From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from mout.gmx.net (mout.gmx.net [212.227.15.15]) (using TLSv1 with cipher DHE-RSA-AES128-SHA (128/128 bits)) (Client did not present a certificate) by huchra.bufferbloat.net (Postfix) with ESMTPS id 7D84F208AB9 for ; Wed, 21 Aug 2013 12:44:37 -0700 (PDT) Received: from hms-beagle-2.home.lan ([79.229.225.62]) by mail.gmx.com (mrgmx001) with ESMTPSA (Nemesis) id 0Lev1D-1VrM6g14mN-00qkPM for ; Wed, 21 Aug 2013 21:44:34 +0200 Content-Type: multipart/alternative; boundary="Apple-Mail=_E0F440D7-677C-40EF-9ABA-0C90AD8CD27C" Mime-Version: 1.0 (Mac OS X Mail 6.5 \(1508\)) From: Sebastian Moeller In-Reply-To: <78185D5B-7638-45E0-8373-F39AEA557AEA@gmx.de> Date: Wed, 21 Aug 2013 21:44:32 +0200 Message-Id: References: <6CE1941C-A187-4AEC-8677-63BEAFDA8B0B@gmx.de> <78185D5B-7638-45E0-8373-F39AEA557AEA@gmx.de> To: Dave Taht X-Mailer: Apple Mail (2.1508) X-Provags-ID: V03:K0:8TgEXkyy9Se75sDzsH54AtAsBzPz0jZGPjfUhhlAWtvEkwZtmPK hqLadtodSsoC5xIQXfm5HCGcPwk8hgPhuJQ0MQ8Lj6AoGyHVQC9VSFDBw5HrStDsI9JlWW3 v9yr5a9ahwXwMHbpuEBcx6HnR7PeIig18J9jUOi7jgmL3gK9m33SHO74zmqGJ4CANKFhx1c 1kSkY6+ImJsVipPcF92Mw== Cc: "cerowrt-devel@lists.bufferbloat.net" Subject: Re: [Cerowrt-devel] tc-stab versus htb on ADSL 8000/700 X-BeenThere: cerowrt-devel@lists.bufferbloat.net X-Mailman-Version: 2.1.13 Precedence: list List-Id: Development issues regarding the cerowrt test router project List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 21 Aug 2013 19:44:47 -0000 --Apple-Mail=_E0F440D7-677C-40EF-9ABA-0C90AD8CD27C Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset=windows-1252 Hi Dave hi List, just a bit more information about the ATM encapsulation issue I wanted = to share. On Aug 16, 2013, at 21:46 , Sebastian Moeller wrote: > Hi Dave, hi List, >=20 > On Aug 15, 2013, at 17:17 , Dave Taht wrote: >=20 >>=20 >>=20 >>=20 >> On Thu, Aug 15, 2013 at 2:32 AM, Sebastian Moeller = wrote: >> Hi Dave, hi Fred, >>=20 >>=20 >> On Aug 15, 2013, at 04:15 , Dave Taht wrote: >>=20 >>> 0) What cero version is this? I have a slightle optimization for = codel in 3.10.6 that I'd hoped would improve < 4mbit behavior... = basically it turns off maxpacket (and was discussed earlier this month = on the codel list) as not being useful outside of the ns2 environment.=20= >>=20 >> Interesting, I did my latest tests wit 3.10.6-1 and saw decent = behavior for 14.7Mbit/s down, 2.4Mbit/s up, 40ms ping RTTs from 25-30ms = unloaded, alas I have no comparison data for 3.10.1-1, as my router = wiped out while I wanted to run those tests and I had to ref lash it via = TFTP (and I decided to go to 3.10.6-1 directly, not knowing about the = differences in fq_codel, even though I think you announced them = somewhere) >>=20 >>=20 >> That's pretty good. The best you can do would be +10 ms (as you are = adding 5ms in each direction). >=20 > I agree, it took a while to get things working right, but the = results are, but with proper link layer adjustments DSL works nicely. = There is one test left to do, shaping to <50% of link rate or below = should eradicate the effect of proper link layer adjustments (worst case = is 49 bytes of date using two full ATM cells worth 96 bytes of data, = plus 10 bytes ATM cell overhead). The hypothesis being that with that = shaping link layer adjustments will not change the ping RTT anymore, but = I have not yet tested that=85 So I finally got to run this test on cerowrt.3.10.6-1 with = simple.qos; and as I assumed, at 50% shaping both the working tc_stab = and the busted htb_private methods and even no link layer adjustments = give a very similar ping RTT of 40 to 45 ms to Toke's German netsurf = server. (In this artificial test both no link layer adjustment and the = broken htb_prtivate one also giver higher average transfer bandwidth, = just as to be expected from how the link layer adjustments should work). Since the tc stab mechanism, unlike the htb_private link layer = adjustment mechanism does not fiddle with HTB rate tables directly, but = with the apparent size of the packets it probably should be the option = to switch to for link layer adjustments for cerowrt (and openwrt). The = kernel already manipulates the apparent packet size to account for the = ethernet headers (and more), so a method that simply fudges the kernels = idea of the packet size a bit more seems more robust to change, as = regressions in this functionality will affect many more users than the = tiny fraction of DSL users that actually have sufficient control over = their routers. So keeping the hopefully fixed htb_private method as a = crosscheck for tc_stab might be reasonable (since at least in theory the = kernel will carry this functionality for ever), but I digress. Also I think it is save to say that RRUL really is great tool = for testing latency under load, just as you intended it to be :) And a = working link layer adjustment has two hallmarks, reduced ping RTT under = load over a real ATM link and reduced apparent upload and download = bandwidth (reduced by all the over head). So it should be possible to = test linllayer adjustments easily and quickly without having to have an = ATM link at hand, by just putting the net server on the wan side of the = cerowrt box=85 So the nest thing to look at is the chrome tests that Dave = wanted... Best Sebastian >=20 >=20 >>=20 >> I note that the nstat utility (under linux) will give a total number = of packets on the link and a variety of other statistics (that I mostly = don't understand), which will make it more possible to understand what = else is going on on that host, tcp's underlying behavior (packet loss, = fast recovery, ecn usage, etc (ecn tracking was just added to it, btw)) >=20 > Does not seem to exist under macosx, so until I get my linux MRI = analysis machine installed and up and running I will not be able to = peruse stat... >=20 >>=20 >> So future versions of rrul will probably run something like: >>=20 >> nstat > /dev/null # wipe out the statistics >> some_rrul_related_test >> nstat > saveitsomewhere >>=20 >> How to actually present the data? Damned if I know. Also have no idea = if a similar tool exists for other oses. It's using some semi-standard = snmp counters... might be possible to pull it off the router=85 dunno >=20 > Sounds interesting and challenging and out of my league :) >=20 >>=20 >> =20 >>>=20 >>> 1) I kind of prefer graphs get stuck on a website somewhere, rather = than email. Having to approve big postings manually adds to the 10 spams = I have to deal with per day, per list.