAAIABJREFUzcmOiXaeK7HVmO6Q1xxtCiyGurT2+HjrE1VV9Sd5OoNX/bgwSUop85KclWRfVVXD L9cweNuQJGn/Z2AT1O6SHOO9D1mn5Y+0ndeee1nedvF1jct7dlq/3b19288fn+HtjW96vO2Od/3J un/cWF/XTs+P/TjHt/74509s+0fr83MkbYy/zcl5bcfb/tH67B+r5ccey+NrebyxNfbtTM7yY4+J ia3feftT850w8r6MbxtH+7Pbrv2Jvnft2xlb+52eP9LYv3rpOXnbxdd1vIXKZB3/xN//o/udMN7X daKvy/wZs/K2i6/Lm1r+QvJY9QXjWedoxe6xPtaj3W9PPGdrN39in/3Oyx/Zfp8/f2nedvF1efkZ F41r/aMdW+Pf7sTyxMn8XE3WZ2Ci2z/Wr+2Rt/vceO+OdT4z2bniRLcz0c/tVH1+RnO0PhvH+rWd 7O13avWG0y/M2y6+LhecMvJf4E9Vv/Bc7VeOvN2J5axHmpcc6Rip3fpHsg/t5h/pZ2j4cidWvzDW 9Y90+cnqt8e73aM9hjh73qK87eLr8soznz8p23+ujUEm4/Wd7Pf+aH2/HKvP7pGf25/Yfo93/cuX nJ23XXxdrmy5xdhzLVec6PG3M1W58kSfH338ODn9Srv1jtbvgUf7O6H9dic2/7ny2e/kuRJbY33+ aDnhbxEyTgszWBi1u83zuzP4Xi1sWr4+v93ySXJkN+fM4KWzR7rVxkCGlm9+fNU9mVZK468Z6j75 +HdGvUTPeP/y4m+euj+zp8/Irp4DQ+Z//ukHhtyzbvuh4ZcFT5KVuzbn6xtWNi5lWddajPqltSvy 8I6NwyrgvrLu0Xxny9ONWyTUfXX9Y0MuM9mq+VJeI7XXybc3P5kn9mxpXN627jubn25cyq/Z+pb9 u2/r2mw8sLtxn6y6XT0H8qknvtu4z1XdQ9s3ZH/vobz+3Ms73pcrqV1GeeVd2dLhdX1i99Z8YtU9 +cEzLs5929Y07rtV9/Se7bl15V2NS6XVrdm3Y8ilfOqa7xmYDF6G69aVd2VP01+fJoNViV94+vvD Xr8t3fsGb0PTdHWHZPAv225deVfOb7ls4a6eA7l15V3D/lJ8T093bl15Vy5suS9f6/Ef7OvNrSvv GlKxORatl1ivksbr0drGPVueyspdm4fcG3akbfzV499N1yix2Vqd95kn7xu8NGXLa/vZp+7PBacs HbYfn3/6wVFj8v89szzzm+51XrfpwJ4h0/+wdkUWbFqdDfuHfs3947pHcnfTJVzrWt/jr21YOeRS d62earq0V5J849knhlySvVVrvN29+akhlwdb29J+6+u+49D+fOqJ7w5ZJxm8DGRr/DSr3/vu8HaH enTnxhFjpNXWlirN1v3r7u/N3zx5X+OKJ62x2Nru2n078/FVd+fU2UNv97J+/64RY7F1/SpVvvDM 94d9F2yrxWZrH7Hj0IEhx9l6m5jW7e/rPZRbV96VnqZq6GSw77l15V15/oKhl+bu7u/LrSvvGvHq S9/c+MSw/rBK1fZ1b31tP7HqnlwywqXAP1mLxe6Wffz06ntHvcVW818yJYf7x05a/3K39TX7uzUP 5fz5S1JVw793mn157SNDbvXRqjUWvrZhZe7btnbIpaCT5PYNq7K86ZKxrTHZ6lvPrm7cM7HZmhH6 wpHcu/WZbO3el5effmHu2vzksFh8YNvabD64Z1h/2Xr8e3q689dP3JuDtf6g9bur9f1/bNem/OXj 38m8lntdP75rc25dedewCuon92wdNaZ3dojN9ft25i9W3p0fPOOiPLRj4wjfTUNtOrC30V5Jcs68 ofep3X5o5Jhs3c6unoO5deVduWCEWziNpB6LrVr7sJ7+/sHYbMnL+quBjt997XLWuk5Xi/nUE4Ox 2Hrsn1n9vWH3wE6S/7+9O4+Tq6rz///+VFXvazpJp7NBEnbCKiCbsqjgNoMbjH7nN+N3VNTBEcEd 9auC44zOuO86owLiOCAqIDsCKkhYkpBAYsi+d2frdKe7k967zu+PqlvLrbpdXdXVXZ3wej4ePIrU 3c69dT/3nM+5p++9fdMyVYbLMtood25ekfU9kpn140rVlFVk1Am/3/ai6sqCXwO003fOBrVZt/V0 6Pn27drSk37uP9a2VitSHqXub7v6Pblrg9Ye2J0R016b1c9/Dj63d6t2HOzM0mbdllHnpWrztQde 3N+aEQ+p9vSlx6b3ejr/8e0dHtL/blyWeBywPyY9m3vas7ZVB6Mj+vXm5Rn12faDnWnnqP+8iDqn 325ZkTNGvTZrEP9TGILarD1DQW3W9C2O1mb9Y9u6tFdNSbGY/enapzKeEOO1Wb13S6f62bolCpll xPut65L5o7+cUnD9eNDXnr9907KsMZqrzeq3z3eu3LttlWrLKjKu+/dvX63VnW0aiaZvwWuzeq9I 8OTMH30x+se29VrV0ZaznvzL7o1a37Uno8369N7N2tzTnnGu7es/qF+sfzYj5pft26a23gMZ9aH3 zmh/h1TsPe2HMuJ3dUdbRnswVa78cX3XXt287umM9+JujNeTHQPp7ZqtPftHjRV/DAa1WXf3dutn a5/KeHf0vr6eUfNHP/9f6nbF80Z/bHpt1mN875D26kl/LHpt1iCLp83O+irRbJ7eE8sf/XXszeuf VthCGoymt1Fv2/Bs1scT+3+7/924VOXhSNY2a7bY9vp09vt+07u2xOrFIBn547ZVqi+vTLzu0rO5 u13P7N2SeDe45+Gda/Tcvq0ZbclHW9fq+XgeWVdWEfi0uD/H80d/vfrkro3afrAzI69esmdTWrz5 