From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from mail.taht.net (mail.taht.net [IPv6:2a01:7e00::f03c:91ff:feae:7028]) (using TLSv1.2 with cipher AECDH-AES256-SHA (256/256 bits)) (No client certificate requested) by lists.bufferbloat.net (Postfix) with ESMTPS id C8B7C3B2A4 for ; Tue, 21 Nov 2017 19:55:59 -0500 (EST) Received: from nemesis.taht.net (unknown [IPv6:2603:3024:1536:86f0:2e0:4cff:fec1:1206]) (using TLSv1.2 with cipher ECDHE-RSA-AES128-GCM-SHA256 (128/128 bits)) (No client certificate requested) by mail.taht.net (Postfix) with ESMTPSA id C501921341; Wed, 22 Nov 2017 00:55:57 +0000 (UTC) From: Dave Taht To: Dave Taht Cc: cake@lists.bufferbloat.net References: <1511309382-24060-1-git-send-email-dave.taht@gmail.com> <1511309382-24060-3-git-send-email-dave.taht@gmail.com> Date: Tue, 21 Nov 2017 16:55:56 -0800 In-Reply-To: <1511309382-24060-3-git-send-email-dave.taht@gmail.com> (Dave Taht's message of "Tue, 21 Nov 2017 16:09:41 -0800") Message-ID: <87wp2jrv1f.fsf@nemesis.taht.net> User-Agent: Gnus/5.13 (Gnus v5.13) Emacs/24.5 (gnu/linux) MIME-Version: 1.0 Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: quoted-printable Subject: Re: [Cake] [PATCH 2/3] Add Common Applications Kept Enhanced (sch_cake) qdisc X-BeenThere: cake@lists.bufferbloat.net X-Mailman-Version: 2.1.20 Precedence: list List-Id: Cake - FQ_codel the next generation List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 22 Nov 2017 00:56:00 -0000 And now I can comment. I've added this version to a for_upstream branch in the hope that future commits can be kept in sync. Is there anything more that should be added to the commit message? Should I be less snarky? Dave Taht writes: > sch_cake is intended to squeeze the most bandwidth and lowest latency out > of even the slowest ISP links and routers, while presenting an API simple > enough that even an ISP can configure it. > > Example of use on an ISP uplink: > > tc qdisc add dev eth0 cake bandwidth 20Mbit nat docsis ack-filter > > Cake can also be used in unlimited mode to drive packets at the speed > of the underlying link. > > Cake is filled with: > > * A hybrid Codel/Blue AQM algorithm, =E2=80=9CCobalt=E2=80=9D, tied to an= FQ_Codel > derived Flow Queuing system, which autoconfigures based on the bandwidt= h. > * A unique "triple-isolate" mode (the default) which balances per-flow > and per-host flow FQ even through NAT. > * An integral deficit based shaper with extensive dsl and docsis support > that can also be used in unlimited mode. > * 8 way set associative queuing to reduce flow collisions to a minimum. > * A reasonable interpretation of various diffserv latency/loss tradeoffs. > * Support for washing diffserv for entering and exiting traffic. > * Perfect support for interacting with Docsis 3.0 shapers. > * Extensive support for DSL framing types. > * (New) Support for ack filtering. > - 20 % better throughput at a 16x1 down/up ratio on the rrul test. > * Extensive statistics for measuring, loss, ecn markings, latency variati= on. > > There are some features still considered experimental, notably the > ingress_autorate bandwidth estimator and cobalt itself. > > Various versions shipping have been available as an out of tree build for > kernel versions going back to 3.10, as the embedded router world has been > running a few years behind mainline Linux. A stable version has been > generally available on lede-17.01 and later. > > sch_cake replaces a combination of iptables, tc filter, htb and fq_codel = in > the sqm-scripts, with sane defaults and vastly easier configuration. > > Cake's principal author is Jonathan Morton, with contributions from > Kevin Darbyshire-Bryant, Toke H=C3=B8iland-J=C3=B8rgensen, Sebastian Moel= ler, > Ryan Mounce, Dean Scarff, Guido Sarducci, Nils Andreas Svee, Dave T=C3=A4= ht, and > Loganaden Velvindron. > --- > include/net/cobalt.h | 152 +++ > net/sched/sch_cake.c | 2551 ++++++++++++++++++++++++++++++++++++++++++++= ++++++ > 2 files changed, 2703 insertions(+) > create mode 100644 include/net/cobalt.h > create mode 100644 net/sched/sch_cake.c > > diff --git a/include/net/cobalt.h b/include/net/cobalt.h > new file mode 100644 > index 0000000..0d1e794 > --- /dev/null > +++ b/include/net/cobalt.h > @@ -0,0 +1,152 @@ > +#ifndef __NET_SCHED_COBALT_H > +#define __NET_SCHED_COBALT_H > + > +/* COBALT - Codel-BLUE Alternate AQM algorithm. > + * > + * Copyright (C) 2011-2012 Kathleen Nichols > + * Copyright (C) 2011-2012 Van Jacobson > + * Copyright (C) 2012 Eric Dumazet > + * Copyright (C) 2016-2017 Michael D. T=C3=A4ht > + * Copyright (c) 2015-2017 Jonathan Morton > + * > + * Redistribution and use in source and binary forms, with or without > + * modification, are permitted provided that the following conditions > + * are met: > + * 1. Redistributions of source code must retain the above copyright > + * notice, this list of conditions, and the following disclaimer, > + * without modification. > + * 2. Redistributions in binary form must reproduce the above copyright > + * notice, this list of conditions and the following disclaimer in the > + * documentation and/or other materials provided with the distributio= n. > + * 3. The names of the authors may not be used to endorse or promote pro= ducts > + * derived from this software without specific prior written permissi= on. > + * > + * Alternatively, provided that this notice is retained in full, this > + * software may be distributed under the terms of the GNU General > + * Public License ("GPL") version 2, in which case the provisions of the > + * GPL apply INSTEAD OF those given above. > + * > + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS > + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT > + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR > + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT > + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, > + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT > + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, > + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY > + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT > + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE > + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH > + * DAMAGE. > + */ > + > +/* COBALT operates the Codel and BLUE algorithms in parallel, in order to > + * obtain the best features of each. Codel is excellent on flows which > + * respond to congestion signals in a TCP-like way. BLUE is more effect= ive on > + * unresponsive flows. > + */ > + > +#include > +#include > +#include > +#include > +#include > +#include > +#include > + > +typedef u64 cobalt_time_t; > +typedef s64 cobalt_tdiff_t; > + > +#define MS2TIME(a) (a * (u64) NSEC_PER_MSEC) > +#define US2TIME(a) (a * (u64) NSEC_PER_USEC) > + > +struct cobalt_skb_cb { > + cobalt_time_t enqueue_time; > +}; > + > +static inline cobalt_time_t cobalt_get_time(void) > +{ > + return ktime_get_ns(); > +} I don't see these typedefs as necessarily helpful in understanding the code, just using ktime_get_ns might be saner. Can live with it. > +struct cake_flow { > + /* this stuff is all needed per-flow at dequeue time */ > + struct sk_buff *head; > + struct sk_buff *tail; > + struct sk_buff *ackcheck; > + struct list_head flowchain; > + s32 deficit; > + struct cobalt_vars cvars; > + u16 srchost; /* index into cake_host table */ > + u16 dsthost; > + u8 set; > +}; /* please try to keep this structure <=3D 64 bytes */ It isn't. Can just kill the comment. > + > +struct cake_host { > + u32 srchost_tag; > + u32 dsthost_tag; > + u16 srchost_refcnt; > + u16 dsthost_refcnt; > +}; > + > +struct cake_heap_entry { > + u16 t:3, b:10; > +}; > + > +struct cake_tin_data { > + struct cake_flow flows[CAKE_QUEUES]; > + u32 backlogs[CAKE_QUEUES]; > + u32 tags[CAKE_QUEUES]; /* for set association */ > + u16 overflow_idx[CAKE_QUEUES]; > + struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */ > + u32 perturbation; > + u16 flow_quantum; > + > + struct cobalt_params cparams; > + u32 drop_overlimit; > + u16 bulk_flow_count; > + u16 sparse_flow_count; > + u16 decaying_flow_count; > + u16 unresponsive_flow_count; > + > + u16 max_skblen; > + > + struct list_head new_flows; > + struct list_head old_flows; > + struct list_head decaying_flows; > + > + /* time_next =3D time_this + ((len * rate_ns) >> rate_shft) */ > + u64 tin_time_next_packet; > + u32 tin_rate_ns; > + u32 tin_rate_bps; > + u16 tin_rate_shft; > + > + u16 tin_quantum_prio; > + u16 tin_quantum_band; > + s32 tin_deficit; > + u32 tin_backlog; > + u32 tin_dropped; > + u32 tin_ecn_mark; > + > + u32 packets; > + u64 bytes; > + > + u32 ack_drops; > + > + /* moving averages */ > + cobalt_time_t avge_delay; > + cobalt_time_t peak_delay; > + cobalt_time_t base_delay; > + > + /* hash function stats */ > + u32 way_directs; > + u32 way_hits; > + u32 way_misses; > + u32 way_collisions; > +}; /* number of tins is small, so size of this struct doesn't matter muc= h */ > + > +struct cake_sched_data { > + struct cake_tin_data *tins; > + > + struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS]; > + u16 overflow_timeout; > + > + u16 tin_cnt; > + u8 tin_mode; > + u8 flow_mode; > + > + /* time_next =3D time_this + ((len * rate_ns) >> rate_shft) */ > + u16 rate_shft; > + u64 time_next_packet; > + u64 failsafe_next_packet; > + u32 rate_ns; > + u32 rate_bps; > + u16 rate_flags; > + s16 rate_overhead; > + u16 rate_mpu; > + u32 interval; > + u32 target; > + > + /* resource tracking */ > + u32 buffer_used; > + u32 buffer_max_used; > + u32 buffer_limit; > + u32 buffer_config_limit; > + > + /* indices for dequeue */ > + u16 cur_tin; > + u16 cur_flow; > + > + struct qdisc_watchdog watchdog; > + const u8 *tin_index; > + const u8 *tin_order; > + > + /* bandwidth capacity