=20 >>=20 >> I will look around to find a way to post things, would google+ = work? >>=20 >>=20 >> No tiffs, please? :) pngs are MUCH smaller, svg's show more detail=85.=20= >=20 > Argh, it seems that in deleting the hostnames I also changed the = file format. I guess select copy and paste through the clipboard is a = bit haphazard, will try to attach smaller plots in the future. (Just a = thought the plots like they would be small and ceps in postscript...) >=20 >=20 >>>=20 >>> We would certainly like to add an "upload this test" feature to rrul = one day, that captures more data about the user's configuration and the = test data (from both sides!), but that project and servers remain = unfunded, and toke's really busy with his masters thesis...=20 >>>=20 >>> 2) Test #1 at T+48 or so appears to have a glitch - either caused by = local traffic on the link or something else. The long diagonal lines = that you see are bugs in the python-matplotlib library, they are fixed = in ubuntu 13.4 and latest versions of arch. >>=20 >> Ah, but you can install matplotlib version 1.3 under ubuntu = 12.04 in the terminal: >> 1) sudo apt-get build-dep python-matplotlib >>=20 >> 2) potentially required: >> sudo pip install --upgrade freetype-py >>=20 >> 3) sudo pip install --upgrade matpltolib >>=20 >> (I might have forgotten a required step, so should anyone get stuck, = just contact me) >>=20 >>=20 >> good to know, thx. >> =20 >>=20 >>> The choppy resolution of the second graph in each chart is due to = the sample interval being kind of small relative to the bandwidth and = the RTT. That's sort of fixable, but it's readable without it=85. >>=20 >> Is there a simple way to fix this in netperf-wrapper? >>=20 >>=20 >> Well, it kind of comes down to presenting raw data as raw data. The = academic and sysadm universe is in the habit of presenting highly = processed data, showing averages, eliminating the 95 percentile, etc, = and by constantly promoting looking hard at the raw data rather than the = processed stuff, I have hoped that at least I'd be able to consistently = show people that latency and bandwidth utilization are tightly = interrelated, and that raw data is very important when outliers are = present - which they always are, in networking. >=20 > Ah, I realize that reading your sentence again would have = helped, I was under the impression the uplink graph was under = sampled-explaining the "missing bits", so went away with the impression = all that would be needed would be a higher sampling rate=85 But you = talked about the sampling interval,,, (in my defense I would always call = this the sampling period, but that does not excuse not reading what you = wrote...) >=20 >>=20 >> As you noticed, you had a pattern that formed on an interval. I've = seen patterns all the time - one caused by cron every 60 seconds, = another caused by instruction traps on ipv6 - these turned out to be = very important! - I've seen other odd patterns that have formed on = various intervals as well, that were useful to understand. >>=20 >> And you see interesting patterns if you do things like run other = traffic at the same time as rrul. I'd be very interested if you ran the = chrome web page benchmarker against the alexa top 10 during a rrul or = the simpler tcp_upload or bidirectional tests on your setup (hint, hint) >=20 > Ah, so far I refused to install chrome (mostly due to googles = insistence to upgrade it whenever they see fit without asking for my = permission), but I guess you ask, so I will try to do this (since the = family is on visit for the weekend expect nothing before next week = though...) >=20 >>=20 >> An example of "smoothing" things that make me crazy are the five = minute averages that mrtg reports, when networks run at microsecond = scales. At least things like smokeping are a lot closer to being able to = pickup on outliers.=20 >>=20 >> So, no, I'd rather not smooth that plot or change the sample interval = (yes you can change the sample interval) >=20 > Yeah, once I actuelly understand you I am fully with you, = decreasing sampling rate is not going to help (unless we initially = sampled way hove 2*nyquist frequency :) ) >=20 >>=20 >> I would like to have box plots one day. Those can be genuinely = useful but also require a trained eye to read=85. >=20 > I agree Box wisker plots are quite challenging to full grasp, = also they typically imply non-parametric tests (as otherwise mean plus = confidence interval would be easier to parse) >=20 >>=20 >> http://en.wikipedia.org/wiki/Box_plot=20 >>=20 >>>=20 >>> Moving to what I see here, you are approximately 50ms (?) or so from = the icei.org server which is located on the east coast of the US (NJ, in = linode's co-location facility) (services on this box are graciously = donated by the icei organization that has been working in the background = to help out in many ways)=20 >>>=20 >>> The black line is an average of 4 streams in the first and second = graphs in each chart. So you can multiply by 4 to get a rough estimate = of actual bandwidth on this link, but you do have to factor in the = measurement streams (graph 3), and the overhead of acks in each = direction (which is usually 66 bytes every other packet for ipv4), which = are hard to measure. >>=20 >> Ah, so these ACKs will fill cause around 38 byte of padding in a = packet of 3 ATM cells, leading to 26.4% increase in effective bandwidth = used by the ATM stream versus what is send out over ge00 (ethernet). = Together with the small ping and UDP RTT probes this explains nicely why = proper link layer adjustments decrease ping time as well as decrease of = the TCP rates.