Y7I9HpObc/QhBbVZuwb69MsNz2WUx7/86s5d6hnlHPJf+4LarAMjw7pj07KMPHxLPBb9dbS/XvTL lT/u7u3Rz9Y+pQtmHaN1Wa51mfl3b9bt5cojs/XZ/WHnS2mvzJBi+58tfxyK5m6j+v1s7VMys5x/ ievvZ/Wfm/8TUE/2+K5bd2wObrNmex3r77auVE2kPOMcuGfrizq6rinj2N8bj0V/vfDAjtVpr6nz 859L/t/C32b189eTXpt1rNvz+ln9beil+7Zqp68uT+WPxZXtO2Lvd7fRb7ms7mxTz9rkee/vr/a/ Wtnj/x02du/VT9c+lZHvD44M645NyxPX4qB2c2psmkwt1el9PLvi/a3+a3q2Pp67t76QcU316smg NqvHn0f61x9cL8barv7Xdw/F80iPv60azdKn4z+XvTarJB2bpW3pd9uGZ9NiMNe9j2T+mH5s79z8 vKoiZer01YtrOnfroR1rAvtZ/W2re7ePnkf6z10vj/T4YyS1fpSyt1m39OzPuDY9sWuDXsqWP+7e pA1de3P26Ty7d4u2H+zIqMeX7dum/QMHM/qwgnht1iAZ+WPAPY91Xbt1y7qnM17Vu7FrX9ZY3Nyd PY8cCsgj/XvTeqhr1HrFnwvl22b1ZOSPAfc8Dvn6cnK1Vf31ZHD+6ILzx7WxWAxqs+aSqz/rhf07 tbmnXT0Z9z7isZhxP3KFqrPkkf6+999vezHtHoi/7ern5Y/+eshrswbZnCUWX+xozagX2w516ZZ1 T2tDjram12b1XwNi+eMzGf2pS/duU+uhAxl9U8+370i8hjfVC+07tb8/M39c1dGa0TZJ5a8n18bb qP7j3j8ypNs3LcvSVky3Jd7HE+TAQHpZWuP5o2e0XHcy2FgvfkcCM7tE0uOSfumce3eW6eslHSPp OOdcxp1DM3tK0vmSznfOPWtmcyTtlLTTOZfxQnIzK5M0IGnAOZf50uf0eeM/RPL3sFBU73v0DoUi 2X+j/gMVGhkKqWZm+kk20FOmwUNlqmsJ7uxMNTwQVnTYVF4zrOiIKRR2clHJQkp89u6vVPV0303z YdOBHfVqWpi9E9ZFpV/93Vt0aG+N3vqTh9R8UoeGB8KKVCQv+Ps3NWr6Mcmg37+xUdOPTf57eCCk SEU06/azzZ+Lf35vvfnsdz7bDZrPW6+3f0Hzr/jFYi396emJfy9+xzpdeN1yrf7N8Vry3bO18OLt uuxfM9/d519P+4ZGzTgu+e/BQxGV1wwHTs93P4OWT+7n6L+7p2Nzg6Yt6JJXJ3vHp+9AhSpqBzNi oXNbvRrm9iS+9+Yf6ClTuHwkcWy7dtaqZkafIpW+V+DEyzfQU6Zb33xV4vtw+bDe9+ivNTIU0lBf RJX18UcdtVcpFImqqjG9cZRavtTfdKCnTEO9ZaqdFYvFwUMRDXRXqG52cEMy1fBASAf31KjxqPSK a2QopO62Wk07ujtt3tFixdOxuUFNi4JvnHiCfvvxnvuTNX9QrPtjLujcHet6810+3/IFzT/ea2VQ bAadH/7YTG43tnx/V7nKa4YSsdi5rV71cw4qXJa+L107a1Uzsy+xTa/cQ31hyZnKqn0DMbxr9LBJ JoXCsfUf2lelcFlUlf5Y7KyQi1riGPR3lWt4IKza5lg9GR0xyUmhiMt6rIZ6I+rrrFT93Ow39vyy xeJYuKjUscVX//mui96x9ZezWLGS69z1tpurPgxazqtXn/7+mVr165N02rte0nkfSr4DcPBgmcpr k4njWK85Qedu0Pz5xkqxrwm56tug+jBR/3VWqGraQMb0js0Najy6OxETHVsa1Di/O6M+7G6r0e3v eotqmg/p//vNPYnfZfBgmUJl0azHMFX3rhpV1g+k7YMkHdxbrUjlcKJ+zCWozepJLY9Xxmy/0fBA WAf3Vqtxfk/Kd8G/aXTY1LWzTtMWjB6jLip1bs1+/Qv6jYLk3SbKEdNjjcXx1s/jPfdzyfe4eF68 4wQ984OzNPvMPfrb7zw25uXHelwz2uL+3CTP398fi57OrfWqn5usFwtts0aHTRZyifr44J5qlVUP qaLO94h+X5t1ZCgkC7nA2ArKH11Uio6EFC7L3caUpJHBkHp2p7dds8VodMR0YHtwHplN0G8x0flj rnN3tGvWWJYf67k72XnyZG8veLvx9lBHpaqbsmx3U6OaFh7IaKP6dW6tV8O8nqz5ZP3sgwqXp8fm 4KGIQhGXcV3qbqtRVeNARpvVb/BQRLe88e9koaje/6fb5aJSf3dFIib7OitUUT+oUDhL/thXptrm 3oz19XdXqD4ljxwZDClcnv6bZKsnpaD8MXtbUxq9XgwSFKP55mFB54a3/GM3XaBNjy3QuR96Xqe/ a23O5ceaJ4+1j2a8fTzFipWxbq9Y2/X/vv42rj+PDMofPV65+7vLVV6dzCMPbKtXXUpMevvpne+e 7tZaVU3rz4jFnl01qqgbTMszRuPPHz393eUqqxpWuCw6pnxoqC+svo6qnHnkyGBI3bsy88dsbdZc 567/mE92vZDv8oXOP9562zsu3u+Yq97Od7v5xqhn7X3H6In/PFczTtivt//3wxnTc/6evpgM2l5Q LAa1WVPbqJHKkUTb9cD2OtXOOpSxL107a1U9vU9lVel9PKn3GrIJ6tPx9B+o0MhwSDUzfIOjU/p0 xtqHHytXWCODIVXUDeW815Etf4yOmAa6y1U1bSDrMZ7IPLLQ6YVeEwrNP73tLfv5qXr+llN15rtX 6ZyrV4055sZavsC24gS1xfPOk8d4zyOXsd7z8OturVVVUzIm/UbLH8ORZEym1rtB+WO2NmsuwwNh