estimate */ > + u64 last_packet_time; > + u64 avg_packet_interval; > + u64 avg_window_begin; > + u32 avg_window_bytes; > + u32 avg_peak_bandwidth; > + u64 last_reconfig_time; > +}; > + > +enum { > + CAKE_MODE_BESTEFFORT =3D 1, > + CAKE_MODE_PRECEDENCE, > + CAKE_MODE_DIFFSERV8, > + CAKE_MODE_DIFFSERV4, > + CAKE_MODE_LLT, > + CAKE_MODE_DIFFSERV3, > + CAKE_MODE_MAX > +}; > + > +enum { > + CAKE_FLAG_ATM =3D 0x0001, > + CAKE_FLAG_PTM =3D 0x0002, > + CAKE_FLAG_AUTORATE_INGRESS =3D 0x0010, > + CAKE_FLAG_INGRESS =3D 0x0040, Why the gap? > + CAKE_FLAG_WASH =3D 0x0100, > + CAKE_FLAG_ACK_FILTER =3D 0x0200, > + CAKE_FLAG_ACK_AGGRESSIVE =3D 0x0400 > +}; We could create a #define CAKE_ACK_FILTERS (CAKE_FLAG_ACK_FILTER |\ CAKE_FLAG_ACK_AGGRESSIVE) > + > +enum { > + CAKE_FLOW_NONE =3D 0, > + CAKE_FLOW_SRC_IP, > + CAKE_FLOW_DST_IP, > + CAKE_FLOW_HOSTS, /* =3D CAKE_FLOW_SRC_IP | CAKE_FLOW_DST_IP */ > + CAKE_FLOW_FLOWS, > + CAKE_FLOW_DUAL_SRC, /* =3D CAKE_FLOW_SRC_IP | CAKE_FLOW_FLOWS */ > + CAKE_FLOW_DUAL_DST, /* =3D CAKE_FLOW_DST_IP | CAKE_FLOW_FLOWS */ > + CAKE_FLOW_TRIPLE, /* =3D CAKE_FLOW_HOSTS | CAKE_FLOW_FLOWS */ > + CAKE_FLOW_MAX, > + CAKE_FLOW_NAT_FLAG =3D 64 > +}; > + > +static u16 quantum_div[CAKE_QUEUES + 1] =3D {0}; > + > +/* Diffserv lookup tables */ > + > +static const u8 precedence[] =3D {0, 0, 0, 0, 0, 0, 0, 0, > + 1, 1, 1, 1, 1, 1, 1, 1, > + 2, 2, 2, 2, 2, 2, 2, 2, > + 3, 3, 3, 3, 3, 3, 3, 3, > + 4, 4, 4, 4, 4, 4, 4, 4, > + 5, 5, 5, 5, 5, 5, 5, 5, > + 6, 6, 6, 6, 6, 6, 6, 6, > + 7, 7, 7, 7, 7, 7, 7, 7, > + }; > + > +static const u8 diffserv_llt[] =3D {1, 0, 0, 1, 2, 2, 1, 1, > + 3, 1, 1, 1, 1, 1, 1, 1, > + 1, 1, 1, 1, 1, 1, 1, 1, > + 1, 1, 1, 1, 1, 1, 1, 1, > + 1, 1, 1, 1, 1, 1, 1, 1, > + 1, 1, 1, 1, 2, 1, 2, 1, > + 4, 1, 1, 1, 1, 1, 1, 1, > + 4, 1, 1, 1, 1, 1, 1, 1, > + }; > + > +static const u8 diffserv8[] =3D {2, 5, 1, 2, 4, 2, 2, 2, > + 0, 2, 1, 2, 1, 2, 1, 2, > + 5, 2, 4, 2, 4, 2, 4, 2, > + 3, 2, 3, 2, 3, 2, 3, 2, > + 6, 2, 3, 2, 3, 2, 3, 2, > + 6, 2, 2, 2, 6, 2, 6, 2, > + 7, 2, 2, 2, 2, 2, 2, 2, > + 7, 2, 2, 2, 2, 2, 2, 2, > + }; > + > +static const u8 diffserv4[] =3D {0, 2, 0, 0, 2, 0, 0, 0, > + 1, 0, 0, 0, 0, 0, 0, 0, > + 2, 0, 2, 0, 2, 0, 2, 0, > + 2, 0, 2, 0, 2, 0, 2, 0, > + 3, 0, 2, 0, 2, 0, 2, 0, > + 3, 0, 0, 0, 3, 0, 3, 0, > + 3, 0, 0, 0, 0, 0, 0, 0, > + 3, 0, 0, 0, 0, 0, 0, 0, > + }; > + > +static const u8 diffserv3[] =3D {0, 0, 0, 0, 2, 0, 0, 0, > + 1, 0, 0, 0, 0, 0, 0, 0, > + 0, 0, 0, 0, 0, 0, 0, 0, > + 0, 0, 0, 0, 0, 0, 0, 0, > + 0, 0, 0, 0, 0, 0, 0, 0, > + 0, 0, 0, 0, 2, 0, 2, 0, > + 2, 0, 0, 0, 0, 0, 0, 0, > + 2, 0, 0, 0, 0, 0, 0, 0, > + }; > + > +static const u8 besteffort[] =3D {0, 0, 0, 0, 0, 0, 0, 0, > + 0, 0, 0, 0, 0, 0, 0, 0, > + 0, 0, 0, 0, 0, 0, 0, 0, > + 0, 0, 0, 0, 0, 0, 0, 0, > + 0, 0, 0, 0, 0, 0, 0, 0, > + 0, 0, 0, 0, 0, 0, 0, 0, > + 0, 0, 0, 0, 0, 0, 0, 0, > + 0, 0, 0, 0, 0, 0, 0, 0, > + }; > + > +/* tin priority order for stats dumping */ > + > +static const u8 normal_order[] =3D {0, 1, 2, 3, 4, 5, 6, 7}; > +static const u8 bulk_order[] =3D {1, 0, 2, 3}; > + > +#define REC_INV_SQRT_CACHE (16) > +static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] =3D {0}; > + > +/* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots > + * new_invsqrt =3D (invsqrt / 2) * (3 - count * invsqrt^2) > + * > + * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0= .32 > + */ > + > +static void cobalt_newton_step(struct cobalt_vars *vars) > +{ > + u32 invsqrt =3D vars->rec_inv_sqrt; > + u32 invsqrt2 =3D ((u64)invsqrt * invsqrt) >> 32; > + u64 val =3D (3LL << 32) - ((u64)vars->count * invsqrt2); > + > + val >>=3D 2; /* avoid overflow in following multiply */ > + val =3D (val * invsqrt) >> (32 - 2 + 1); > + > + vars->rec_inv_sqrt =3D val; > +} > + > +static void cobalt_invsqrt(struct cobalt_vars *vars) > +{ > + if (vars->count < REC_INV_SQRT_CACHE) > + vars->rec_inv_sqrt =3D cobalt_rec_inv_sqrt_cache[vars->count]; > + else > + cobalt_newton_step(vars); > +} > + > +/* There is a big difference in timing between the accurate values place= d in > + * the cache and the approximations given by a single Newton step for sm= all > + * count values, particularly when stepping from count 1 to 2 or vice ve= rsa. > + * Above 16, a single Newton step gives sufficient accuracy in either > + * direction, given the precision stored. > + * > + * The magnitude of the error when stepping up to count 2 is such as to = give > + * the value that *should* have been produced at count 4. > + */ > + > +static void cobalt_cache_init(void) > +{ > + struct cobalt_vars v; > + > + memset(&v, 0, sizeof(v)); > + v.rec_inv_sqrt =3D ~0U; > + cobalt_rec_inv_sqrt_cache[0] =3D v.rec_inv_sqrt; > + > + for (v.count =3D 1; v.count < REC_INV_SQRT_CACHE; v.count++) { > + cobalt_newton_step(&v); > + cobalt_newton_step(&v); > + cobalt_newton_step(&v); > + cobalt_newton_step(&v); > + > + cobalt_rec_inv_sqrt_cache[v.count] =3D v.rec_inv_sqrt; > + } > +} > + > +void cobalt_vars_init(struct cobalt_vars *vars) > +{ > + memset(vars, 0, sizeof(*vars)); > + > + if (!cobalt_rec_inv_sqrt_cache[0]) { > + cobalt_cache_init(); > + cobalt_rec_inv_sqrt_cache[0] =3D ~0; > + } > +} > + > +/* CoDel control_law is t + interval/sqrt(count) > + * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to av= oid > + * both sqrt() and divide operation. > + */ > +static cobalt_time_t cobalt_control_law(cobalt_time_t t, > + cobalt_time_t interval, > + u32 rec_inv_sqrt) > +{ > + return t + reciprocal_scale(interval, rec_inv_sqrt); > +} > + > +/* Call this when a packet had to be dropped due to queue overflow. Ret= urns > + * true if the BLUE state was quiescent before but active after this cal= l. > + */ > +bool cobalt_queue_full(struct cobalt_vars *vars, struct cobalt_params *p, > + cobalt_time_t now) oops, this should be static. > +{ > + bool up =3D false; > + > + if ((now - vars->blue_timer) > p->target) { > + up =3D !vars->p_drop; > + vars->p_drop +=3D p->p_inc; > + if (vars->p_drop < p->p_inc) > + vars->p_drop =3D ~0; > + vars->blue_timer =3D now; > + } > + vars->dropping =3D true; > + vars->drop_next =3D now; > + if (!vars->count) > + vars->count =3D 1; > + > + return up; > +} > + > +/* Call this when the queue was serviced but turned out to be empty. Re= turns > + * true if the BLUE state was active before but quiescent after this cal= l. > + */ > +bool cobalt_queue_empty(struct cobalt_vars *vars, struct cobalt_params *= p, > + cobalt_time_t now) static > +{ > + bool down =3D false; > + > + if (vars->p_drop && (now - vars->blue_timer) > p->target) { > + if (vars->p_drop < p->p_dec) > + vars->p_drop =3D 0; > + else > + vars->p_drop -=3D p->p_dec; > + vars->blue_timer =3D now; > + down =3D !vars->p_drop; > + } > + vars->dropping =3D false; > + > + if (vars->count && (now - vars->drop_next) >=3D 0) { > + vars->count--; > + cobalt_invsqrt(vars); > + vars->drop_next =3D cobalt_control_law(vars->drop_next, > + p->interval, > + vars->rec_inv_sqrt); > + } > + > + return down; > +} > + > +/* Call this with a freshly dequeued packet for possible congestion mark= ing. > + * Returns true as an instruction to drop the packet, false for delivery. > + */ > +bool cobalt_should_drop(struct cobalt_vars *vars, > + struct cobalt_params *p, > + cobalt_time_t now, > + struct sk_buff *skb) static > +{ > + bool drop =3D false; > + > + /* Simplified Codel implementation */ > + cobalt_tdiff_t sojourn =3D now - cobalt_get_enqueue_time(skb); > + > +/* The 'schedule' variable records, in its sign, whether 'now' is before= or > + * after 'drop_next'. This allows 'drop_next' to be updated before the = next > + * scheduling decision is actually branched, without destroying that > + * information. Similarly, the first 'schedule' value calculated is pre= served > + * in the boolean 'next_due'. > + * > + * As for 'drop_next', we take advantage of the fact that 'interval' is = both > + * the delay between first exceeding 'target' and the first signalling e= vent, > + * *and* the scaling factor for the signalling frequency. It's therefor= e very > + * natural to use a single mechanism for both purposes, and eliminates a > + * significant amount of reference Codel's spaghetti code. To help with= this, > + * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as = close > + * as possible to 1.0 in fixed-point. > + */ > + > + cobalt_tdiff_t schedule =3D now - vars->drop_next; > + bool over_target =3D sojourn > p->target; > + bool next_due =3D vars->count && schedule >=3D 0; > + > + vars->ecn_marked =3D false; > + > + if (over_target) { > + if (!vars->dropping) { > + vars->dropping =3D true; > + vars->drop_next =3D cobalt_control_law(now, > + p->interval, > + vars->rec_inv_sqrt); > + } > + if (!vars->count) > + vars->count =3D 1; > + } else if (vars->dropping) { > + vars->dropping =3D false; > + } > + > + if (next_due && vars->dropping) { > + /* Use ECN mark if possible, otherwise drop */ > + drop =3D !(vars->ecn_marked =3D INET_ECN_set_ce(skb)); > + > + vars->count++; > + if (!vars->count) > + vars->count--; > + cobalt_invsqrt(vars); > + vars->drop_next =3D cobalt_control_law(vars->drop_next, > + p->interval, > + vars->rec_inv_sqrt); > + schedule =3D now - vars->drop_next; > + } else { > + while (next_due) { > + vars->count--; > + cobalt_invsqrt(vars); > + vars->drop_next =3D cobalt_control_law(vars->drop_next, > + p->interval, > + vars->rec_inv_sqrt); > + schedule =3D now - vars->drop_next; > + next_due =3D vars->count && schedule >=3D 0; > + } > + } > + > + /* Simple BLUE implementation. Lack of ECN is deliberate. */ > + if (vars->p_drop) > + drop |=3D (prandom_u32() < vars->p_drop); > + > + /* Overload the drop_next field as an activity timeout */ > + if (!vars->count) > + vars->drop_next =3D now + p->interval; > + else if (schedule > 0 && !drop) > + vars->drop_next =3D now; > + > + return drop; > +} > + > +#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) Oops, I meant to add IS_ENABLED(NF_CONNTRACK). How far back does that define go? > +static inline void cake_update_flowkeys(struct flow_keys *keys, > + const struct sk_buff *skb) > +{ > + enum ip_conntrack_info ctinfo; > + bool rev =3D false; > + > + struct nf_conn *ct; > + const struct nf_conntrack_tuple *tuple; > + > + if (tc_skb_protocol(skb) !