=20 >>=20 >>=20 >> yea, you are getting close to ideal. Could you re-run your setup set = to fred's settings? The atm etc mods won't kick in, but it would be = interesting to see if you have problems converging below 100ms=85 >=20 > Oh, I did something close (using htb_private with AQM active at = my setting, but a shorter run): >=20 > This basically hovers around 80ms in ping RTTs (but I get the same if = I just use AQM to shape the up and downlink without taking overhead or = link layer into account=85) But that might not be the test you deem = interesting, just let me know what exactlyy to run. >=20 >=20 >> =20 >>> So you are showing 6Mbit of raw bandwidth down, and about 480 up. = Factoring in the ack overhead of the the down, into the up, gets pretty = close to your set limit of 700. You experienced packet loss at time T+6 = (not unusual) that killed the non-ping measurement flows. (some day in = the future we will add one way ping measurements and NOT stop measuring = after the first loss)=20 >>>=20 >>> (There are multiple other plot types. do a --list-plots rrul. You = can generate a new plot on the same data by taking the *json.gz file and = supplying a different output filename (-o filename.svg) and plot type = (-p totals >>>=20 >>> I regard the cdf plots as the most useful, but ALWAYS check this = main graph type to see glitches. Otherwise a cdf can be very = misleading.) >>=20 >> Ah, for one I can really relate, in MRI analysis the mantra to = teach newcomers is always "look at your raw data". >>=20 >>=20 >> Outliers can kill you. Fact. I've pointed to frank rowands talks on = this subject a couple times. >>=20 >> The list of space launch failures due to stupid stuff like off by one = bugs and misplaced decimal points is rather high. And measurement error = - or worse, measuring the wrong thing - can mess up your whole day.=20 >>=20 >> http://www.youtube.com/watch?v=3D2eGiqqoYP5E >>=20 >> =20 >>=20 >>>=20 >>> So in this test latency spikes by about 100ms. Why does it do that? = Well, you have to fit 6k bytes (4 1500 byte flows), + 122 bytes (2 = acks), + 65 bytes (ping) into the queues, and at 700kb/second that queue = is far less than the default 5ms target we start with. a 1500 byte = packet takes 13ms to transmit at 1Mbit, so we are ending up here with = sufficient "standing queue" to=20 >>>=20 >>> Frankly, it should, eventually, achieve a tcp window size that will = reduce the latency to something lower than 100ms, but it obviously = isn't. nfq_codel is "tighter", but who knows, we're still in very early = days of trying to optimize for these bandwidths, and, like I said, I = just killed the maxpacket thing which might help some. A longer test (-l = 300) at this rtt) might be more revealing. >>=20 >>=20 >> So here is my result against "an unnamed netperf server in = Germany" for 300seconds using 3.10.6-1 with simple.qos and fq_codel. = Ping times only increase from ~30ms to 40ms (the same link gets ~300ms = ping RTT without AQM, and ~80ms without proper linklayer adaptation). = (Plus you can see my Macbook obviously is doing some periodically things = (roughly every 15 seconds) that eats bandwidth and causes RT >>=20 >> Excellent. If you re-run that test with "simple.qos" >=20 > But all I ever tested was simple.qos, I guess I should have = mentioned that explicitly=85 Or do you mean simplest.qos? >=20 >> instead you can see the classification classes, "doing something", at = least on upload. On download, if you don't see it "doing anything", it = generally means that your ToS values were stomped on in transit. >=20 > I would not be amazed though if the whole classification would = not work well under macosx, my current only availablt OS... >=20 >>=20 >> =20 >> Ts to increase a lot).=20 >>=20 >> to get closer to an accurate value for traffic on the link, do the = nstat trick I mentioned above. >=20 > Good idea, I guess I should bring up my linux analysis machine = soon, currently no stat under macosx. >=20 >=20 > Best Regards > Sebastian >=20 >=20 >> =20 >>=20 >>=20 >>=20 >>>=20 >>> Clear as mud? >>>=20 >>>=20 >>>=20 >>> On Wed, Aug 14, 2013 at 2:28 PM, Fred Stratton = wrote: >>>=20 >>>=20 >>>=20 >>> _______________________________________________ >>> Cerowrt-devel mailing list >>> Cerowrt-devel@lists.bufferbloat.net >>> https://lists.bufferbloat.net/listinfo/cerowrt-devel >>>=20 >>>=20 >>>=20 >>>=20 >>> --=20 >>> Dave T=E4ht >>>=20 >>> Fixing bufferbloat with cerowrt: = http://www.teklibre.com/cerowrt/subscribe.html >>> _______________________________________________ >>> Cerowrt-devel mailing list >>> Cerowrt-devel@lists.bufferbloat.net >>> https://lists.bufferbloat.net/listinfo/cerowrt-devel >>=20 >>=20 >>=20 >>=20 >> --=20 >> Dave T=E4ht >>=20 >> Fixing bufferbloat with cerowrt: = http://www.teklibre.com/cerowrt/subscribe.html >=20 --Apple-Mail=_E0F440D7-677C-40EF-9ABA-0C90AD8CD27C Content-Type: multipart/related; type="text/html"; boundary="Apple-Mail=_F9151A9D-F370-44ED-B4F6-E2B929A9037F" --Apple-Mail=_F9151A9D-F370-44ED-B4F6-E2B929A9037F Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset=windows-1252 Hi Dave hi = List,