HdpXpYZ5BxP7NTIYVkXdUFpsjRaLY80jJ7uvJdf8k9XW9BTrmhBk0mNrDL/nL9/2DkmSc27SHmjB EyzS+Z9Q4ed97/2SXb7vc80/Bsnf3kWln74mOWXawuvUtOj6xL/b1zUpGjU1n+QblbpxmoYHwpq1 ePS/rvF0bGnUm77+x8BGjyT94fOvVm3zobRnrXTtqNeh9irNOWNP1mewdLfV6tDe9FeDhCKx4F/2 s1O1c1mLunbUa+7Zu2XmdHBPjQ5si/37Ff+0Wk0LuxINuae+c3Zs+XDKu6Taq9S+cZrmnb07sd7R 9HVWat9L0zX3nN0Kl42o/0Cljnv9Zh3/hq2By6z81cnq2VWTdjEY6CnX7hebNffs3YpUBB+zwUNl 2rVylua8YrfKqpLzDfWWqXlxu17x7r8m9m/rk/O09v5Fanu+RbPP2KPjLtuqYy/bplDZ6Pu19cl5 euDjl6gi5QbHyGBYO5e1aNbidlU2DGhkKKydS1s06+T9WnDRDi1+24ZEeXavnqFVd5yonc/N1syT 9qtqWvLiGh0OaeeyFs04rlPV04NHrUVHQmpd1qJpCw+kVaouahoZCuv1//5E4vfp2lmrpT89Xa3L Z6lh7kHVzU4mn86Z2p6fpbqWQ5rzij06959XJo5PX2elHvzEpWqYn1KpOmnXC82qaupXy2n7dOF1 yxPzD/WV6d5rX6dp8cp296qZKq8dUtPC9FDs3NqgK29+MHDfXNR0z4cu04zjYiMW962dLjOnGSf4 /splXZOu+sX9kpQowx//7TztfWm6okNhNZ8ci8V8Y7NzS4P6uys0+/T0v1I8sL1efR2Vmn36Xp1/ 7fOqnt6f2O5jX7pQ1dP6AmOyp61Wc87ao8SYrixSY9FCKe893Vetjs2Nmnv27rRY9OvdX6X2DWOP zf4Dldq7JhmbuQx0l2v3qmbNPXtX1psxgwfLteuFZs09a7cilcMaPFSmOWfu1en/56XEcdr0+FHa 8PBCta2YpTln7lFZde4OmOH+iFqXt2j26XtVXjuo4YGIWpe1qOW0vaqoG/vTgEaGwmpd2qLmk/er srFf0eGQKuoGddGnnkuUb89fp2v1b2JvrYoOh7Rz6WzNOL5D1dP7krF5bKfmn9+mM/4+uV/7NzXq 0S+eopqZ6bHYuqxFjUd3q3bWITlnGu4P6w1fTcZmd2utnvvv09W2fJbq5hxU/ZyUjiEnta2YpZrm XjXMi3XW1szs03kfWpFYfqCnXPd/7DVqPCoWo7tWNqtq2oAaj05v8O5+sVnldYNqOWWfXv2JpYly jwyGde+1r1OTLwnp2NSoq37xQOJmUnTY9Md/O197X5quUCgzFveta5KcaeaJsXqxfX2TosMhNZ/c rks++0yig0yS7v/Ya9S0yLe9zY0aPFSmllNH/8txT2os5vMsMn8sdrfVqrutVnPP2qNzrn5BDfMO Jo7tk994pcJlI7KQC4zNIEGx2NtRpfa1TZr3yl1ZYzRb/bjitsU6tK9a4fLgGB3oKdfRF7Rq8ds3 ZExb/dvj1bWjTif+zSYdfWGrIvF6aNPjR2n9Qwtj9aUvFof6Iol6sbxmSMP9ETUd06lzrl6VKPf2 p+dowyMLJMUStdZlsxMxOTwQVuvyFrWcsk+LLt2hE/9mU+Kc2/HMHG187GhVNiQ7dLzY9NeHQVJj sXpGn6IjIe1c2qLpxx7Q/HPbdOY/rEnUtx2bG/T8rado59LZmragKxaLUVPr8hY1HhWLTUmqn9uj c65elSjnwT01euiGi0ePSSe1rZylmhl9iXrBP7jJb6gvogc/fEmingyy568zFKkY0fRj00fu710z Q6GykUT9mEtQm9Wzf+M0vfVHj0gp1/QHP3lpxjWkY0ujBnvK1XLaXl340WWqrB9M7Osj/+/VqmtJ H8B4YEe9ekdpq3qC6see3TVpbdVcgurJ3vYqnfaul3T0hW2Jc/fFO07QtiXz1L6uSfPOCY7F49+4 WcddvjXx3fO3nqLe/VVpsdjfXaE9q2fE6r1RBs3468fE9wFt1iD+2MwlEZun7s1os9bM7NWF1y9P 7P+uF2Zqzd2xRyV7bVhJ2rWiWfdd/5qMtmqkaliXfvaZxPLt66dpxS8Xa+fSZGz6uagpOhLS5V9+ MnH+dG6r1/KbT1XrshY1zO9WXUusvszWZg2UEotFb7NuadCVtzyYqA+HB0L681fPC4zF1Dbra7+4 ROGyaKxDWtK9174usy27YVpam1WSLv70s4pUjiikWFmzxaRf59YG9XfF2q4XfGS5qqYNJPb10S++ SjUzeiXLnUf69eyqVVdrrJ5MjcVR88dvnx0fnJklfzxn9Lasx8sf/fVlrJ7couPfkPzrwhW/XKxD e9PryaA26+DBcs07t02nXrk+sd6NfzhaG/6wIDB/9Nqsx79hsxZduiOxnxseXqi2lc1psehvs+aS yB9PaVdlfUr+uLhdC169U4vftiGxvbYVs7T2vmMy88alszXjhA5VNwXnjYn54/lj06IDgW3Weefs 0lnvWZ04Pj1tNXrksxdl5o/Z2q5+8disntGnxvnpnbRem7XltL268Pr02HzgE5dmxOKe1TNVVjWU 0Wb1hMqiadek1LLe86HLNDMee/vWNenv/Pnjl8/X3rVNGbEoxfPI/ohmnbJPF33yOZVVD8vigywf +vQliWtO55YGDfRUqOW03PmjV8bHbrow9rulxGJ3a516dtdozitGzxs9B/fU6MD2es09K72NenBv tc76p9Wqnr47sZ8r/+dkbX9mjvZvbMyIxd79VWpfn14vnnLlOs1avD+jbbP85lO1Z/XMtPyxv6tC e/46Q/PO3q3Fb1+vuWftSSz3wv+epO622sD8cd4rd+nUq9Yl5s8Wk4n6MkubdeYJHTrrPasTy297 