=3D htons(ETH_P_IP)) > + return; > + > + ct =3D nf_ct_get(skb, &ctinfo); > + if (ct) { > + tuple =3D nf_ct_tuple(ct, CTINFO2DIR(ctinfo)); > + } else { > + const struct nf_conntrack_tuple_hash *hash; > + struct nf_conntrack_tuple srctuple; > + > + if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), > + NFPROTO_IPV4, dev_net(skb->dev), > + &srctuple)) > + return; > + > + hash =3D nf_conntrack_find_get(dev_net(skb->dev), > + &nf_ct_zone_dflt, > + &srctuple); > + if (!hash) > + return; > + > + rev =3D true; > + ct =3D nf_ct_tuplehash_to_ctrack(hash); > + tuple =3D nf_ct_tuple(ct, !hash->tuple.dst.dir); > + } > + > + keys->addrs.v4addrs.src =3D rev ? tuple->dst.u3.ip : tuple->src.u3.ip; > + keys->addrs.v4addrs.dst =3D rev ? tuple->src.u3.ip : tuple->dst.u3.ip; > + > + if (keys->ports.ports) { > + keys->ports.src =3D rev ? tuple->dst.u.all : tuple->src.u.all; > + keys->ports.dst =3D rev ? tuple->src.u.all : tuple->dst.u.all; > + } > + > + if (rev) > + nf_ct_put(ct); > +} > +#else > +static inline void cake_update_flowkeys(struct flow_keys *keys, > + const struct sk_buff *skb) > +{ > + /* There is nothing we can do here without CONNTRACK */ > +} > +#endif > + > +static inline u32 > +cake_hash(struct cake_tin_data *q, const struct sk_buff *skb, int flow_m= ode) > +{ > + struct flow_keys keys, host_keys; > + u32 flow_hash =3D 0, srchost_hash, dsthost_hash; > + u16 reduced_hash, srchost_idx, dsthost_idx; > + > + if (unlikely(flow_mode =3D=3D CAKE_FLOW_NONE)) > + return 0; > + > + skb_flow_dissect_flow_keys(skb, &keys, > + FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); > + > + if (flow_mode & CAKE_FLOW_NAT_FLAG) > + cake_update_flowkeys(&keys, skb); > + > + /* flow_hash_from_keys() sorts the addresses by value, so we have > + * to preserve their order in a separate data structure to treat > + * src and dst host addresses as independently selectable. > + */ > + host_keys =3D keys; > + host_keys.ports.ports =3D 0; > + host_keys.basic.ip_proto =3D 0; > + host_keys.keyid.keyid =3D 0; > + host_keys.tags.flow_label =3D 0; > + > + switch (host_keys.control.addr_type) { > + case FLOW_DISSECTOR_KEY_IPV4_ADDRS: > + host_keys.addrs.v4addrs.src =3D 0; > + dsthost_hash =3D flow_hash_from_keys(&host_keys); > + host_keys.addrs.v4addrs.src =3D keys.addrs.v4addrs.src; > + host_keys.addrs.v4addrs.dst =3D 0; > + srchost_hash =3D flow_hash_from_keys(&host_keys); > + break; > + > + case FLOW_DISSECTOR_KEY_IPV6_ADDRS: > + memset(&host_keys.addrs.v6addrs.src, 0, > + sizeof(host_keys.addrs.v6addrs.src)); > + dsthost_hash =3D flow_hash_from_keys(&host_keys); > + host_keys.addrs.v6addrs.src =3D keys.addrs.v6addrs.src; > + memset(&host_keys.addrs.v6addrs.dst, 0, > + sizeof(host_keys.addrs.v6addrs.dst)); > + srchost_hash =3D flow_hash_from_keys(&host_keys); > + break; > + > + default: > + dsthost_hash =3D 0; > + srchost_hash =3D 0; > + }; > + > + /* This *must* be after the above switch, since as a > + * side-effect it sorts the src and dst addresses. > + */ > + if (flow_mode & CAKE_FLOW_FLOWS) > + flow_hash =3D flow_hash_from_keys(&keys); > + > + if (!(flow_mode & CAKE_FLOW_FLOWS)) { > + if (flow_mode & CAKE_FLOW_SRC_IP) > + flow_hash ^=3D srchost_hash; > + > + if (flow_mode & CAKE_FLOW_DST_IP) > + flow_hash ^=3D dsthost_hash; > + } > + > + reduced_hash =3D flow_hash % CAKE_QUEUES; > + srchost_idx =3D srchost_hash % CAKE_QUEUES; > + dsthost_idx =3D dsthost_hash % CAKE_QUEUES; > + > + /* set-associative hashing */ > + /* fast path if no hash collision (direct lookup succeeds) */ > + if (likely(q->tags[reduced_hash] =3D=3D flow_hash && > + q->flows[reduced_hash].set)) { > + q->way_directs++; > + } else { > + u32 inner_hash =3D reduced_hash % CAKE_SET_WAYS; > + u32 outer_hash =3D reduced_hash - inner_hash; > + u32 i, k; > + bool need_allocate_src =3D false; > + bool need_allocate_dst =3D false; > + > + /* check if any active queue in the set is reserved for > + * this flow. > + */ > + for (i =3D 0, k =3D inner_hash; i < CAKE_SET_WAYS; > + i++, k =3D (k + 1) % CAKE_SET_WAYS) { > + if (q->tags[outer_hash + k] =3D=3D flow_hash) { > + if (i) > + q->way_hits++; > + > + if (!q->flows[outer_hash + k].set) { > + /* need to increment host refcnts */ > + need_allocate_src =3D true; > + need_allocate_dst =3D true; > + } > + > + goto found; > + } > + } > + > + /* no queue is reserved for this flow, look for an > + * empty one. > + */ > + for (i =3D 0; i < CAKE_SET_WAYS; > + i++, k =3D (k + 1) % CAKE_SET_WAYS) { > + if (!q->flows[outer_hash + k].set) { > + q->way_misses++; > + need_allocate_src =3D true; > + need_allocate_dst =3D true; > + goto found; > + } > + } > + > + /* With no empty queues, default to the original > + * queue, accept the collision, update the host tags. > + */ > + q->way_collisions++; > + q->hosts[q->flows[reduced_hash].srchost].srchost_refcnt--; > + q->hosts[q->flows[reduced_hash].dsthost].dsthost_refcnt--; > + need_allocate_src =3D true; > + need_allocate_dst =3D true; > + > +found: Not huge on dangling gotos, would rather move them to the below line. > + /* reserve queue for future packets in same flow */ > + reduced_hash =3D outer_hash + k; > + q->tags[reduced_hash] =3D flow_hash; > + > + if (need_allocate_src) { > + inner_hash =3D srchost_idx % CAKE_SET_WAYS; > + outer_hash =3D srchost_idx - inner_hash; > + for (i =3D 0, k =3D inner_hash; i < CAKE_SET_WAYS; > + i++, k =3D (k + 1) % CAKE_SET_WAYS) { > + if (q->hosts[outer_hash + k].srchost_tag =3D=3D > + srchost_hash) > + goto found_src; > + } > + for (i =3D 0; i < CAKE_SET_WAYS; > + i++, k =3D (k + 1) % CAKE_SET_WAYS) { > + if (!q->hosts[outer_hash + k].srchost_refcnt) > + break; > + } > + q->hosts[outer_hash + k].srchost_tag =3D srchost_hash; > +found_src: > + srchost_idx =3D outer_hash + k; > + q->hosts[srchost_idx].srchost_refcnt++; > + q->flows[reduced_hash].srchost =3D srchost_idx; > + } > + > + if (need_allocate_dst) { > + inner_hash =3D dsthost_idx % CAKE_SET_WAYS; > + outer_hash =3D dsthost_idx - inner_hash; > + for (i =3D 0, k =3D inner_hash; i < CAKE_SET_WAYS; > + i++, k =3D (k + 1) % CAKE_SET_WAYS) { > + if (q->hosts[outer_hash + k].dsthost_tag =3D=3D > + dsthost_hash) > + goto found_dst; > + } > + for (i =3D 0; i < CAKE_SET_WAYS; > + i++, k =3D (k + 1) % CAKE_SET_WAYS) { > + if (!q->hosts[outer_hash + k].dsthost_refcnt) > + break; > + } > + q->hosts[outer_hash + k].dsthost_tag =3D dsthost_hash; > +found_dst: > + dsthost_idx =3D outer_hash + k; > + q->hosts[dsthost_idx].dsthost_refcnt++; > + q->flows[reduced_hash].dsthost =3D dsthost_idx; > + } > + } > + > + return reduced_hash; > +} > + > +/* helper functions : might be changed when/if skb use a standard list_h= ead */ > +/* remove one skb from head of slot queue */ > + > +static inline struct sk_buff *dequeue_head(struct cake_flow *flow) > +{ > + struct sk_buff *skb =3D flow->head; > + > + if (skb) { > + flow->head =3D skb->next; > + skb->next =3D NULL; > + > + if (skb =3D=3D flow->ackcheck) > + flow->ackcheck =3D NULL; Is there a sane way to move this check elsewhere and only when ack filtering is enabled? > + } > + > + return skb; > +} > + > +/* add skb to flow queue (tail add) */ > + > +static inline void > +flow_queue_add(struct cake_flow *flow, struct sk_buff *skb) > +{ > + if (!flow->head) > + flow->head =3D skb; > + else > + flow->tail->next =3D skb; > + flow->tail =3D skb; > + skb->next =3D NULL; > +} > + > +static struct sk_buff *ack_filter(struct cake_flow *flow, bool aggressiv= e) > +{ > + int seglen; > + struct sk_buff *skb =3D flow->tail, *skb_check, *skb_check_prev; > + struct iphdr *iph, *iph_check; > + struct ipv6hdr *ipv6h, *ipv6h_check; > + struct tcphdr *tcph, *tcph_check; > + > + bool otherconn_ack_seen =3D false; > + struct sk_buff *otherconn_checked_to =3D NULL; > + bool thisconn_redundant_seen =3D false, thisconn_seen_last =3D false; > + struct sk_buff *thisconn_checked_to =3D NULL, *thisconn_ack =3D NULL; > + > + /* no other possible ACKs to filter */ > + if (flow->head =3D=3D skb) > + return NULL; > + > + iph =3D skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); > + ipv6h =3D skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); > + > + /* check that the innermost network header is v4/v6, and contains TCP */ > + if (iph->version =3D=3D 4) { > + if (iph->protocol !=3D IPPROTO_TCP) > + return NULL; > + seglen =3D ntohs(iph->tot_len) - (4 * iph->ihl); > + tcph =3D (struct tcphdr *)((void *)iph + (4 * iph->ihl)); > + } else if (ipv6h->version =3D=3D 6) { > + if (ipv6h->nexthdr !=3D IPPROTO_TCP) > + return NULL; > + seglen =3D ntohs(ipv6h->payload_len); > + tcph =3D (struct tcphdr *)((void *)ipv6h + sizeof(struct ipv6hdr)); > + } else { > + return NULL; > + } > + > + /* the 'triggering' packet need only have the ACK flag set. > + * also check that SYN is not set, as there won't be any previous ACKs. > + */ > + if ((tcp_flag_word(tcph) & > + cpu_to_be32(0x00120000)) !