just a bit more information about the ATM = encapsulation issue I wanted to share.

On Aug 16, 2013, at = 21:46 , Sebastian Moeller <moeller0@gmx.de> = wrote:

Hi Dave, hi List,

On Aug = 15, 2013, at 17:17 , Dave Taht <dave.taht@gmail.com> = wrote:




On Thu, Aug 15, 2013 = at 2:32 AM, Sebastian Moeller <moeller0@gmx.de> wrote:
Hi Dave, = hi Fred,


On Aug 15, 2013, at 04:15 , Dave Taht = <dave.taht@gmail.com> wrote:

0) = What cero version is this? I have a slightle optimization for codel in = 3.10.6 that I'd hoped would improve < 4mbit behavior... basically it = turns off maxpacket (and was discussed earlier this month on the codel = list) as not being useful outside of the ns2 = environment. 

Interesting, I did my latest = tests wit 3.10.6-1 and saw decent behavior for 14.7Mbit/s down, = 2.4Mbit/s up, 40ms ping RTTs from 25-30ms unloaded, alas I have no = comparison data for 3.10.1-1, as my router wiped out while I wanted to = run those tests and I had to ref lash it via TFTP (and I decided to = go to 3.10.6-1 directly, not knowing about the differences in fq_codel, = even though I think you announced them somewhere)


That's = pretty good. The best you can do would be +10 ms (as you are adding 5ms = in each direction).

I agree, it took a while to get = things working right, but the results are, but with proper link layer = adjustments DSL works nicely. There is one test left to do, shaping to = <50% of link rate or below should eradicate the effect of proper link = layer adjustments (worst case is 49 bytes of date using two full = ATM cells worth 96 bytes of data, plus 10 bytes ATM cell overhead). The = hypothesis being that with that shaping link layer adjustments will not = change the ping RTT anymore, but I have not yet tested = that=85

So I finally got to run this test = on cerowrt.3.10.6-1 with simple.qos; and as I assumed, at 50% shaping = both the working tc_stab and the busted htb_private methods and even no = link layer adjustments give a very similar ping RTT of 40 to 45 ms to = Toke's German netsurf server. (In this artificial test both no link = layer adjustment and the broken htb_prtivate one also giver higher = average transfer bandwidth, just as to be expected from how the link = layer adjustments should work).
Since the tc stab mechanism, = unlike the htb_private link layer adjustment mechanism does not fiddle = with HTB rate tables directly, but with the apparent size of the packets = it probably should be the option to switch to for link layer adjustments = for cerowrt (and openwrt). The kernel already manipulates the apparent = packet size to account for the ethernet headers (and more), so a method = that simply fudges the kernels idea of the packet size a bit more seems = more robust to change, as regressions in this functionality will affect = many more users than the tiny fraction of DSL users that actually have = sufficient control over their routers.
So = keeping the hopefully fixed htb_private method as a crosscheck for = tc_stab might be reasonable (since at least in theory the kernel will = carry this functionality for ever), but I = digress.

Also I think it is save to say = that RRUL really is great tool for testing latency under load, just as = you intended it to be :) And a working link layer adjustment has two = hallmarks, reduced ping RTT under load over a real ATM link and reduced = apparent  upload and download bandwidth (reduced by all the over = head). So it should be possible to test linllayer adjustments easily and = quickly without having to have an ATM link at hand, by just putting the = net server on the wan side of the cerowrt = box=85

So the nest thing to look at is = the chrome tests that Dave = wanted...