aq7W3nfMuPJHf99O4vuhsCobBnTRJ1Pyx9XT9eIdJ2WNRX+bNZeM/DGlzTr3rN06+32rEteorHmk k1qfb1FdyyHVz00f7FM9vU/nf3hFotwD3eW6/6MpeeQLzapsGNC0BV3x9dfpbf/1cOJ8GDxYpie/ cU6svqzOjMWgtmsQf/7oaV/fpHf8PL2v6P6PviYw9seaRx7Y1qC+zgrNPsMXoylt1nM/tEK1zX2J Y/T4v16gqsb+9BhNabt6+aM3/xNfe6UiFSMZsdi5pVHzztlVUB7Z21E1apvVLzUWR8sfPUH9rF7M +duuQVLbqMe/fouOee32wLxo8x+P0o5n52StJ7080qsXg/j7djzR4ZDKa4Z08Q3PJra/96Umrfr1 iYnpO5fF2rjt65p077WvTcRm0zEHdOY/rEm2Ubc26A9feFV6f6uzjDbr0KEyvfFrf0os172rRs/9 5IxEP2taLGZps1Y19euClDxy4GC57rvuokTbb9cLzaqsH8jIH3evmqnymiHNWtye1qcVHQrp7msu D4zFoD4dT7b80d+n4/fAJy5NXDv8Orc06A3/+ae0m8qB+eP+Ks05Pb2N2rWzThff8Gxa2/a5n5yu 1udnTWge6clWP6ZKbbOeetU6tZy2L1HO5289Rb0dVen1ZTx/9Mdotj6d1b85QZ1bGwLzxxPetFkL L9qZsw9iwyML1baiedz5o9dmXXTxDp10xcbE8Whd1qL1Dy3KiMWgex6RymFd+rnseeT0Yw+oZkZv YJs1SFD+mLjnMTtHmzWxgNT2wixVN/Vl5o+9Zbr3I68LPNe9mPT3d3r2rpmhcHmWPh4vJk/s0Gu/ sCRtUOPvr31dog3ryZY/jkXHlkYNHkzWl51bG/T6r/xZFXVDiX1c8t1XaNcLzertyB6Lh/ZWa86Z uft4vH7WbDF4cE+Nzrn6hbSBBk99++x4vp2cv7j5Y6yf1dvPl35/rDb/eX5aLA50l2v36pkZfTuD B8s1/9w2nXLl+mQe+IejtTEgf0xtsx7/xs1adEkyf1z/8ELtKnL+mPh+KKzqpj696mPLEvu/+8WZ WnXnCWmxOJ78caDn39W55Ts5l5ksDLBIt07SWZJOkLQidYKZRSQtlDQkabMkOecOmVmbpNlm1uKc 8z/zzHuR2vqxFsB7oshjrWu19sAevdjRKpPpx6/+P6MsVRfwfe5XS3g+9azUNSiFw7FnaIRC6Z+r l1ZpRmXQY7gW5Fz/v6+Qth1Mrv/O787WosTjN4/2zX20vvniRq3r6kps/77flenkabMD1n5Uzu2n m5/4v1vWbdHTe4P3+wffCeui2fMD1jNvjNvLnO++bR26d3tyO9f8fYPe+llvvrl6eGeXfrdlmz7x CenKHyaXe7xVumOzdO1HpKe+I0khSXMy1h/jP14temZvn25etyGx3b+9tEb3XHNUYnp2s8a0l1Lm o/c3dO3V119MHt8zT6rU7Y95v3elpMxHk0qVaj0U1peeX5ko5+LF0p3rmiRle89qtfb3V+izS5cn 5p8/T9q/aZqkab550x8x2zs8qI8+LTU2SqkP8xkcka5dIlVVxRLgzDFU9RmluOYvUtQlf9O/PnB0 yiPp/LE49tiMWRD4/ReWrdKevv7Edpf/pVKzq3P9Zv6Yy3e+scZc4bFZnPmTsXfX1n16aEfy9/no exr15i/OjU+dm3XpYP6YC4rBXJIx99zerfrZumT53nRxje7+5wW++f2/6yyt7hjR9/76UmK5118u PfDxzFiMmRn/L/bo+f98IRmbp51Yof/NGZtVkmKPi9zd26UvLl+RWP64Y6Xb1/tjtFqZMRj7vmew Up94dmmi3NOnxxrZ/hgdHBnWtUuSx6W8zLTx0dTjkhmLMf56sVYffupZDUWT62rbUKPKcGO2hSXV BHwfZEHOObLLrP++unKttvQcTBzbR+8r17EZrzYZawx7gmIxOEa9+tE7Xj/5QUQXtuSO0Ts2tenx tuS59Y1vSJfdIUlhSfP0uy3tenhna2L6x97TqDfljMXk9w/v6NbvtibX/94r63XVpxb45s+M0Sd2 9ep/Nm5K7M9732t691eD2hVB9WEQf2w2a03niL6zek1iexe8olJ3/l/vd0vGov/fW3ra9dWVqxLL nXW29Ls1M5QrJr1/7+0r0+eXPZ9YftGiWP3W0S99ZmnyuM2dG1RPBsk1lnisgtqs0nVLpP6RZBm3 ralWTVlQ+RbohmdXqnNwMLGva5ZVa/o42qoxQbE1/pj7wV/X6sWO5P798MZmnTljVuD8npvXbdYz KbH43z+O6IJZQbE41no0qA071ratZ7z1Z+yRtLdtSB6Xt19Wq99/eEGWZU3ZYnNF+w79+KXk8q85 r1q/fZ93PIPbQ+sO7NE3VyWP6ytPrdSvHwuK0aB6MUiVit1m7Rse1PVPJ8tbUx3y1YeU9cKfAAAg AElEQVRBsVivDz65RFLyGHVsr1XIgurPZBv1+iVL1Tcyktjm6DHpt0CfW/qC2vsHEsu/8EyVmqv8 9dmCLMuOJjhG/fnj/XeV66RpQdfzfNuomfPfsn6rnt6TPK4//n5YrwqsJzO/v3Pzbj3amlz+U++f ptd/yYupoFicq/u3d+j323Yk9vOGT4f01gVBsZhvG9VfL87WM3v6dfP6ZP749/9Het9N480bPcFt 1o1dTl97cXXi+Jx3vnT3NUH14VhjNDg2OwcqdMNzydicMyc20Df4ba/Zvx+KjujDTz2jyspY/Rt1 sTwxHI4NLEptu17zpBRVMq7XPHiUIoH5o6dGH3t6mQ4NJ8+dTauqVV/u368FAcsv0OeXvqi9/cnl