=3D TCP_FLAG_ACK) Magic number > + return NULL; > + > + /* the 'triggering' ACK is at the end of the queue, > + * we have already returned if it is the only packet in the flow. > + * stop before last packet in queue, don't compare trigger ACK to itself > + * start where we finished last time if recorded in ->ackcheck > + * otherwise start from the the head of the flow queue. > + */ > + skb_check_prev =3D flow->ackcheck; > + skb_check =3D flow->ackcheck ?: flow->head; > + > + while (skb_check->next) { > + bool pure_ack, thisconn; > + > + /* don't increment if at head of flow queue (_prev =3D=3D NULL) */ > + if (skb_check_prev) { > + skb_check_prev =3D skb_check; > + skb_check =3D skb_check->next; > + if (!skb_check->next) > + break; > + } else { > + skb_check_prev =3D ERR_PTR(-1); > + } > + > + iph_check =3D skb_check->encapsulation ? > + inner_ip_hdr(skb_check) : ip_hdr(skb_check); > + ipv6h_check =3D skb_check->encapsulation ? > + inner_ipv6_hdr(skb_check) : ipv6_hdr(skb_check); > + > + if (iph_check->version =3D=3D 4) { > + if (iph_check->protocol !=3D IPPROTO_TCP) > + continue; > + seglen =3D ntohs(iph_check->tot_len) - (4 * iph_check->ihl); > + tcph_check =3D (struct tcphdr *)((void *)iph_check > + + (4 * iph_check->ihl)); > + if (iph->version =3D=3D 4 && > + iph_check->saddr =3D=3D iph->saddr && > + iph_check->daddr =3D=3D iph->daddr) { > + thisconn =3D true; > + } else { > + thisconn =3D false; > + } > + } else if (ipv6h_check->version =3D=3D 6) { > + if (ipv6h_check->nexthdr !=3D IPPROTO_TCP) > + continue; > + seglen =3D ntohs(ipv6h_check->payload_len); > + tcph_check =3D (struct tcphdr *)((void *)ipv6h_check + > + sizeof(struct ipv6hdr)); > + if (ipv6h->version =3D=3D 6 && > + ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) && > + ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr)) { > + thisconn =3D true; > + } else { > + thisconn =3D false; > + } > + } else { > + continue; > + } > + > + /* stricter criteria apply to ACKs that we may filter > + * 3 reserved flags must be unset to avoid future breakage > + * ECE/CWR/NS can be safely ignored > + * ACK must be set > + * All other flags URG/PSH/RST/SYN/FIN must be unset > + * must be 'pure' ACK, contain zero bytes of segment data > + * options are ignored > + */ > + if ((tcp_flag_word(tcph) & > + cpu_to_be32(0x00120000)) !=3D TCP_FLAG_ACK) { > + continue; > + } else if (((tcp_flag_word(tcph_check) & > + cpu_to_be32(0x0E3F0000)) !=3D TCP_FLAG_ACK) || > + ((seglen - 4 * tcph_check->doff) !=3D 0)) { > + pure_ack =3D false; > + } else { > + pure_ack =3D true; > + } > + > + /* if we find an ACK belonging to a different connection > + * continue checking for other ACKs this round however > + * restart checking from the other connection next time. > + */ > + if (thisconn && (tcph_check->source !=3D tcph->source || > + tcph_check->dest !=3D tcph->dest)) { > + thisconn =3D false; > + } > + > + /* new ack sequence must be greater > + */ > + if (thisconn && > + (ntohl(tcph_check->ack_seq) > ntohl(tcph->ack_seq))) > + continue; > + > + /* DupACKs with an equal sequence number shouldn't be filtered, > + * but we can filter if the triggering packet is a SACK > + */ > + if (thisconn && > + (ntohl(tcph_check->ack_seq) =3D=3D ntohl(tcph->ack_seq))) { > + /* inspired by tcp_parse_options in tcp_input.c */ > + bool sack =3D false; > + int length =3D (tcph->doff * 4) - sizeof(struct tcphdr); > + const u8 *ptr =3D (const u8 *)(tcph + 1); > + > + while (length > 0) { > + int opcode =3D *ptr++; > + int opsize; > + > + if (opcode =3D=3D TCPOPT_EOL) > + break; > + if (opcode =3D=3D TCPOPT_NOP) { > + length--; > + continue; > + } > + opsize =3D *ptr++; > + if (opsize < 2 || opsize > length) > + break; > + if (opcode =3D=3D TCPOPT_SACK) { > + sack =3D true; > + break; > + } > + ptr +=3D opsize - 2; > + length -=3D opsize; > + } > + if (!sack) > + continue; > + } > + > + /* somewhat complicated control flow for 'conservative' > + * ACK filtering that aims to be more polite to slow-start and > + * in the presence of packet loss. > + * does not filter if there is one 'redundant' ACK in the queue. > + * 'data' ACKs won't be filtered but do count as redundant ACKs. > + */ > + if (thisconn) { > + thisconn_seen_last =3D true; > + /* if aggressive and this is a data ack we can skip > + * checking it next time. > + */ > + thisconn_checked_to =3D (aggressive && !pure_ack) ? > + skb_check : skb_check_prev; > + /* the first pure ack for this connection. > + * record where it is, but only break if aggressive > + * or already seen data ack from the same connection > + */ > + if (pure_ack && !thisconn_ack) { > + thisconn_ack =3D skb_check_prev; > + if (aggressive || thisconn_redundant_seen) > + break; > + /* data ack or subsequent pure ack */ > + } else { > + thisconn_redundant_seen =3D true; > + /* this is the second ack for this connection > + * break to filter the first pure ack > + */ > + if (thisconn_ack) > + break; > + } > + /* track packets from non-matching tcp connections that will > + * need evaluation on the next run. > + * if there are packets from both the matching connection and > + * others that requre checking next run, track which was updated > + * last and return the older of the two to ensure full coverage. > + * if a non-matching pure ack has been seen, cannot skip any > + * further on the next run so don't update. > + */ > + } else if (!otherconn_ack_seen) { > + thisconn_seen_last =3D false; > + if (pure_ack) { > + otherconn_ack_seen =3D true; > + /* if aggressive we don't care about old data, > + * start from the pure ack. > + * otherwise if there is a previous data ack, > + * start checking from it next time. > + */ > + if (aggressive || !otherconn_checked_to) > + otherconn_checked_to =3D skb_check_prev; > + } else { > + otherconn_checked_to =3D aggressive ? > + skb_check : skb_check_prev; > + } > + } > + } > + > + /* skb_check is reused at this point > + * it is the pure ACK to be filtered (if any) > + */ > + skb_check =3D NULL; > + > + /* next time start checking from the older/nearest to head of unfiltered > + * but important tcp packets from this connection and other connections. > + * if none seen, start after the last packet evaluated in the loop. > + */ > + if (thisconn_checked_to && otherconn_checked_to) > + flow->ackcheck =3D thisconn_seen_last ? > + otherconn_checked_to : thisconn_checked_to; > + else if (thisconn_checked_to) > + flow->ackcheck =3D thisconn_checked_to; > + else if (otherconn_checked_to) > + flow->ackcheck =3D otherconn_checked_to; > + else > + flow->ackcheck =3D skb_check_prev; > + > + /* if filtering, the pure ACK from the flow queue */ > + if (thisconn_ack && (aggressive || thisconn_redundant_seen)) { > + if (PTR_ERR(thisconn_ack) =3D=3D -1) { > + skb_check =3D flow->head; > + flow->head =3D flow->head->next; > + } else { > + skb_check =3D thisconn_ack->next; > + thisconn_ack->next =3D thisconn_ack->next->next; > + } > + } > + > + /* we just filtered that ack, fix up the list */ > + if (flow->ackcheck =3D=3D skb_check) > + flow->ackcheck =3D thisconn_ack; > + /* check the entire flow queue next time */ > + if (PTR_ERR(flow->ackcheck) =3D=3D -1) > + flow->ackcheck =3D NULL; > + > + return skb_check; > +} > + > +static inline u32 cake_overhead(struct cake_sched_data *q, u32 in) > +{ > + u32 out =3D in + q->rate_overhead; > + > + if (q->rate_mpu && out < q->rate_mpu) > + out =3D q->rate_mpu; > + > + if (q->rate_flags & CAKE_FLAG_ATM) { > + out +=3D 47; > + out /=3D 48; > + out *=3D 53; > + } else if (q->rate_flags & CAKE_FLAG_PTM) { > + /* Add one byte per 64 bytes or part thereof. > + * This is conservative and easier to calculate than the > + * precise value. > + */ > + out +=3D (out / 64) + !!(out % 64); > + } > + > + return out; > +} > + > +static inline cobalt_time_t cake_ewma(cobalt_time_t avg, cobalt_time_t s= ample, > + u32 shift) > +{ > + avg -=3D avg >> shift; > + avg +=3D sample >> shift; > + return avg; > +} > + > +static inline void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 = j) > +{ > + struct cake_heap_entry ii =3D q->overflow_heap[i]; > + struct cake_heap_entry jj =3D q->overflow_heap[j]; > + > + q->overflow_heap[i] =3D jj; > + q->overflow_heap[j] =3D ii; > + > + q->tins[ii.t].overflow_idx[ii.b] =3D j; > + q->tins[jj.t].overflow_idx[jj.b] =3D i; > +} > + > +static inline u32 cake_heap_get_backlog(const struct cake_sched_data *q,= u16 i) > +{ > + struct cake_heap_entry ii =3D q->overflow_heap[i]; > + > + return q->tins[ii.t].backlogs[ii.b]; > +} > + > +static void cake_heapify(struct cake_sched_data *q, u16 i) > +{ > + static const u32 a =3D CAKE_MAX_TINS * CAKE_QUEUES; > + u32 m =3D i; > + u32 mb =3D cake_heap_get_backlog(q, m); > + > + while (m < a) { > + u32 l =3D m + m + 1; > + u32 r =3D l + 1; > + > + if (l < a) { > + u32 lb =3D cake_heap_get_backlog(q, l); > + > + if (lb > mb) { > + m =3D l; > + mb =3D lb; > + } > + } > + > + if (r < a) { > + u32 rb =3D cake_heap_get_backlog(q, r); > + > + if (rb > mb) { > + m =3D r; > + mb =3D rb; > + } > + } > + > + if (m !