Best
= Sebastian







I note that = the nstat utility (under linux) will give a total number of packets on = the link and a variety of other statistics (that I mostly don't = understand), which will make it more possible to understand what else is = going on on that host, tcp's underlying behavior (packet loss, fast = recovery, ecn usage, etc (ecn tracking was just added to it, = btw))

Does not seem to exist under = macosx, so until I get my linux MRI analysis machine installed and up = and running I will not be able to peruse stat...


So future versions of rrul will probably run something = like:

nstat > /dev/null # wipe out the = statistics
some_rrul_related_test
nstat > = saveitsomewhere

How to actually present the data? Damned if I = know. Also have no idea if a similar tool exists for other oses. It's = using some semi-standard snmp counters... might be possible to pull it = off the router=85 dunno

Sounds interesting and = challenging and out of my league :)


 

1) I kind of = prefer graphs get stuck on a website somewhere, rather than email. = Having to approve big postings manually adds to the 10 spams I have to = deal with per day, per list. 

I will = look around to find a way to post things, would google+ = work?


No tiffs, please? :) pngs are MUCH smaller, svg's show = more detail=85. 

Argh, it seems that in deleting = the hostnames I also changed the file format. I guess select copy and = paste through the clipboard is a bit haphazard, will try to attach = smaller plots in the future. (Just a thought the plots like they would = be small and ceps in postscript...)



We would certainly like to = add an "upload this test" feature to rrul one day, that captures more = data about the user's configuration and the test data (from both = sides!), but that project and servers remain unfunded, and toke's really = busy with his masters thesis... 

2) Test #1 at T+48 or = so appears to have a glitch - either caused by local traffic on the link = or something else. The long diagonal lines that you see are bugs in the = python-matplotlib library, they are fixed in ubuntu 13.4 and latest = versions of arch.

Ah, but you can install = matplotlib version 1.3 under ubuntu 12.04 in the terminal:
1) sudo = apt-get build-dep python-matplotlib

2) potentially = required:
= sudo pip install --upgrade freetype-py

3)  sudo pip = install --upgrade matpltolib

(I might have forgotten a required = step, so should anyone get stuck, just contact me)


good to = know, thx.
 

The choppy = resolution of the second graph in each chart is due to the sample = interval being kind of small relative to the bandwidth and the RTT. = That's sort of fixable, but it's readable without = it=85.

Is there a simple way to fix this = in netperf-wrapper?


Well, it kind of comes down to presenting = raw data as raw data. The academic and sysadm universe is in the habit = of presenting highly processed data, showing averages, eliminating the = 95 percentile, etc, and by constantly promoting looking hard at the = raw data rather than the processed stuff, I have hoped that at least I'd = be able to consistently show people that latency and bandwidth = utilization are tightly interrelated, and that raw data is very = important when outliers are present - which they always are, in = networking.

Ah, I realize that reading your = sentence again would have helped, I was under the impression the uplink = graph was under sampled-explaining the "missing bits", so went away with = the impression all that would be needed would be a higher sampling = rate=85 But you talked about the sampling interval,,, (in my defense I = would always call this the sampling period, but that does not excuse not = reading what you wrote...)


As you = noticed, you had a pattern that formed on an interval. I've seen = patterns all the time - one caused by cron every 60 seconds, another = caused by instruction traps on ipv6 - these turned out to be very = important! - I've seen other odd patterns that have formed on = various intervals as well, that were useful to understand.

And = you see interesting patterns if you do things like run other traffic at = the same time as rrul. I'd be very interested if you ran the chrome web = page benchmarker against the alexa top 10 during a rrul or the simpler = tcp_upload or bidirectional tests on your setup (hint, = hint)

Ah, so far I refused to install = chrome (mostly due to googles insistence to upgrade it whenever they see = fit without asking for my permission), but I guess you ask, so I will = try to do this (since the family is on visit for the weekend = expect nothing before next week though...)


An example of "smoothing" things that make me crazy = are the five minute averages that mrtg reports, when networks run at = microsecond scales. At least things like smokeping are a lot closer to = being able to pickup on outliers. 

So, no, I'd rather not = smooth that plot or change the sample interval (yes you can change the = sample interval)

Yeah, once I actuelly understand = you I am fully with you, decreasing sampling rate is not going to help = (unless we initially sampled way hove 2*nyquist frequency :) = )


I would like to have box plots = one day.  Those can be genuinely useful but also require a trained = eye to read=85.

I agree Box wisker plots are = quite challenging to full grasp, also they typically imply = non-parametric tests (as otherwise mean plus confidence interval would = be  easier to parse)


http://en.wikipedia.org/wik= i/Box_plot 


Moving to what = I see here, you are approximately 50ms (?) or so from the icei.org = server which is located on the east coast of the US (NJ, in linode's = co-location facility) (services on this box are graciously donated by = the icei organization that has been working in the background to = help out in many ways) 

The black line is an average of 4 streams in the first = and second graphs in each chart. So you can multiply by 4 to get a rough = estimate of actual bandwidth on this link, but you do have to factor in = the measurement streams (graph 3), and the overhead of acks in each = direction (which is usually 66 bytes every other packet for ipv4), which = are hard to measure.