n3+qUi2B+WO+9V/m/N9eJb10ILmfP/9KsxZP83773G3U/3ppp5a3708s/6tfSa9slqQyBdd78/XL Dbv05O49ieW+962ILp4TXE/+ZvNu/aE1Wc7RYzIz5h7Y3qV7tiWX/8A7G/T2G7zlxps/ZrZZ/fnj my+p0d3X5Kr/8o3RzDbr5m7Tf7yQbKuedkL5KHlkpdLbqtKe3m59YfmKxPLH5sgjuwb79Klnk/s5 fVrYV/8Fxej426gffkpp+eOujbWqCMwfPWPNIxcEfn/j8r9qV29fYrvPPVGpuTVB191k/ujN//iD FVlf0eXNnx9/jE50H0/x2qgP7jigu7duz+jn9a59111n+rtFuWIxKF/0y/x9lu/brv9am9zu619V o7s+sCDLsqbU2FzTuSstj3zNa6T7rs/dx7O1Z7++sjK5vVOO88dmtldIJuvFfX09+n8peeTCBbEb qOlt1KA+HunQULU+9sxzieXrG2I3TnPHYlCb1JOMTX+fjv9zx9oaVUeC26qfflY6MJic/6Vl1WrK I3/80nKptTe5/O9/PEfza73tTVweme/0n6/bqWf37kuU86c/juj8PPJHr0/HW/5r/xHW6+YGx+Y9 W/frgR07E/PfeKP0tzdL92+Xfr8tGXOf/pTpbYFt1iDB9zye2t2rX2zYmFj/P/6j6T1fDrpWZn6/ sn2HfpSSR156XlVKHumPuaAYDBJ8zyPfvLK9v1yfS80fj4oNvM3dl5Orvsoem87V6Z//siTtuwPb 62RjyB/zk6wvP/Oc1DGQPOf+eNs8zaj01rsgYPmg7/2CY/AbL0rru5LbnfD80dfP+pWPT9eFX/Pq GX8sZsbmrzfv0mMpbdUbPtCky8eQP8buQybzx89MaP4Ye/3hLeuTsXXFa2t0z78E3X8sJH/8dvy/ dBu69ur4xnzXN35jfCjNy4b33Nk3ZJl2kWItjyXOudShdo8p1hrKtswb45+P51OIERfVnZtX6MWO VklSQ3nwe7omWu4xlvmuL781Fnv7wdtxvn9P1nZLY7K3m+/vnlxuYuefCC+X3/RwNdWPU6HlK3y5 8R2R8S9f3Pkme10TabzHtlgm6twq1bk3+fXf5C6Xa/mpcl6NZqq2FYvlcDl3J9vL5Zow3u2Op7yl OkaHy3W38O29PM7d0sXK5G65WFsbdlHd8Nzdun3T8gnbZqnb8flvrzTLT3afwssnNid3+VK2gw6X Y3yktxUL5T8uh8u1b6rlkZO1fCHbONKv84WaKtfpiY65w609VKjDo5Tjc7jUt6XeXqnqh/y393I4 axlg4fcbSe2S3mVmZ3lfmlmlpC/H//kj3zI/jn9+zswaU5ZZIOlfJPVLujmvUrjYCWgyXXPyRfr0 GZfntXgxJEdgSvVllaovG98gj9T1VYYjKaPQsjsqZf6yUFizqnKNaC3MvJTthMx0bvOCtH/Pqc41 2q/A7dY0Jp5iZJLm14z1r8HGZ051g8IpL/tK/V0mQnNVnSpCyQfljHV7TRXVqomUJ5fLcXzqyirU UF6V93aK6aiUMs72HeeJlHpsaiMVmlZePSnbPdzMq5mWFnPzaiYmtgs1u7pBkZRz5qgxnsOzqupT npQiza/N9ld5mWZW1qoinIzNo/K8BjWWV6s2UpH3dj3VkXJNr0iOVg6K2Yjv+j+e2E49prOq6lSe ctymkqNSjmVFOKKZVcF/8T+RUuvHsIU0p3psfwU2L+VcMpnm+mItNfayTc9lbk2jLOU5gGON5TnV DQpZcrn5tRN7DWiuqkuPzZqxxciMilpVhssS/x7rtcDTUF6lupQ2m7fduvLKkteTuaTu64zKGlVG ykaZO30fYvtdMcrcpZda3oiF1FI9trZtakyFLaTZY1zucOGPzXl5npst1fVp9edYz+1mXz0wWTFR aJu1IhxRc0r+lE/ukDrv3Or0a+ioy+UZk5nbTV736srSr0ETIbW85aGwZk1w/Tk/pf4JmWn2GOtJ T6H14dxJbtP685p823yFmllVl95WneDt1pZVqDE1NgvMz8MW0ux427VzoFdP7NoYOG/q9c6fp48m 9VyfXlGTljePbfnksayNVKhxgvPH+ePs2znKV3+ONdZSf8OQmebUjL5crjZsLvMKbKMWyp8/TlZs zqisVWU4tY8nv+02VKS32XLVgzWRck2rSJ6jk9mGTT2H/Hn3ZG23JlKuporRYzR1/opwRDNz9Le+ XPhj8tzmhWn/nuh+2ELbqP5zbaz54IzKmrQ8cqz5p6ehvCqt7z/fWKuMpPf155vHjoW/Tyf1SS3+ Pq5sUvepsbxKdXn+QWvq8tWRMjVV5Pvk08kxPyN/zLeNmlJ/yjQ3x72RoP7WzDZrcc+JzD6e8eWR R+UZM5PFf18u3/7bQqS2YSaj/zy1LVGM+5Bj364vf6ye2Pyx0H5Wz/yMtupY+2kn9z6kP3+ciPog m+YS9Z+bc0f2SBIze6ukt8b/2SLpcsVe8fGX+Hf7nHOfTJn/LYoNtOiXdLukTklXSDpe0p3OuXdm 2cbXJX1M0k5Jv5VULumdij2r51rn3A/9y2RZh5Mk55xGolF96KnbFTLTj1412qtBiudTz96lrsE+ mUxOTv9+zlsSgVdbVqHyHI2UXJxzOjDYJ+ecasoqcjZ6UuevjpTn3aGXj67BPo1Eo6qMlKk6Uq7u wT4NR6OqCJeppiy/zop8HBzq1+DIiMrDYdX6Ko6Hd67R77as1GVzT9KVi85MfP946zrdsXm5Lp1z vN51zNkFbbd3eFD9w0MKh0IT3tEpSf0jQ+odGpSZqbG8SmZj69QdHBnWwaEByaRp5dU5lxuKjqhn