=3D i) { > + cake_heap_swap(q, i, m); > + i =3D m; > + } else { > + break; > + } > + } > +} > + > +static void cake_heapify_up(struct cake_sched_data *q, u16 i) > +{ > + while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) { > + u16 p =3D (i - 1) >> 1; > + u32 ib =3D cake_heap_get_backlog(q, i); > + u32 pb =3D cake_heap_get_backlog(q, p); > + > + if (ib > pb) { > + cake_heap_swap(q, i, p); > + i =3D p; > + } else { > + break; > + } > + } > +} > + > +static void cake_advance_shaper(struct cake_sched_data *q, > + struct cake_tin_data *b, u32 len, u64 now, bool drop) > +{ > + /* charge packet bandwidth to this tin > + * and to the global shaper. > + */ > + if (q->rate_ns) { > + s64 tdiff1 =3D b->tin_time_next_packet - now; > + s64 tdiff2 =3D (len * (u64)b->tin_rate_ns) >> b->tin_rate_shft; > + s64 tdiff3 =3D (len * (u64)q->rate_ns) >> q->rate_shft; > + s64 tdiff4 =3D (len * (u64)q->rate_ns) >> (q->rate_shft - 2); > + > + if (tdiff1 < 0) > + b->tin_time_next_packet +=3D tdiff2; > + else if (tdiff1 < tdiff2) > + b->tin_time_next_packet =3D now + tdiff2; > + > + q->time_next_packet +=3D tdiff3; > + if (!drop) > + q->failsafe_next_packet +=3D tdiff4; > + } > +} > + > +static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_fre= e) > +{ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + struct sk_buff *skb; > + u32 idx =3D 0, tin =3D 0, len; > + struct cake_tin_data *b; > + struct cake_flow *flow; > + struct cake_heap_entry qq; > + u64 now =3D cobalt_get_time(); > + > + if (!q->overflow_timeout) { > + int i; > + /* Build fresh max-heap */ > + for (i =3D CAKE_MAX_TINS * CAKE_QUEUES / 2; i >=3D 0; i--) > + cake_heapify(q, i); > + } > + q->overflow_timeout =3D 65535; > + > + /* select longest queue for pruning */ > + qq =3D q->overflow_heap[0]; > + tin =3D qq.t; > + idx =3D qq.b; > + > + b =3D &q->tins[tin]; > + flow =3D &b->flows[idx]; > + skb =3D dequeue_head(flow); > + if (unlikely(!skb)) { > + /* heap has gone wrong, rebuild it next time */ > + q->overflow_timeout =3D 0; > + return idx + (tin << 16); > + } > + > + if (cobalt_queue_full(&flow->cvars, &b->cparams, now)) > + b->unresponsive_flow_count++; > + > + len =3D qdisc_pkt_len(skb); > + q->buffer_used -=3D skb->truesize; > + b->backlogs[idx] -=3D len; > + b->tin_backlog -=3D len; > + sch->qstats.backlog -=3D len; > + qdisc_tree_reduce_backlog(sch, 1, len); > + > + b->tin_dropped++; > + sch->qstats.drops++; > + > + if (q->rate_flags & CAKE_FLAG_INGRESS) > + cake_advance_shaper(q, b, cake_overhead(q, len), now, true); > + > + __qdisc_drop(skb, to_free); We use __qdisc_drop here, but other variants elsewhere. Why? > + sch->q.qlen--; > + cake_heapify(q, 0); > + > + return idx + (tin << 16); > +} > + > +static inline void cake_wash_diffserv(struct sk_buff *skb) > +{ > + switch (skb->protocol) { > + case htons(ETH_P_IP): > + ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0); > + break; > + case htons(ETH_P_IPV6): > + ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0); > + break; > + default: > + break; > + }; > +} > + > +static inline u8 cake_handle_diffserv(struct sk_buff *skb, u16 wash) > +{ > + u8 dscp; > + > + switch (skb->protocol) { > + case htons(ETH_P_IP): > + dscp =3D ipv4_get_dsfield(ip_hdr(skb)) >> 2; > + if (wash && dscp) > + ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0); > + return dscp; > + > + case htons(ETH_P_IPV6): > + dscp =3D ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; > + if (wash && dscp) > + ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0); > + return dscp; > + > + case htons(ETH_P_ARP): > + return 0x38; /* CS7 - Net Control */ > + > + default: > + /* If there is no Diffserv field, treat as best-effort */ > + return 0; > + }; > +} > + > +static void cake_reconfigure(struct Qdisc *sch); > + > +static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch, > + struct sk_buff **to_free) > +{ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + u32 idx, tin; > + struct cake_tin_data *b; > + struct cake_flow *flow; > + /* signed len to handle corner case filtered ACK larger than trigger */ > + int len =3D qdisc_pkt_len(skb); > + u64 now =3D cobalt_get_time(); > + struct sk_buff *skb_filtered_ack =3D NULL; > + > + /* extract the Diffserv Precedence field, if it exists */ > + /* and clear DSCP bits if washing */ > + if (q->tin_mode !=3D CAKE_MODE_BESTEFFORT) { > + tin =3D q->tin_index[cake_handle_diffserv(skb, > + q->rate_flags & CAKE_FLAG_WASH)]; > + if (unlikely(tin >=3D q->tin_cnt)) > + tin =3D 0; > + } else { > + tin =3D 0; > + if (q->rate_flags & CAKE_FLAG_WASH) > + cake_wash_diffserv(skb); > + } > + > + b =3D &q->tins[tin]; > + > + /* choose flow to insert into */ > + idx =3D cake_hash(b, skb, q->flow_mode); > + flow =3D &b->flows[idx]; > + > + /* ensure shaper state isn't stale */ > + if (!b->tin_backlog) { > + if (b->tin_time_next_packet < now) > + b->tin_time_next_packet =3D now; > + > + if (!sch->q.qlen) { > + if (q->time_next_packet < now) { > + q->failsafe_next_packet =3D now; > + q->time_next_packet =3D now; > + } else if (q->time_next_packet > now && q->failsafe_next_packet > now= ) { > + u64 next_time =3D (q->time_next_packet < q->failsafe_next_packet) > + ? q->time_next_packet : q->failsafe_next_packet; > + sch->qstats.overlimits++; > + qdisc_watchdog_schedule_ns(&q->watchdog, next_time); > + } > + } > + } > + > + if (unlikely(len > b->max_skblen)) > + b->max_skblen =3D len; > + > + /* Split GSO aggregates if they're likely to impair flow isolation > + * or if we need to know individual packet sizes for framing overhead. > + */ > + > + if (skb_is_gso(skb)) { > + struct sk_buff *segs, *nskb; > + netdev_features_t features =3D netif_skb_features(skb); > + /* signed slen to handle corner case > + * suppressed ACK larger than trigger > + */ > + int slen =3D 0; > + > + segs =3D skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); > + if (IS_ERR_OR_NULL(segs)) > + return qdisc_drop(skb, sch, to_free); Why __qdisc_drop elsewhere? > + while (segs) { > + nskb =3D segs->next; > + segs->next =3D NULL; > + qdisc_skb_cb(segs)->pkt_len =3D segs->len; > + cobalt_set_enqueue_time(segs, now); > + flow_queue_add(flow, segs); > + > + if (q->rate_flags & CAKE_FLAG_ACK_FILTER) > + skb_filtered_ack =3D ack_filter(flow, q->rate_flags & CAKE_FLAG_ACK_= AGGRESSIVE); > + > + if (skb_filtered_ack) { > + b->ack_drops++; > + b->bytes +=3D skb_filtered_ack->len; > + slen +=3D segs->len - skb_filtered_ack->len; > + q->buffer_used +=3D segs->truesize - > + skb_filtered_ack->truesize; > + if (q->rate_flags & CAKE_FLAG_INGRESS) > + cake_advance_shaper(q, b, cake_overhead(q, skb_filtered_ack->len), = now, true); > + > + qdisc_tree_reduce_backlog(sch, 1, > + qdisc_pkt_len(skb_filtered_ack)); > + consume_skb(skb_filtered_ack); > + } else { > + sch->q.qlen++; > + slen +=3D segs->len; > + q->buffer_used +=3D segs->truesize; > + } > + b->packets++; > + segs =3D nskb; > + } > + /* stats */ > + b->bytes +=3D slen; > + b->backlogs[idx] +=3D slen; > + b->tin_backlog +=3D slen; > + sch->qstats.backlog +=3D slen; > + q->avg_window_bytes +=3D slen; > + > + qdisc_tree_reduce_backlog(sch, 1, len); > + consume_skb(skb); Still trying to figure out this > + } else { > + /* not splitting */ > + cobalt_set_enqueue_time(skb, now); > + flow_queue_add(flow, skb); > + > + if (q->rate_flags & CAKE_FLAG_ACK_FILTER) > + skb_filtered_ack =3D ack_filter(flow, (q->rate_flags & CAKE_FLAG_ACK_= AGGRESSIVE)); Could just pass q->rate_flags and sort it out there. > + if (skb_filtered_ack) { > + b->ack_drops++; > + b->bytes +=3D qdisc_pkt_len(skb_filtered_ack); > + len -=3D qdisc_pkt_len(skb_filtered_ack); > + q->buffer_used +=3D skb->truesize - > + skb_filtered_ack->truesize; > + if (q->rate_flags & CAKE_FLAG_INGRESS) > + cake_advance_shaper(q, b, cake_overhead(q, skb_filtered_ack->len), n= ow, true); > + > + qdisc_tree_reduce_backlog(sch, 1, > + qdisc_pkt_len(skb_filtered_ack)); > + consume_skb(skb_filtered_ack); > + } else { > + sch->q.qlen++; > + q->buffer_used +=3D skb->truesize; > + } > + /* stats */ > + b->packets++; > + b->bytes +=3D len; > + b->backlogs[idx] +=3D len; > + b->tin_backlog +=3D len; > + sch->qstats.backlog +=3D len; > + q->avg_window_bytes +=3D len; > + } > + > + if (q->overflow_timeout) > + cake_heapify_up(q, b->overflow_idx[idx]); > + > + /* incoming bandwidth capacity estimate */ > + if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) { > + u64 packet_interval =3D now - q->last_packet_time; > + > + if (packet_interval > NSEC_PER_SEC) > + packet_interval =3D NSEC_PER_SEC; I do not understand this. Why? > + > + /* filter out short-term bursts, eg. wifi aggregation */ > + q->avg_packet_interval =3D cake_ewma(q->avg_packet_interval, > + packet_interval, > + packet_interval > q->avg_packet_interval ? 2 : 8); > + > + q->last_packet_time =3D now; > + > + if (packet_interval > q->avg_packet_interval) { > + u64 window_interval =3D now - q->avg_window_begin; > + u64 b =3D q->avg_window_bytes * (u64)NSEC_PER_SEC; > + > + do_div(b, window_interval); > + q->avg_peak_bandwidth =3D > + cake_ewma(q->avg_peak_bandwidth, b, > + b > q->avg_peak_bandwidth ? 2 : 8); > + q->avg_window_bytes =3D 0; > + q->avg_window_begin =3D now; > + > + if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS && > + now - q->last_reconfig_time > > + (NSEC_PER_SEC / 4)) { > + q->rate_bps =3D (q->avg_peak_bandwidth * 15) >> 4; > + cake_reconfigure(sch); > + } > + } > + } else { > + q->avg_window_bytes =3D 0; > + q->last_packet_time =3D now; > + } > + > + /* flowchain */ > + if (!flow->set || flow->set =3D=3D CAKE_SET_DECAYING) { > + struct cake_host *srchost =3D &b->hosts[flow->srchost]; > + struct cake_host *dsthost =3D &b->hosts[flow->dsthost]; > + u16 host_load =3D 1; > + > + if (!flow->set) { > + list_add_tail(&flow->flowchain, &b->new_flows); > + } else { > + b->decaying_flow_count--; > + list_move_tail(&flow->flowchain, &b->new_flows); > + } > + flow->set =3D CAKE_SET_SPARSE; > + b->sparse_flow_count++; > + > + if ((q->flow_mode & CAKE_FLOW_DUAL_SRC) =3D=3D CAKE_FLOW_DUAL_SRC) > + host_load =3D max(host_load, srchost->srchost_refcnt); > + > + if ((q->flow_mode & CAKE_FLOW_DUAL_DST) =3D=3D CAKE_FLOW_DUAL_DST) > + host_load =3D max(host_load, dsthost->dsthost_refcnt); > + > + flow->deficit =3D (b->flow_quantum * quantum_div[host_load]) >> 16; > + } else if (flow->set =3D=3D CAKE_SET_SPARSE_WAIT) { > + /* this flow was empty, accounted as a sparse flow, but actually > + * in the bulk rotation. > + */ > + flow->set =3D CAKE_SET_BULK; > + b->sparse_flow_count--; > + b->bulk_flow_count++; > + } > + > + if (q->buffer_used > q->buffer_max_used) > + q->buffer_max_used =3D q->buffer_used; > + > + if (q->buffer_used > q->buffer_limit) { > + u32 dropped =3D 0; > + > + while (q->buffer_used > q->buffer_limit) { > + dropped++; > + cake_drop(sch, to_free); > + } > + b->drop_overlimit +=3D dropped; > + } > + return NET_XMIT_SUCCESS; > +} > + > +static struct sk_buff *cake_dequeue_one(struct Qdisc *sch) > +{ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + struct cake_tin_data *b =3D &q->tins[q->cur_tin]; > + struct cake_flow *flow =3D &b->flows[q->cur_flow]; > + struct sk_buff *skb =3D NULL; > + u32 len; > + > + /* WARN_ON(flow !