Ah, so these ACKs will fill cause = around 38 byte of padding in a packet of 3 ATM cells, leading to 26.4% = increase in effective bandwidth used by the ATM stream versus what is = send out over ge00 (ethernet). Together with the small ping and UDP = RTT probes this explains nicely why proper link layer adjustments = decrease ping time as well as decrease of the TCP = rates. 


yea, you are getting close to ideal. Could you = re-run your setup set to fred's settings? The atm etc mods won't kick = in, but it would be interesting to see if you have problems converging = below 100ms=85

Oh, I did something close (using = htb_private with AQM active at my setting, but a shorter run):

This = basically hovers around 80ms in ping RTTs (but I get the same if I just = use AQM to shape the up and downlink without taking overhead or link = layer into account=85) But that might not be the test you deem = interesting, just let me know what exactlyy to = run.


 
So you are showing 6Mbit of raw bandwidth down, and about = 480 up. Factoring in the ack overhead of the the down, into the up, gets = pretty close to your set limit of 700. You experienced packet loss at = time T+6 (not unusual) that killed the non-ping measurement flows. = (some day in the future we will add one way ping measurements and NOT = stop measuring after the first loss) 

(There are multiple = other plot types. do a --list-plots rrul. You can generate a new plot on = the same data by taking the *json.gz file and supplying a different = output filename (-o filename.svg) and plot type (-p = totals

I regard the cdf = plots as the most useful, but ALWAYS check this main graph type to see = glitches. Otherwise a cdf can be very = misleading.)

Ah, for one I can really relate, = in MRI analysis the mantra to teach newcomers is always "look at your = raw data".


Outliers can kill you. Fact. I've pointed to frank = rowands talks on this subject a couple times.

The list of space = launch failures due to stupid stuff like off by one bugs and misplaced = decimal points is rather high. And measurement error - or worse, = measuring the wrong thing - can mess up your whole day. 

http://www.youtube.c= om/watch?v=3D2eGiqqoYP5E

 


So in this test latency spikes by about 100ms. Why = does it do that? Well, you have to fit 6k bytes (4 1500 byte flows), + = 122 bytes (2 acks), + 65 bytes (ping) into the queues, and at = 700kb/second that queue is far less than the default 5ms target we = start with. a 1500 byte packet takes 13ms to transmit at 1Mbit, so we = are ending up here with sufficient "standing queue" = to 

Frankly, it should, eventually, achieve a tcp window = size that will reduce the latency to something lower than 100ms, but it = obviously isn't. nfq_codel is "tighter", but who knows, we're still in = very early days of trying to optimize for these bandwidths, and, = like I said, I just killed the maxpacket thing which might help some. A = longer test (-l 300) at this rtt) might be more = revealing.


So here is my result against "an = unnamed netperf server in Germany" for 300seconds using 3.10.6-1 with = simple.qos and fq_codel. Ping times only increase from ~30ms to 40ms = (the same link gets ~300ms ping RTT without AQM, and ~80ms without = proper linklayer adaptation). (Plus you can see my Macbook obviously is = doing some periodically things (roughly every 15 seconds) that eats = bandwidth and causes RT

Excellent. If you re-run that test with = "simple.qos"

But all I ever tested was = simple.qos, I guess I should have mentioned that explicitly=85 Or do you = mean simplest.qos?

instead you can see = the classification classes, "doing something", at least on upload. On = download, if you don't see it "doing anything", it generally means that = your ToS values were stomped on in transit.

I would = not be amazed though if the whole classification would not work well = under macosx, my current only availablt OS...


 
Ts to increase a lot). 

to get = closer to an accurate value for traffic on the link, do the nstat trick = I mentioned above.

Good idea, I guess I should bring = up my linux analysis machine soon, currently no stat under = macosx.


Best Regards
Sebastian


 




Clear = as mud?



On Wed, Aug 14, 2013 at 2:28 PM, Fred Stratton = <fredstratton@imap.cc> = wrote:



_______________________________________________
C= erowrt-devel mailing = list
Cerowrt-devel@lists.bufferbloat.net
https://lists.bufferbloat.n= et/listinfo/cerowrt-devel




-- 
Dave = T=E4ht

Fixing bufferbloat with cerowrt: = http://www.teklibre.com/cerowrt/subscribe.html
________________________= _______________________
Cerowrt-devel mailing = list
Cerowrt-devel@lists.bufferbloat.net
https://lists.bufferbloat.n= et/listinfo/cerowrt-devel




-- 
Dave= T=E4ht

Fixing bufferbloat with cerowrt: http://www.teklibr= e.com/cerowrt/subscribe.html