MPberMaK6rRGVpDYK0J+o6pwmb59wVVp2752ya9VFgrr+xdmhHxWIy6qroHYO6PqyytTHu86sZxz 6hzslVxxYvVIloy5iGqn4I24vuFB9RUQm/3DQ+odHlTITI05Ol/SliswNj35xqhfesxWKRTQqTwc HVF3fL6GiqqCBy+VKkbzlVb/lZWndZJMNn/9OFbdg/0ajo6oIhxRTZZY6xns11C08Fg8ODSgwZFh lYXCeXWKHBoa1MDIkCKhkOono/6Lx2a+MTYwMqxDQwPjj02l14eF1JOTKeqiOhCP0bryypyd2FHn dGCgd8zzTwUHBnoVdU5VkXJV5dG2LTQWDxde27TQ2OwbHlJfCerBQhUai2OtN/1GolF1DcZiq6G8 SuHQ2JbLNyYzl0/G6GS0USczf/R4eWOhsVlofejVg9nyyIkw2fmjZ7JjtFj15HB0RB0Dvfr8snsT /SvZXvua2jadzNic7PyxGLHp1YNVkTJV5dUmza9vp1Rt1EIVmj+OV9HaqhYbuJ8r1krVhj1c+nim Uv441fhj8tDQgAYOgxidannkWBXaVh0rf0yGzCY1fzyc+l/Hmz/m6tPxC7rHMdFt1vG2UQvNIyfb eGMzX4Xmj4Wa7LzRU4r8cbyx6bVVxxqbntHuQ06EUuWPXr3nnJu0Ds+pWxMUz+mS3q3kU1CcpIWS FsX/vVVSYoCFc+4eM7tY0uckvUOxlyNtkPRRSd/NtgHn3CfMbJViT6x4v6QRSc9L+ppz7oEi78+k MFNRR2KaWdqo82LPPx7+IJ+Mmy6SYhezEuQ91ZHySe2crwyXFZTglYcjasqjQi0LhdVUWbrRw2EL lWT7ZjZlR01PNaWKubGK3XDLPzYrI2UFNQILjU1PvjHqN9aYjRQptksVo/mazPovl0IbwfU5OqvG 25lVW1YhFdDpXVNWPqEDJ/0Kjc2KcCTnQNTRBMVmqevJXEJ5xmjIbErvTzaFdtpMZkJaCuNtm8Zu uE1+PVioQmOx0OXCocLqv3xjMnP5yY3RUtSf480bC60PC60HCzXZ+aNnsmO0WPVkJBTO+RfnUuFt 0/HG5mTnj8WIzcLbpPktV6o2aqEKzR/Ha6LaqkFK1YY9XPp4plL+ONX4Y7KmrCKvG1LjNdl9PJMd m34THavZYnIy88fDqf91vPljrj4dv6D+1omuF0uVR0628cZmvgrNHwtVqr6dUtSf443NwvPHyb0n Uqr8sRSO+AEWzrmbJN2U5zJLJL05z2VulXRrPssAAAAAAAAAAAAAAIDDw8Q+3wUAAAAAAAAAAAAA AOAIwAALAAAAAAAAAAAAAACAHBhgAUxhu/u69ML+nRqKjpS6KEe0YRfV0n3btL//UKmLAgAAAAAA AAAAAGCKYoAFMAVFLBaaqzra9MM1T+jx1nUlLtGRKWQmSRqKjuina5/St1Y9VuISAQAAAAAAAAAA AJiqGGABTEFnzzxar2o5RvNqGiVJ3UP9JS7RkakyXKa/W/QKnTF9niSOMwAAAAAAAAAAAIBgDLAA pqCG8ir943Hn6rzmhaUuyhHvtXNP1HuOP7/UxQAAAAAAAAAAAAAwxTHAAgAAAAAAAAAAAAAAIAcG WAAAAAAAAAAAAAAAAOTAAAsAAAAAAAAAAAAAAIAcGGABAAAAAAAAAAAAAACQAwMsAAAAAAAAAAAA AAAAcmCABQAAAAAAAAAAAAAAQA4MsAAAAAAAAAAAAAAAAMiBARYAAAAAAAAAAAAAAAA5MMACAAAA AAAAAAAAAAAgBwZYAAAAAAAAAAAAAAAA5MAACwAAAAAAAAAAAAAAgBwYYAEAAAAAAAAAAAAAAJAD AywAAAAAAAAAAAAAAAByYIAFAAAAAAAAAAAAAABADgywAAAAAAAAAAAAAAAAyIEBFkjj5EpdBAAA AAAAAAAAAAAAphwGWECSVBGOJP7fJJWHIsEzAwAAAAAAAAAAAADwMsNddEiS/un487Sqo02SNL9m mmrLKkpcIgAAAAAAAAAAAAAApg4GWECSdEz9TB1TP7PUxQAAAAAAAAAAAAAAYEriFSEAAAAAAAAA AAAAAAA5MMACAAAAAAAAAAAAAAAgBwZYAAAAAAAAAAAAAAAA5MAACwAAAAAAAAAAAAAAgBwYYFFE ZjbPzH5uZm1m1m9mW8zsW2bWWOqyAQAAAAAAAAAAAACAwjHAokjM7BhJyyX9k6RnJH1T0mZJ10l6 2syaSlc6AMDLwY033ljqIgAADlPUIQCA8aAeAQCMB/UIAOBwwgCL4vmhpJmSrnXOvd0591nn3Gsl fUvSCZL+raSlAwAc8W666aZSFwEAcJiiDgEAjAf1CABgPKhHAACHEwZYFEH86RWXSdrinPuBb/IX JfVK+gczq570wgEAAAAAAAAAAAAAgHFjgEVxXBr/fMQ/wTl3UNJTkmoknTeZhQIAAAAAAAAAAAAA AMXBAIviOCH+uT5g+ob453G5VtQ7PCgnV5RCAQAAAAAAAAAAAACA4oiUugBHiIb4Z1fAdO/7xlwr +ujTv9Gx9TOLUigAAAAAAAAAAAAAAFAcDLCYgjZ27yt1ETDFtB46oCd2beTcmGAj0aie2LVRI26k 1EUBAAAAABzGeDopAAAAAByZzDkSvvEys69J+rikjzvnvpVl+vclfUjSNc65nwSsgx8CAAAAAAAA AAAAAIA8OOdssrYVmqwNHeHWxj9PCJh+XPxz/SSUBQAAAAAAAAAAAAAAFBlPsCgCM1skaaOkLZKO dSkH1czqJO2S5CQ1O+f6SlNKAAAAAAAAAAAAAABQKJ5gUQTOuc2SHpG0UNK/+CbfJKla0m0MrgAA