=3D container_of(vars, struct cake_flow, cvars)); */ I should have deleted this comment. > + > + if (flow->head) { > + skb =3D dequeue_head(flow); > + len =3D qdisc_pkt_len(skb); > + b->backlogs[q->cur_flow] -=3D len; > + b->tin_backlog -=3D len; > + sch->qstats.backlog -=3D len; > + q->buffer_used -=3D skb->truesize; > + sch->q.qlen--; > + > + if (q->overflow_timeout) > + cake_heapify(q, b->overflow_idx[q->cur_flow]); > + } > + return skb; > +} > + > +/* Discard leftover packets from a tin no longer in use. */ > +static void cake_clear_tin(struct Qdisc *sch, u16 tin) > +{ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + struct sk_buff *skb; > + > + q->cur_tin =3D tin; > + for (q->cur_flow =3D 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++) > + while (!!(skb =3D cake_dequeue_one(sch))) > + kfree_skb(skb); > +} > + > +static struct sk_buff *cake_dequeue(struct Qdisc *sch) > +{ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + struct sk_buff *skb; > + struct cake_tin_data *b =3D &q->tins[q->cur_tin]; > + struct cake_flow *flow; > + struct cake_host *srchost, *dsthost; > + struct list_head *head; > + u32 len; > + u16 host_load; > + cobalt_time_t now =3D ktime_get_ns(); > + cobalt_time_t delay; > + bool first_flow =3D true; > + > +begin: > + if (!sch->q.qlen) > + return NULL; > + > + /* global hard shaper */ > + if (q->time_next_packet > now && q->failsafe_next_packet > now) { > + u64 next_time =3D (q->time_next_packet < q->failsafe_next_packet) > + ? q->time_next_packet : q->failsafe_next_packet; > + sch->qstats.overlimits++; > + qdisc_watchdog_schedule_ns(&q->watchdog, next_time); > + return NULL; > + } > + > + /* Choose a class to work on. */ > + if (!q->rate_ns) { > + /* In unlimited mode, can't rely on shaper timings, just balance > + * with DRR > + */ > + while (b->tin_deficit < 0 || > + !(b->sparse_flow_count + b->bulk_flow_count)) { > + if (b->tin_deficit <=3D 0) > + b->tin_deficit +=3D b->tin_quantum_band; > + > + q->cur_tin++; > + b++; > + if (q->cur_tin >=3D q->tin_cnt) { > + q->cur_tin =3D 0; > + b =3D q->tins; > + } > + } > + } else { > + /* In shaped mode, choose: > + * - Highest-priority tin with queue and meeting schedule, or > + * - The earliest-scheduled tin with queue. > + */ > + int tin, best_tin =3D 0; > + s64 best_time =3D 0xFFFFFFFFFFFFUL; > + > + for (tin =3D 0; tin < q->tin_cnt; tin++) { > + b =3D q->tins + tin; > + if ((b->sparse_flow_count + b->bulk_flow_count) > 0) { > + s64 tdiff =3D b->tin_time_next_packet - now; > + > + if (tdiff <=3D 0 || tdiff <=3D best_time) { > + best_time =3D tdiff; > + best_tin =3D tin; > + } > + } > + } > + > + q->cur_tin =3D best_tin; > + b =3D q->tins + best_tin; > + } > + > +retry: > + /* service this class */ > + head =3D &b->decaying_flows; > + if (!first_flow || list_empty(head)) { > + head =3D &b->new_flows; > + if (list_empty(head)) { > + head =3D &b->old_flows; > + if (unlikely(list_empty(head))) { > + head =3D &b->decaying_flows; > + if (unlikely(list_empty(head))) > + goto begin; > + } > + } > + } > + flow =3D list_first_entry(head, struct cake_flow, flowchain); > + q->cur_flow =3D flow - b->flows; > + first_flow =3D false; > + > + /* triple isolation (modified DRR++) */ > + srchost =3D &b->hosts[flow->srchost]; > + dsthost =3D &b->hosts[flow->dsthost]; > + host_load =3D 1; > + > + if ((q->flow_mode & CAKE_FLOW_DUAL_SRC) =3D=3D CAKE_FLOW_DUAL_SRC) > + host_load =3D max(host_load, srchost->srchost_refcnt); > + > + if ((q->flow_mode & CAKE_FLOW_DUAL_DST) =3D=3D CAKE_FLOW_DUAL_DST) > + host_load =3D max(host_load, dsthost->dsthost_refcnt); > + > + WARN_ON(host_load > CAKE_QUEUES); Should have nuked this also. > + > + /* flow isolation (DRR++) */ > + if (flow->deficit <=3D 0) { > + flow->deficit +=3D (b->flow_quantum * quantum_div[host_load] + > + (prandom_u32() >> 16)) >> 16; > + list_move_tail(&flow->flowchain, &b->old_flows); > + > + /* Keep all flows with deficits out of the sparse and decaying > + * rotations. No non-empty flow can go into the decaying > + * rotation, so they can't get deficits > + */ > + if (flow->set =3D=3D CAKE_SET_SPARSE) { > + if (flow->head) { > + b->sparse_flow_count--; > + b->bulk_flow_count++; > + flow->set =3D CAKE_SET_BULK; > + } else { > + /* we've moved it to the bulk rotation for > + * correct deficit accounting but we still want > + * to count it as a sparse flow, not a bulk one. > + */ > + flow->set =3D CAKE_SET_SPARSE_WAIT; > + } > + } > + goto retry; > + } > + > + /* Retrieve a packet via the AQM */ > + while (1) { > + skb =3D cake_dequeue_one(sch); > + if (!skb) { > + /* this queue was actually empty */ > + if (cobalt_queue_empty(&flow->cvars, &b->cparams, now)) > + b->unresponsive_flow_count--; > + > + if (flow->cvars.p_drop || flow->cvars.count || > + (now - flow->cvars.drop_next) < 0) { > + /* keep in the flowchain until the state has > + * decayed to rest > + */ > + list_move_tail(&flow->flowchain, > + &b->decaying_flows); > + if (flow->set =3D=3D CAKE_SET_BULK) { > + b->bulk_flow_count--; > + b->decaying_flow_count++; > + } else if (flow->set =3D=3D CAKE_SET_SPARSE || > + flow->set =3D=3D CAKE_SET_SPARSE_WAIT) { > + b->sparse_flow_count--; > + b->decaying_flow_count++; > + } > + flow->set =3D CAKE_SET_DECAYING; > + } else { > + /* remove empty queue from the flowchain */ > + list_del_init(&flow->flowchain); > + if (flow->set =3D=3D CAKE_SET_SPARSE || > + flow->set =3D=3D CAKE_SET_SPARSE_WAIT) > + b->sparse_flow_count--; > + else if (flow->set =3D=3D CAKE_SET_BULK) > + b->bulk_flow_count--; > + else > + b->decaying_flow_count--; > + > + flow->set =3D CAKE_SET_NONE; > + srchost->srchost_refcnt--; > + dsthost->dsthost_refcnt--; > + } > + goto begin; > + } > + > + /* Last packet in queue may be marked, shouldn't be dropped */ > + if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb) || > + !flow->head) > + break; > + > + /* drop this packet, get another one */ > + if (q->rate_flags & CAKE_FLAG_INGRESS) { > + len =3D cake_overhead(q, qdisc_pkt_len(skb)); > + cake_advance_shaper(q, b, len, now, true); > + flow->deficit -=3D len; > + b->tin_deficit -=3D len; > + } > + b->tin_dropped++; > + qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb)); > + qdisc_qstats_drop(sch); > + kfree_skb(skb); And elsewhere I see __qdisc_drop. > + if (q->rate_flags & CAKE_FLAG_INGRESS) > + goto retry; > + } > + > + b->tin_ecn_mark +=3D !!flow->cvars.ecn_marked; > + qdisc_bstats_update(sch, skb); > + > + len =3D cake_overhead(q, qdisc_pkt_len(skb)); > + flow->deficit -=3D len; > + b->tin_deficit -=3D len; > + > + /* collect delay stats */ > + delay =3D now - cobalt_get_enqueue_time(skb); > + b->avge_delay =3D cake_ewma(b->avge_delay, delay, 8); > + b->peak_delay =3D cake_ewma(b->peak_delay, delay, > + delay > b->peak_delay ? 2 : 8); > + b->base_delay =3D cake_ewma(b->base_delay, delay, > + delay < b->base_delay ? 2 : 8); > + > + cake_advance_shaper(q, b, len, now, false); > + if (q->time_next_packet > now && sch->q.qlen) { > + u64 next_time =3D (q->time_next_packet < q->failsafe_next_packet) > + ? q->time_next_packet : q->failsafe_next_packet; > + qdisc_watchdog_schedule_ns(&q->watchdog, next_time); > + } else if (!sch->q.qlen) { > + int i; > + > + for (i =3D 0; i < q->tin_cnt; i++) { > + if (q->tins[i].decaying_flow_count) { > + qdisc_watchdog_schedule_ns(&q->watchdog, now + > + q->tins[i].cparams.target); > + break; > + } > + } > + } > + > + if (q->overflow_timeout) > + q->overflow_timeout--; > + > + return skb; > +} > + > +static void cake_reset(struct Qdisc *sch) > +{ > + u32 c; > + > + for (c =3D 0; c < CAKE_MAX_TINS; c++) > + cake_clear_tin(sch, c); > +} > + > +static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] =3D { > + [TCA_CAKE_BASE_RATE] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_DIFFSERV_MODE] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_ATM] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_FLOW_MODE] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_OVERHEAD] =3D { .type =3D NLA_S32 }, > + [TCA_CAKE_RTT] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_TARGET] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_AUTORATE] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_MEMORY] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_NAT] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_ETHERNET] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_WASH] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_MPU] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_INGRESS] =3D { .type =3D NLA_U32 }, > + [TCA_CAKE_ACK_FILTER] =3D { .type =3D NLA_U32 }, > +}; Why here? > + > +static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu, > + cobalt_time_t ns_target, cobalt_time_t rtt_est_ns) > +{ > + /* convert byte-rate into time-per-byte > + * so it will always unwedge in reasonable time. > + */ > + static const u64 MIN_RATE =3D 64; > + u64 rate_ns =3D 0; > + u8 rate_shft =3D 0; > + cobalt_time_t byte_target_ns; > + u32 byte_target =3D mtu + (mtu >> 1); > + > + b->flow_quantum =3D 1514; > + if (rate) { > + b->flow_quantum =3D max(min(rate >> 12, 1514ULL), 300ULL); > + rate_shft =3D 32; > + rate_ns =3D ((u64)NSEC_PER_SEC) << rate_shft; > + do_div(rate_ns, max(MIN_RATE, rate)); > + while (!!