AAAAAAAAAAAA4PDEEyyKJP4UiyWSmiXdo9hrQ86VdImkdZIucM51lqyAAAAAAAAAAAAAAACgYAyw KCIzmyfpS5LeIGm6pDZJd0m6yTnXVcqyAQAAAAAAAAAAAACAwjHAAgAAAAAAAAAAAAAAIIdQqQsA AAAAAAAAAAAAAAAw1THAAgAAAAAAAAAAAAAAIAcGWAAAAAAAAAAAAAAAAOTAAIsJYmbzzOznZtZm Zv1mtsXMvmVmjaVYDwDg8DPeOsDMmszsajO7y8w2mlmvmR0wsyfN7L1mZhO9DwCA0piIPMLM/sHM ovH/3lfM8gIAppZi1iNm9tp4TrI7vq5WM3vIzN44EWUHAJReEe+PvNnMHjGznfF+rU1m9mszO2+i yg4AKB0zu9LMvhe/h9Ed74O6rcB1Tdg9dnPOjXcd8DGzYyQtkTRT0t2S1ko6V9KlktZJutA51zFZ 6wEAHH6KUQeY2T9L+qGkNkl/lLRdUoukt0tqkPRb59xVE7UPAIDSmIg8wszmS1ql2CD9WklXO+d+ XsxyAwCmhmLWI2b2n5I+IWmHpAcltUtqlvQKSY86524o+g4AAEqqiPdH/kPSJxWrO+6Ofx4n6QpJ EUnvds79z0TsAwCgNMxspaTTJPVIapV0oqRfOufened6JvQeOwMsJoCZPSzpMknXOud+kPL9NyR9 VNJPnHPXTNZ6AACHn2LUAWZ2qaRq59z9vu9nSXpO0nxJVzrnflfs8gMASqfYeUT8iUd/kHS0pLsU u1HGAAsAOEIVsV/r/ZJ+IukWSR9wzg37pkf83wEADn9F6tNqUezG2h5Jpznn2lOmXSLpcUlbnHPH FH8PAAClEr/G73DObTKzixX7w9FCBlhM6D12BlgUWXxEzAZlqdzNrFbSbklO0iznXO9ErwcAcPiZ jDrAzD4j6d8kfc85d904iwwAmCImog4xs+skfVPSxZJeJ+kLYoAFAByRitivVaHYUysOSTqOgRQA 8PJQxHrkXElPS7rHOfe2LNO7JTnnXEMxyw8AmDpSBtTlNcBiMu6vhApZCKO6NP75iH+Cc+6gpKck 1UjK9Y6wYq0HAHD4mYw6YNj3CQA4MhS1DjGzkyR9VdK3nXN/KVYhAQBTVrHqkcskzZD0O0nOzN5s Zp82s+vMjL4sADhyFaseWS9pUNK5ZjY9dYKZXaTYawsfHXdpAQBHogm/v8IAi+I7If65PmD6hvjn cZO0HgDA4WdC6wAzi0jyRnw+VMg6AABTVtHqkHh9cZukrZI+O+6SAQAOB8WqR86Jfw5IWinpXklf kfQtSUvM7E9mNmM8BQUATElFqUecc52SPi1plqQ1ZvZfZvYVM/u1pIcVu2n2wSKUFwBw5Jnwe+yR QhdEIO+RVF0B073vGydpPQCAw89E1wFflbRY0v3OuT8UuA4AwNRUzDrkC5LOkHShc25gvAUDABwW ilWPNMc/Pynpr5JepdhAi0WSvi7pckl3KvnXZQCAI0PR8hHn3HfMbJukn0m6OmXSRkm3OufaCy4l AOBINuH32HmCBQAALyNm9hFJH5P0kqR/LHFxAABTVPydx5+R9DXn3LOlLg8A4LDj9TkOSbrCObfE OdfrnFst6W2Sdkq6mNeFAACCmNmnFBuMd7NiA/SqJZ0labOk/zGz/yhh8QAAL2MMsCg+b9RLQ8B0 7/sDk7QeAMDhZ0LqADP7sKRvK/YXZJc656hDAODIM+46JP5qkF9IWifpi0GzFVQ6AMBUV6xcxJu+ wjm3PXWCc65Psce7S8lXiQAAjgxFqUfM7BLFnsB6j3PuE865rc65fufcCsUG6rVK+riZLSxCmQEA R5YJv8fOAIviWxv/PCFguvc+l6D3vhR7PQCAw0/R6wAzu17SdyWtUmxwxd7CiwcAmMKKUYfUxuc7 WVK/mUW9/xR7bYgk/Xf8u2+Nu8QAgKmk2P1aQZ2W3vdVYywXAODwUKx65G/in3/0T4gP1Fuq2P2t M/ItIADgiDfh99gjhS6IQF6Ff5mZmXPOeRPMrE7ShZIOSXpmktYDADj8FLUOMLNPS/qKpBWSLnPO dRS5vACAqaMYdUi/Yu85dlmmnSXpTElPKvaEiyXFKDQAYMooVi7ymGL1yMn+9cSdEv/cUoQyAwCm jmLVIxXxz+aA6TPjn4OFFhQAcMSa8HvsPMGiyJxzmyU9ImmhpH/xTb5JsfeE3RYfZSkzi5jZiWa2 aDzrAQAcOYpVl8SnfV6xwRXLJL2WwRUAcGQrRh0Sf/Tu+51zH/D/J+ne+Gy3xr+7c+L3CgAwWYrY r7VdsTrjaEnXpU4zs8slvV5Sp6SHJmI/AAClUcQ+rSfinx8wszmpE8zsjYrdHOsTA74B4GWrlPfY LXMAOcYr/kMuUWx05T2KPYrkXEmXKPZXXhc45zrj8y6QtFnSNufcwkLXAwA4shSjLjGz/yvpZkkj kr4nqTvLprY4526dqP0AAEy+YuUjAeu+UbHXhFztnPt58UsPACi1IvZrzY2vZ75iT7RYqVgn51sV y1He5Zy7a8J3CAAwqYrUp2WSHpb0Okk9ku6StEfSSYq9PsRJut45973J2CcAwOQws7cqli9IUouk yxWrJ/4S/26fc+6T8XkXqET32HlFyARwzm02s7MlfUnSGyS9SVKbpG9Lusk515VtsSKtBwBwBChS XbIg/hmSdH3Apv4kiQEWAHAEKVY+ErT6POYFAByGitiv1WpmZyk2MO8KSRdJ6lKsg/MrzrllE7QL AIASKkY94pxzZvYmxf7y+F2S3qbYXxzvl3SfpO865x6duL0AAJTI6ZLerWS94BQbpO09pWKrpE/6 lpn0e+w8wQIAAAAAAAAAAAAAACCHUKkLAAAAAAAAAAAAAAAAMNUxwAIAAAAAAAAAAAAAACAHBlgA AAAAAAAAAAAAAADkwAALAAAAAAAAAAAAAACAHBhgAQAAAAAAAAAAAAAAkAMDLAAAAAAAAAAAAAAA AHJggAUAAAAAAAAAAAAAAEAODLAAAAAAAAAAAAAAAADIgQEWAAAAAAAAAAAAAAAAOTDAAgAAAAAA AAAAAAAAIAcGWAAAAAAAAAAAAAAAAOTAAAsAAAAAAAAAAAAAAIAcGGABAAAAAAAAAAAAAACQAwMs AAAAAAAASszMFphZ1MxuLnVZAAAAAABAdgywAAAAAAAAmDpcqQsAAAAAAACyY4AFAAAAAAAAAAAA AABADgywAAAAAAAAAAAAAAAAyIEBFgAAAAAAoOTM7Aoze8zMdplZv5m1mtmfzOwa33xNZvYVM3vJ zHrN7ICZPWpml42y7nfG191hZn1mtsXMfmVmZ/nmqzCzG8xslZkdMrMuM3vCzK7Kss4FZhY1s5vj /3+7mbXH17/UzN4cUJY6M/umme2Mz/uSmX1UAX00ZjbLzL5uZuvM7KCZdZrZ2vh2F47p4AIAAAAA gKKIlLoAAAAAAADg5c3MPiDpx5J2SbpHUrukZkmnS/onST+Kz3e0pD9JOlrSE5IekFQr6W8kPWRm H3TO/TRlvSbpZknvlrRP0m/in/MlXSJpraTl8XnLJT0s6SJJL0n6vqQaSVdKusPMznDOfS5L8Y+W 9KykTZJulTRd0jsl3WNmr3PO/SmlPBWSHpN0tqSVkm6TNE3S5+Pl8R+XaklPSVok6ZH4sTFJCyRd IelOSVuCjisAAAAAACguBlgAAAAAAIBS+6CkAUmnO+faUyeYWVPKP29VbHDEu5xzv06Zp0GxgRff NbPfO+f2xie9X7HBFc9Jusw515OyTEixQRyejys2uOIBSVc456Lx+W6KL/8ZM7vPOfe0r+yXSPqi c+5fU9b9K0kPSfpkvFyp2zhb0m+dc1elzP9VxQd6+LxWscEV33LOfdx3XCKSKrMsAwAAAAAAJgiv CAEAAAAAAFPBiKRh/5fOuQ5JMrPTFRsA8dvUwRXxebok3ajYgIN3pEy6VpKT9MHUwRXxZaLOud0p X71XUlTSx7zBFfH59knyBk9cnaXcWyV92bfuRyTtkHSOb973xPfzU775t0r6bpZ1e/r9Xzjnhp1z B0dZBgAAAAAAFBlPsAAAAAAAAKX2S0nfkLTGzG5X7PUfT8UHN3jOj382mtmNWdYxM/55kiSZWY2k xZJ2O+deGG3jZlYn6RhJO51z67PM8nj884ws01Y651yW73dIOjfLNrY757K91uPPWb77k6RWSTeY 2SskPSjpL/FtRrPMDwAAAAAAJhADLAAAAAAAQEk5575lZu2SPiTpI5Kul+TM7M+SPumcWy5penz2 y+L/ZV2VpJr4/zfGP1vHUISG+OeugOneky4as0w7ELDMsNKfHOptY0+ObSQ453rM7DxJN0m6QtLr 45PazeyHkr7snMt46gcAAAAAAJgYvCIEAAAAAACUnHPuNufc+YoNpHizpJ8p9kqQh81shqSu+Kwf cc6FAv4LO+feF5/PG/gwdwyb99bdEjB9tm++QnjLzgqYnnXbzrlW59zVzrlmSacoNgBlv6QvxP8D AAAAAACThAEWAAAAAABgynDOdTnnHnTOfUDSLZKaJL1a0tPxWS4a43oOSVotqcXMsr3aI3XeHkmb JM0zs2OzzHJp/PP5sWx7lG1sjG9jUZZZLhnDOtY4576v5BM83lJoeQAAAAAAQP4YYAEAAAAAAErK zC4NmOQ97aE3/pqQJyW93czeE7CeU81sZspX341//sTM6n3zhsws9akRP5dkkr5mZqGU+WZI+rxi rx/5+Vj3KcDNivXF/IeZWco2Fir2ZAr//pxsZtmeeOGVu3ec5QEAAAAAAHmIlLoAAAAAAADgZe8u M+uR9IykbYoNdHi1pLMlLZP0aHy+v5f0uKSfmdlHJD2n2KtA5kk6TdJiSedJ2idJzrmfmtmrJf2j pA1m9vv4tDmKPZXiZ5K+FF/31yW9UbGnQrxgZg9KqpZ0laQZkv7TObckz/0y33qzC8QAAAIESURB VL+/Iemtkt4h6Xkze0RSY3wbT0i6wjf/5YoN+FgiaYOkvfF9fYukEUlfy7M8AAAAAABgHMw5V+oy AAAAAACAlzEz+6Ck10s6XbGnM/RL2irpfyX9KP66D2/eWknXKjZI4QRJYUm7JK2RdI+kXznnen3r /3tJH5B0hqQKSW2Slkj6hnNuZcp8FZI+pthAjmMkDUl6QdIPnHN3+Na5QNJmSbc4596bZZ/+KOki 51zY932dpBslvVPSdElbJP23pLsVe01JYn1mdqKk9yv2WpSjJdXHy75M0jedc88EHFIAAAAAADAB GGABAAAAAAAAAAAAAACQQyj3LAAAAAAAAAAAAAAAAC9vDLAAAAAAAAAAAAAAAADIgQEWAAAAAAAA AAAAAAAAOTDAAgAAAAAAAAAAAAAAIAcGWAAAAAAAAAAAAAAAAOTAAAsAAAAAAAAAAAAAAIAcGGAB AAAAAAAAAAAAAACQAwMsAAAAAAAAAAAAAAAAcmCABQAAAAAAAAAAAAAAQA4MsAAAAAAAAAAAAAAA AMiBARYAAAAAAAAAAAAAAAA5MMACAAAAAAAAAAAAAAAgBwZYAAAAAAAAAAAAAAAA5MAACwAAAAAA AAAAAAAAgBwYYAEAAAAAAAAAAAAAAJADAywAAAAAAAAAAAAAAAByYIAFAAAAAAAAAAAAAABADv8/ XABv+Y7QfYMAAAAASUVORK5CYII= --001a1144a82eafacee053d0ba540--