(rate_ns >> 32)) { > + rate_ns >>=3D 1; > + rate_shft--; > + } > + } /* else unlimited, ie. zero delay */ > + > + b->tin_rate_bps =3D rate; > + b->tin_rate_ns =3D rate_ns; > + b->tin_rate_shft =3D rate_shft; > + > + byte_target_ns =3D (byte_target * rate_ns) >> rate_shft; > + > + b->cparams.target =3D max(byte_target_ns, ns_target); > + b->cparams.interval =3D max(rtt_est_ns + > + b->cparams.target - ns_target, > + b->cparams.target * 2); > + b->cparams.p_inc =3D 1 << 24; /* 1/256 */ > + b->cparams.p_dec =3D 1 << 20; /* 1/4096 */ > +} > + > +static int cake_config_besteffort(struct Qdisc *sch) > +{ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + struct cake_tin_data *b =3D &q->tins[0]; > + u32 rate =3D q->rate_bps; > + u32 mtu =3D psched_mtu(qdisc_dev(sch)); > + > + q->tin_cnt =3D 1; > + > + q->tin_index =3D besteffort; > + q->tin_order =3D normal_order; > + > + cake_set_rate(b, rate, mtu, US2TIME(q->target), US2TIME(q->interval)); > + b->tin_quantum_band =3D 65535; > + b->tin_quantum_prio =3D 65535; > + > + return 0; > +} > + > +static int cake_config_precedence(struct Qdisc *sch) > +{ > + /* convert high-level (user visible) parameters into internal format */ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + u32 rate =3D q->rate_bps; > + u32 mtu =3D psched_mtu(qdisc_dev(sch)); > + u32 quantum1 =3D 256; > + u32 quantum2 =3D 256; > + u32 i; > + > + q->tin_cnt =3D 8; > + q->tin_index =3D precedence; > + q->tin_order =3D normal_order; > + > + for (i =3D 0; i < q->tin_cnt; i++) { > + struct cake_tin_data *b =3D &q->tins[i]; > + > + cake_set_rate(b, rate, mtu, US2TIME(q->target), > + US2TIME(q->interval)); > + > + b->tin_quantum_prio =3D max_t(u16, 1U, quantum1); > + b->tin_quantum_band =3D max_t(u16, 1U, quantum2); > + > + /* calculate next class's parameters */ > + rate *=3D 7; > + rate >>=3D 3; > + > + quantum1 *=3D 3; > + quantum1 >>=3D 1; > + > + quantum2 *=3D 7; > + quantum2 >>=3D 3; > + } > + > + return 0; > +} > + > +/* List of known Diffserv codepoints: > + * > + * Least Effort (CS1) > + * Best Effort (CS0) > + * Max Reliability & LLT "Lo" (TOS1) > + * Max Throughput (TOS2) > + * Min Delay (TOS4) > + * LLT "La" (TOS5) > + * Assured Forwarding 1 (AF1x) - x3 > + * Assured Forwarding 2 (AF2x) - x3 > + * Assured Forwarding 3 (AF3x) - x3 > + * Assured Forwarding 4 (AF4x) - x3 > + * Precedence Class 2 (CS2) > + * Precedence Class 3 (CS3) > + * Precedence Class 4 (CS4) > + * Precedence Class 5 (CS5) > + * Precedence Class 6 (CS6) > + * Precedence Class 7 (CS7) > + * Voice Admit (VA) > + * Expedited Forwarding (EF) > + > + * Total 25 codepoints. > + */ > + > +/* List of traffic classes in RFC 4594: > + * (roughly descending order of contended priority) > + * (roughly ascending order of uncontended throughput) > + * > + * Network Control (CS6,CS7) - routing traffic > + * Telephony (EF,VA) - aka. VoIP streams > + * Signalling (CS5) - VoIP setup > + * Multimedia Conferencing (AF4x) - aka. video calls > + * Realtime Interactive (CS4) - eg. games > + * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch > + * Broadcast Video (CS3) > + * Low Latency Data (AF2x,TOS4) - eg. database > + * Ops, Admin, Management (CS2,TOS1) - eg. ssh > + * Standard Service (CS0 & unrecognised codepoints) > + * High Throughput Data (AF1x,TOS2) - eg. web traffic > + * Low Priority Data (CS1) - eg. BitTorrent > + > + * Total 12 traffic classes. > + */ > + > +static int cake_config_diffserv8(struct Qdisc *sch) > +{ > +/* Pruned list of traffic classes for typical applications: > + * > + * Network Control (CS6, CS7) > + * Minimum Latency (EF, VA, CS5, CS4) > + * Interactive Shell (CS2, TOS1) > + * Low Latency Transactions (AF2x, TOS4) > + * Video Streaming (AF4x, AF3x, CS3) > + * Bog Standard (CS0 etc.) > + * High Throughput (AF1x, TOS2) > + * Background Traffic (CS1) > + * > + * Total 8 traffic classes. > + */ > + > + struct cake_sched_data *q =3D qdisc_priv(sch); > + u32 rate =3D q->rate_bps; > + u32 mtu =3D psched_mtu(qdisc_dev(sch)); > + u32 quantum1 =3D 256; > + u32 quantum2 =3D 256; > + u32 i; > + > + q->tin_cnt =3D 8; > + > + /* codepoint to class mapping */ > + q->tin_index =3D diffserv8; > + q->tin_order =3D normal_order; > + > + /* class characteristics */ > + for (i =3D 0; i < q->tin_cnt; i++) { > + struct cake_tin_data *b =3D &q->tins[i]; > + > + cake_set_rate(b, rate, mtu, US2TIME(q->target), > + US2TIME(q->interval)); > + > + b->tin_quantum_prio =3D max_t(u16, 1U, quantum1); > + b->tin_quantum_band =3D max_t(u16, 1U, quantum2); > + > + /* calculate next class's parameters */ > + rate *=3D 7; > + rate >>=3D 3; > + > + quantum1 *=3D 3; > + quantum1 >>=3D 1; > + > + quantum2 *=3D 7; > + quantum2 >>=3D 3; > + } > + > + return 0; > +} > + > +static int cake_config_diffserv4(struct Qdisc *sch) > +{ > +/* Further pruned list of traffic classes for four-class system: > + * > + * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4) > + * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1) > + * Best Effort (CS0, AF1x, TOS2, and those not specified) > + * Background Traffic (CS1) > + * > + * Total 4 traffic classes. > + */ > + > + struct cake_sched_data *q =3D qdisc_priv(sch); > + u32 rate =3D q->rate_bps; > + u32 mtu =3D psched_mtu(qdisc_dev(sch)); > + u32 quantum =3D 1024; > + > + q->tin_cnt =3D 4; > + > + /* codepoint to class mapping */ > + q->tin_index =3D diffserv4; > + q->tin_order =3D bulk_order; > + > + /* class characteristics */ > + cake_set_rate(&q->tins[0], rate, mtu, > + US2TIME(q->target), US2TIME(q->interval)); > + cake_set_rate(&q->tins[1], rate >> 4, mtu, > + US2TIME(q->target), US2TIME(q->interval)); > + cake_set_rate(&q->tins[2], rate >> 1, mtu, > + US2TIME(q->target), US2TIME(q->interval)); > + cake_set_rate(&q->tins[3], rate >> 2, mtu, > + US2TIME(q->target), US2TIME(q->interval)); > + > + /* priority weights */ > + q->tins[0].tin_quantum_prio =3D quantum; > + q->tins[1].tin_quantum_prio =3D quantum >> 4; > + q->tins[2].tin_quantum_prio =3D quantum << 2; > + q->tins[3].tin_quantum_prio =3D quantum << 4; > + > + /* bandwidth-sharing weights */ > + q->tins[0].tin_quantum_band =3D quantum; > + q->tins[1].tin_quantum_band =3D quantum >> 4; > + q->tins[2].tin_quantum_band =3D quantum >> 1; > + q->tins[3].tin_quantum_band =3D quantum >> 2; > + > + return 0; > +} > + > +static int cake_config_diffserv3(struct Qdisc *sch) > +{ > +/* Simplified Diffserv structure with 3 tins. > + * Low Priority (CS1) > + * Best Effort > + * Latency Sensitive (TOS4, VA, EF, CS6, CS7) > + */ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + u32 rate =3D q->rate_bps; > + u32 mtu =3D psched_mtu(qdisc_dev(sch)); > + u32 quantum =3D 1024; > + > + q->tin_cnt =3D 3; > + > + /* codepoint to class mapping */ > + q->tin_index =3D diffserv3; > + q->tin_order =3D bulk_order; > + > + /* class characteristics */ > + cake_set_rate(&q->tins[0], rate, mtu, > + US2TIME(q->target), US2TIME(q->interval)); > + cake_set_rate(&q->tins[1], rate >> 4, mtu, > + US2TIME(q->target), US2TIME(q->interval)); > + cake_set_rate(&q->tins[2], rate >> 2, mtu, > + US2TIME(q->target), US2TIME(q->target)); > + > + /* priority weights */ > + q->tins[0].tin_quantum_prio =3D quantum; > + q->tins[1].tin_quantum_prio =3D quantum >> 4; > + q->tins[2].tin_quantum_prio =3D quantum << 4; > + > + /* bandwidth-sharing weights */ > + q->tins[0].tin_quantum_band =3D quantum; > + q->tins[1].tin_quantum_band =3D quantum >> 4; > + q->tins[2].tin_quantum_band =3D quantum >> 2; > + > + return 0; > +} > + > +static int cake_config_diffserv_llt(struct Qdisc *sch) > +{ > +/* Diffserv structure specialised for Latency-Loss-Tradeoff spec. > + * Loss Sensitive (TOS1, TOS2) > + * Best Effort > + * Latency Sensitive (TOS4, TOS5, VA, EF) > + * Low Priority (CS1) > + * Network Control (CS6, CS7) > + */ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + u32 rate =3D q->rate_bps; > + u32 mtu =3D psched_mtu(qdisc_dev(sch)); > + > + q->tin_cnt =3D 5; > + > + /* codepoint to class mapping */ > + q->tin_index =3D diffserv_llt; > + q->tin_order =3D normal_order; > + > + /* class characteristics */ > + cake_set_rate(&q->tins[5], rate, mtu, > + US2TIME(q->target), US2TIME(q->interval)); > + > + cake_set_rate(&q->tins[0], rate / 3, mtu, > + US2TIME(q->target * 4), US2TIME(q->interval * 4)); > + cake_set_rate(&q->tins[1], rate / 3, mtu, > + US2TIME(q->target), US2TIME(q->interval)); > + cake_set_rate(&q->tins[2], rate / 3, mtu, > + US2TIME(q->target), US2TIME(q->target)); I tend to disagree with this, without some test showing it works. It otherwise looks like a typo, and should gain a comment, at least. > + cake_set_rate(&q->tins[3], rate >> 4, mtu, > + US2TIME(q->target), US2TIME(q->interval)); > + cake_set_rate(&q->tins[4], rate >> 4, mtu, > + US2TIME(q->target * 4), US2TIME(q->interval * 4)); > + > + /* priority weights */ > + q->tins[0].tin_quantum_prio =3D 2048; > + q->tins[1].tin_quantum_prio =3D 2048; > + q->tins[2].tin_quantum_prio =3D 2048; > + q->tins[3].tin_quantum_prio =3D 16384; > + q->tins[4].tin_quantum_prio =3D 32768; > + > + /* bandwidth-sharing weights */ > + q->tins[0].tin_quantum_band =3D 2048; > + q->tins[1].tin_quantum_band =3D 2048; > + q->tins[2].tin_quantum_band =3D 2048; > + q->tins[3].tin_quantum_band =3D 256; > + q->tins[4].tin_quantum_band =3D 16; > + > + return 5; > +} > + > +static void cake_reconfigure(struct Qdisc *sch) > +{ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + int c, ft; > + > + switch (q->tin_mode) { > + case CAKE_MODE_BESTEFFORT: > + ft =3D cake_config_besteffort(sch); > + break; > + > + case CAKE_MODE_PRECEDENCE: > + ft =3D cake_config_precedence(sch); > + break; > + > + case CAKE_MODE_DIFFSERV8: > + ft =3D cake_config_diffserv8(sch); > + break; > + > + case CAKE_MODE_DIFFSERV4: > + ft =3D cake_config_diffserv4(sch); > + break; > + > + case CAKE_MODE_LLT: > + ft =3D cake_config_diffserv_llt(sch); > + break; > + > + case CAKE_MODE_DIFFSERV3: > + default: > + ft =3D cake_config_diffserv3(sch); > + break; > + }; > + > + for (c =3D q->tin_cnt; c < CAKE_MAX_TINS; c++) > + cake_clear_tin(sch, c); > + > + q->rate_ns =3D q->tins[ft].tin_rate_ns; > + q->rate_shft =3D q->tins[ft].tin_rate_shft; > + > + if (q->buffer_config_limit) { > + q->buffer_limit =3D q->buffer_config_limit; > + } else if (q->rate_bps) { > + u64 t =3D (u64)q->rate_bps * q->interval; > + > + do_div(t, USEC_PER_SEC / 4); > + q->buffer_limit =3D max_t(u32, t, 4U << 20); > + } else { > + q->buffer_limit =3D ~0; > + } > + > + if (1 || q->rate_bps) > + sch->flags &=3D ~TCQ_F_CAN_BYPASS; > + else > + sch->flags |=3D TCQ_F_CAN_BYPASS; If we always disable bypass we slow down things by a lot, but at least get accurate statistics. So I'm inclined to always sch->flags &=3D ~TCQ_F_CAN_BYPASS; > + q->buffer_limit =3D min(q->buffer_limit, max(sch->limit * psched_mtu(qd= isc_dev(sch)), q->buffer_config_limit)); > +} > + > +static int cake_change(struct Qdisc *sch, struct nlattr *opt) > +{ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + struct nlattr *tb[TCA_CAKE_MAX + 1]; > + int err; > + > + if (!opt) > + return -EINVAL; > + > + err =3D nla_parse_nested(tb, TCA_CAKE_MAX, opt, cake_policy, NULL); > + if (err < 0) > + return err; > + > + if (tb[TCA_CAKE_BASE_RATE]) > + q->rate_bps =3D nla_get_u32(tb[TCA_CAKE_BASE_RATE]); > + > + if (tb[TCA_CAKE_DIFFSERV_MODE]) > + q->tin_mode =3D nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]); > + > + if (tb[TCA_CAKE_ATM]) { > + q->rate_flags &=3D ~(CAKE_FLAG_ATM | CAKE_FLAG_PTM); > + q->rate_flags |=3D nla_get_u32(tb[TCA_CAKE_ATM]) & > + (CAKE_FLAG_ATM | CAKE_FLAG_PTM); > + } > + > + if (tb[TCA_CAKE_WASH]) { > + if (!!nla_get_u32(tb[TCA_CAKE_WASH])) > + q->rate_flags |=3D CAKE_FLAG_WASH; > + else > + q->rate_flags &=3D ~CAKE_FLAG_WASH; > + } > + > + if (tb[TCA_CAKE_FLOW_MODE]) > + q->flow_mode =3D nla_get_u32(tb[TCA_CAKE_FLOW_MODE]); > + > + if (tb[TCA_CAKE_NAT]) { > + q->flow_mode &=3D ~CAKE_FLOW_NAT_FLAG; > + q->flow_mode |=3D CAKE_FLOW_NAT_FLAG * > + !!nla_get_u32(tb[TCA_CAKE_NAT]); > + } > + > + if (tb[TCA_CAKE_OVERHEAD]) { > + if (tb[TCA_CAKE_ETHERNET]) > + q->rate_overhead =3D -(nla_get_s32(tb[TCA_CAKE_ETHERNET])); > + else > + q->rate_overhead =3D -(qdisc_dev(sch)->hard_header_len); > + > + q->rate_overhead +=3D nla_get_s32(tb[TCA_CAKE_OVERHEAD]); > + } > + > + if (tb[TCA_CAKE_MPU]) > + q->rate_mpu =3D nla_get_u32(tb[TCA_CAKE_MPU]); > + > + if (tb[TCA_CAKE_RTT]) { > + q->interval =3D nla_get_u32(tb[TCA_CAKE_RTT]); > + > + if (!q->interval) > + q->interval =3D 1; > + } > + > + if (tb[TCA_CAKE_TARGET]) { > + q->target =3D nla_get_u32(tb[TCA_CAKE_TARGET]); > + > + if (!q->target) > + q->target =3D 1; > + } > + > + if (tb[TCA_CAKE_AUTORATE]) { > + if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE])) > + q->rate_flags |=3D CAKE_FLAG_AUTORATE_INGRESS; > + else > + q->rate_flags &=3D ~CAKE_FLAG_AUTORATE_INGRESS; > + } > + > + if (tb[TCA_CAKE_INGRESS]) { > + if (!!nla_get_u32(tb[TCA_CAKE_INGRESS])) > + q->rate_flags |=3D CAKE_FLAG_INGRESS; > + else > + q->rate_flags &=3D ~CAKE_FLAG_INGRESS; > + } > + > + if (tb[TCA_CAKE_ACK_FILTER]) { > + q->rate_flags &=3D ~(CAKE_FLAG_ACK_FILTER | > + CAKE_FLAG_ACK_AGGRESSIVE); > + q->rate_flags |=3D nla_get_u32(tb[TCA_CAKE_ACK_FILTER]) & > + (CAKE_FLAG_ACK_FILTER | > + CAKE_FLAG_ACK_AGGRESSIVE); > + } > + > + if (tb[TCA_CAKE_MEMORY]) > + q->buffer_config_limit =3D nla_get_s32(tb[TCA_CAKE_MEMORY]); > + > + if (q->tins) { > + sch_tree_lock(sch); > + cake_reconfigure(sch); > + sch_tree_unlock(sch); > + } > + > + return 0; > +} > + > +static void *cake_zalloc(size_t sz) > +{ > + void *ptr =3D kzalloc(sz, GFP_KERNEL | __GFP_NOWARN); > + > + if (!ptr) > + ptr =3D vzalloc(sz); > + return ptr; > +} > + Modern fq_codel uses kvzalloc and there isn't a __GFP_NOWARN. > +static void cake_free(void *addr) > +{ > + if (addr) > + kvfree(addr); > +} > + > +static void cake_destroy(struct Qdisc *sch) > +{ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + > + qdisc_watchdog_cancel(&q->watchdog); > + > + if (q->tins) > + cake_free(q->tins); > +} > + > +static int cake_init(struct Qdisc *sch, struct nlattr *opt) > +{ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + int i, j; > + > + sch->limit =3D 10240; > + q->tin_mode =3D CAKE_MODE_DIFFSERV3; > + q->flow_mode =3D CAKE_FLOW_TRIPLE; > + > + q->rate_bps =3D 0; /* unlimited by default */ > + > + q->interval =3D 100000; /* 100ms default */ > + q->target =3D 5000; /* 5ms: codel RFC argues > + * for 5 to 10% of interval > + */ > + > + q->cur_tin =3D 0; > + q->cur_flow =3D 0; > + > + if (opt) { > + int err =3D cake_change(sch, opt); > + > + if (err) > + return err; > + } > + > + qdisc_watchdog_init(&q->watchdog, sch); > + > + quantum_div[0] =3D ~0; > + for (i =3D 1; i <=3D CAKE_QUEUES; i++) > + quantum_div[i] =3D 65535 / i; > + > + q->tins =3D cake_zalloc(CAKE_MAX_TINS * sizeof(struct cake_tin_data)); > + if (!q->tins) > + goto nomem; > + > + for (i =3D 0; i < CAKE_MAX_TINS; i++) { > + struct cake_tin_data *b =3D q->tins + i; > + > + b->perturbation =3D prandom_u32(); Not that it matters all that much but we probably don't need more than one perturb. > + INIT_LIST_HEAD(&b->new_flows); > + INIT_LIST_HEAD(&b->old_flows); > + INIT_LIST_HEAD(&b->decaying_flows); > + b->sparse_flow_count =3D 0; > + b->bulk_flow_count =3D 0; > + b->decaying_flow_count =3D 0; > + > + for (j =3D 0; j < CAKE_QUEUES; j++) { > + struct cake_flow *flow =3D b->flows + j; > + u32 k =3D j * CAKE_MAX_TINS + i; > + > + INIT_LIST_HEAD(&flow->flowchain); > + cobalt_vars_init(&flow->cvars); > + > + q->overflow_heap[k].t =3D i; > + q->overflow_heap[k].b =3D j; > + b->overflow_idx[j] =3D k; > + } > + } > + > + cake_reconfigure(sch); > + q->avg_peak_bandwidth =3D q->rate_bps; > + return 0; > + > +nomem: > + cake_destroy(sch); > + return -ENOMEM; > +} > + > +static int cake_dump(struct Qdisc *sch, struct sk_buff *skb) > +{ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + struct nlattr *opts; > + > + opts =3D nla_nest_start(skb, TCA_OPTIONS); > + if (!opts) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_BASE_RATE, q->rate_bps)) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode)) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_ATM, (q->rate_flags & > + (CAKE_FLAG_ATM | CAKE_FLAG_PTM)))) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE, q->flow_mode)) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_WASH, > + !!(q->rate_flags & CAKE_FLAG_WASH))) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead + > + qdisc_dev(sch)->hard_header_len)) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu)) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_ETHERNET, > + qdisc_dev(sch)->hard_header_len)) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval)) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target)) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_AUTORATE, > + !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS))) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_INGRESS, > + !!(q->rate_flags & CAKE_FLAG_INGRESS))) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, > + (q->rate_flags & > + (CAKE_FLAG_ACK_FILTER | CAKE_FLAG_ACK_AGGRESSIVE)))) > + goto nla_put_failure; > + > + if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit)) > + goto nla_put_failure; > + > + return nla_nest_end(skb, opts); > + > +nla_put_failure: > + return -1; > +} > + > +static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d) > +{ > + /* reuse fq_codel stats format */ > + struct cake_sched_data *q =3D qdisc_priv(sch); > + struct tc_cake_xstats *st =3D cake_zalloc(sizeof(*st)); Modern fq_codel uses kvzalloc. > + int i; > + > + if (!st) > + return -1; > + > + st->version =3D 5; > + st->max_tins =3D TC_CAKE_MAX_TINS; > + st->tin_cnt =3D q->tin_cnt; > + > + for (i =3D 0; i < q->tin_cnt; i++) { > + struct cake_tin_data *b =3D &q->tins[q->tin_order[i]]; > + > + st->threshold_rate[i] =3D b->tin_rate_bps; > + st->target_us[i] =3D cobalt_time_to_us(b->cparams.target); > + st->interval_us[i] =3D cobalt_time_to_us(b->cparams.interval); > + > + /* TODO FIXME: add missing aspects of these composite stats */ > + st->sent[i].packets =3D b->packets; > + st->sent[i].bytes =3D b->bytes; > + st->dropped[i].packets =3D b->tin_dropped; > + st->ecn_marked[i].packets =3D b->tin_ecn_mark; > + st->backlog[i].bytes =3D b->tin_backlog; > + st->ack_drops[i].packets =3D b->ack_drops; > + > + st->peak_delay_us[i] =3D cobalt_time_to_us(b->peak_delay); > + st->avge_delay_us[i] =3D cobalt_time_to_us(b->avge_delay); > + st->base_delay_us[i] =3D cobalt_time_to_us(b->base_delay); > + > + st->way_indirect_hits[i] =3D b->way_hits; > + st->way_misses[i] =3D b->way_misses; > + st->way_collisions[i] =3D b->way_collisions; > + > + st->sparse_flows[i] =3D b->sparse_flow_count + > + b->decaying_flow_count; > + st->bulk_flows[i] =3D b->bulk_flow_count; > + st->unresponse_flows[i] =3D b->unresponsive_flow_count; > + st->spare[i] =3D 0; > + st->max_skblen[i] =3D b->max_skblen; > + } > + st->capacity_estimate =3D q->avg_peak_bandwidth; > + st->memory_limit =3D q->buffer_limit; > + st->memory_used =3D q->buffer_max_used; > + > + i =3D gnet_stats_copy_app(d, st, sizeof(*st)); > + cake_free(st); > + return i; > +} > + > +static struct Qdisc_ops cake_qdisc_ops __read_mostly =3D { > + .id =3D "cake", > + .priv_size =3D sizeof(struct cake_sched_data), > + .enqueue =3D cake_enqueue, > + .dequeue =3D cake_dequeue, > + .peek =3D qdisc_peek_dequeued, > + .init =3D cake_init, > + .reset =3D cake_reset, > + .destroy =3D cake_destroy, > + .change =3D cake_change, > + .dump =3D cake_dump, > + .dump_stats =3D cake_dump_stats, > + .owner =3D THIS_MODULE, > +}; > + > +static int __init cake_module_init(void) > +{ > + return register_qdisc(&cake_qdisc_ops); > +} > + > +static void __exit cake_module_exit(void) > +{ > + unregister_qdisc(&cake_qdisc_ops); > +} > + > +module_init(cake_module_init) > +module_exit(cake_module_exit) > +MODULE_AUTHOR("Jonathan Morton"); > +MODULE_LICENSE("Dual BSD/GPL"); > +MODULE_DESCRIPTION("The Cake shaper. Version: " CAKE_VERSION);