= --Apple-Mail=_F9151A9D-F370-44ED-B4F6-E2B929A9037F Content-Transfer-Encoding: base64 Content-Disposition: inline; filename="htb_for_dave copy.jpeg" Content-Type: image/jpg; name="htb_for_dave copy.jpeg" Content-Id: /9j/4AAQSkZJRgABAQAAAQABAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdC IFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAA AADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFj cHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAA ABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAAD TAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJD AAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5 OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEA AAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAA AAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAA AA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBo dHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAt IHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAt IHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcg Q29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENv bmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAA ABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAA AAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAK AA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUA mgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEy ATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMC DAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMh Ay0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4E jASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3 BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDII RghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqY Cq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUAN Wg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBh EH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT 5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReu F9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9oc AhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCY IMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZcl xyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2 K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIx SjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDec N9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+ oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXe RiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN 3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYP VlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1f D19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/ aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfBy S3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyB fOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuH n4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLj k02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6f HZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1 q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm4 0blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZG xsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnU y9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj 4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozz GfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////2wBDAAICAgIC AQICAgICAgIDAwYEAwMDAwcFBQQGCAcICAgHCAgJCg0LCQkMCggICw8LDA0ODg4OCQsQEQ8OEQ0O Dg7/2wBDAQICAgMDAwYEBAYOCQgJDg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4O Dg4ODg4ODg4ODg4ODg7/wAARCAHgAoADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAEC AwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0Kx wRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1 dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ 2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QA tREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYk NOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaH iImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq 8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooACcDJ4FJuHqKG+4a/F+f9o/xmnwq8Yaz4b/aZ1vX/wBoqz+J+q6T4d+E P2OwuYtWih1qa2gsWgS2E6I1qoYzeYNgBdmwCKAP2gyM9aNw9a+VPiB+0neeHv2g9U+F/gHwTpvj nxZoml22oeIzq3i+10C0sFuQ5ghSSZXaadxG7bVXaq4LOuQKc/7Sr6z+yR4S+LHgXwlo2o2GrXM1 rqEHijxnZ6DBo88LvDLDLcOJFd1mjeMeWGDbdwODmgD6p3A9DmjIr89fiH+0HN8Tv+Cfg8V+Fbi+ 8FeJtK+LPhzQNettI8QR3SwSHXNPWWOK9tW8u4gmgmU5UgMkhVlU7lHbfDv4m/HLV/8Agpl8ePAt /wCENJ1L4b6Lqmlw210/ieOOTR7eWxaXzI4Ftd05mYBirSjYTgE0Afam4etGRnrXwd4Y/aMfwx+y z8Crnwr8OvGHjfUfH/jHVPD+m6bqPi8XN7DNC2oTGSS7uEG+PNq3BK+XGRjdsCnVi/al+Jl3L8Rt A0/9nHU7r4gfD4rN4y0o+MbZLOC2kg+0W8lpdmL/AEqSWMORH5ce0owZlypYA+3Ny+oo3D1r5K8T ftV6LHpHwtg+HnhuHxp4m8deGx4l06w1TXoNFtrHTcR5nurmUMEJeVY1jRHZm3cBVLD034KfGCy+ MPgfX7saQ3hvxH4d1uTRvEWjjUIr5LO6RI5R5dzF+7nieGaGRXXHyuAQrAqAD2jIx1o3D1r8xfit 8aLHRP8Agoj8dPB3xD/as1n4AeFvD/hjQbvwta2n9ngTTXMV4bpwtxbStMVMUHyA/wAeMcivT/CP 7TPjbw/+w1+z/ffEPwkus/Hfx/p8pttCubuHQopRApklu7iWbKWsYhMTlNrNulVVUnoAfde4Z60Z HrXxRP8AtkaXpfwN+IGteIPBIsPHXhHXNK0jUPDtl4mtbuyeTVZUjsZ11IbYltXLnfK6qY/Lk3Lw M9N4t/aG8afDr9i7xv8AF/4gfCOz0+HQmtXstP0PxlDqserQzTJEzRTpApVlL/dMfzHAB5yAD6x3 L6ijcB3r5f8AD37QHiCD9oTRfAPxa+F118KZ/EekXmp+F9QbxBBqcN2lmiSXUNx5SL9muI45Fcrl 0IDbZDiuK0D9rfVdT0DwR8QdV+Dus6B8CfF+t2+l6D40m16CS6zdT/Z7K4udOCB4YJ5SiqRI7r5i F0UE7QD7U3qf4gaXcueor4t8Q/tSeOLLxZ8c7fwp8BdT8X6D8KtVNt4i1UeK7e0FxCthb3zvbRyR kyTLHM2YSVXCoRJl9q7XiT9p+6l+LvgjwR8LPAdn491zxN4Mg8W2Z1nxVBoML2M7bYViMkcjzTnq UVMKMZbtQB9cbh60tfLPxB/aJ1Pwd4y8HeAtM8AWmr/FbWNAOuahoWpeLbXS7LRbRZFhZ5r51ZXJ lJjRYo3LFWJ2gZr0b4L/ABd0/wCMHwz1LVYtKfw9rujavPo/iDR2v4bz7BeQ7SUWeEmOaNkeORHX 7yuuQDkAA9f3D1oJA6mvmj4XeM/FGu/t+/tM+EdX1m4vfDnhqfQRoVi8carZC4sXkmClVDNvcBju Jx2wK8gg/aP8UfD74e/HjxX4h0vWPiWmjfHO38I6Do1nLDbzw2922nW8UUR2AOVkuWYByCxOC6jB AB97bh60ZGOtfLeg/tFXtj8SvH3hT4w/D6b4U6p4a8HN4wEsWuxavb3mkRu8c0geJEKSxumGiKnO 5SrNnjw3xP8AHb4o+MPFf7MN9f8Aww8T/Cvwj4y+IdlLpWoQ+KIrh9Qs3tLmZbe/gh2mEyxgSCMm VPkwxDAAgH6LFgOpAoyMZzXxP4s/bAfSNb8fX/hb4c2vi3wB4Jvrmz8Q62/jSxsLySS1AN59isZM vcCEh1O54tzxsqbsAnotW/aS17UP2jrP4cfCf4VTfEu5vfA1l4vstXk8RR6XZGzupXRfMaSJ2UkK pUKrli+CEALUAfW2R60tfNn7W/jLxR8PP+Cavxi8beDNXuPD/irR9Aa403UIY43e3lDoAwV1ZD1P VSPavT/iD8SPD3wp/Zq8R/EzxjNcR+H9A0g39+0Ee+VwqjCIuRl2YhQCQMsMkdaAPQ8gnqKMj1r5 Z8J/tA+L3+OHgPwV8WPg5qPwpl8cW87+FLz/AISKDVEmngh897O6WNENvceTucKPMU7HG/K881qn 7V9x4U/aG0jwj478FeFPD2jal4mh0CC7s/iLYahqsE9xMILV59MjUSpHJIyA7Xdow4LKAGKgH2Vu X1p1fGvxE/aH8WS6v8atA+HHwo1rxj4f8A2Mtn4r8TW+vw2M1petZC6MNlbsN1zJFFNDIx3xgFsK WYYr1L9l3VdT13/gnR8FNZ1rUtQ1jVr3wdYz3d9fXDzXFxI0KlnkdyWZieSSck0Ae8UUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUV83+Ev2rfgt448feHtA8P a/rUv/CQ3Mtt4a1a68OXttpWtyxqzNHaXskSwzttSRgFc7gjFc4NX9c/ab+Dvhv4Vw+M9c8UT6Z4 fl8bSeDVmm02cOuqx3MlrJAybdwUSRP+8I2bRuztINAH0DRXhvi/9or4VeA4viVL4o1+7sLbwCmn P4puRps8kNkL84twHVSHOMMwUkorKWwCKf4B/aD+GvxJ+KF94L8O33iG08S22m/2nHZa34dvNLe9 s94j+02/2mJBPEGZQWTONy560Ae30V8bfCj9pzTov+Cd/wAFfiT8YNYabxh41gMNtY6Hos1zd6nd B5SUtrO3V3bbGhZsAhVUkkDmvXtE+Pvw48RfArWviDot94g1LSNHvmsNVsIPDt62q2V0pUG3ksBF 9oWX50baY8lWDfdOaAPa6K8b8C/HX4efEG+8U2Ok6jrGj6t4ct47rW9M8R6Lc6Rd2dvIGKXDRXMa MYW8uTEgyuUYZyK8C1r9r3wv4n+J3wK0f4WatqzWvi/x1FYyXOreFby1ttZ0z7PdNJLYzzxokqh4 4TvjLfKwIBVs0AfcNFIfunFcQnj3w5L+0DP8MVv7j/hMYvD6a69p9mfyxZtO0Cv5m3ZuMikbM54z jHNAHcUV8+63+078HPDvw4sPFuseJbyz0G88a3fg63uP7JuZDJq1tLcQyW4RULcyWsqKwGHbaFJL LnlfEv7SvhzXP2VPjnrvw11LUbDx74F8MXF/caT4i0C4sLyykNvJLbSyWtyiM0T7Dhh8rbWGeDQB 9WUV85Xf7RPgzwb8O/hpH40vtb1Txx4m8Mw6tHovhzw/danfTRiGNp7j7PaxuyQq7gbiAMkKCTxX Rj49/Dm5/Z80L4naJqGveLPCmsXH2fT38P8Ah+81G6klBdWja3hiaWNkaN1cOq7SpBwaAPaqK8S0 X9oP4U638DvF/wARB4lm0Pw14Tkki8Uf27p0+nXWjvGiyFLm3nRZY2KOjqCvzrIpXIYV4vZftSWf jX9vv4H/AA88DXOtWGieINI1y+8QaZ4i8K3emX0scEFu9lPELmNGERZpgWUEErg4IoA+1aKQn5c1 85eL/wBqb4SeC/iz4q8C6pe+L9Q8WeG7eG51vTtE8J3+pSWlvLF5qTt9nhceVt6t65HUHAB9HUV4 DJ8WNF1741fAb/hEviJpVx4W8b6Zql9Y2dvo73S+IIobaGVJI7oELbCLfuIYEybtvBU1zGnftjfA nVdX0+G01/xL9guteOgnWH8K6gumW2oC4a2FtNdmHyYnaZdg3MASyc/MMgH1LRXg/jT9o74V+Avi 1d+Cdd1bXZ9esLGO/wBaTSvD95qEOjW0hIjmvZYInS2RgrsDIR8qM3RSR3/w5+IXhj4q/BDw18RP BV/NqXhTX7MXemXcts8DSxEkAmNwGXkHgjNAHc0V81eHvjJNd/F79oDxF4k1nTPD/wAHfhxJDpJu p4gPMu4bZbu/unk5PloJ4oVUfxRydTgV1Xgb48+BviDcXw0m38caPbWmlnU5L3xH4Sv9ItWtQQDK s1zCiNgEMRnIX5sYGaAPam+7z0r4q0/9lR7z9grxx8KfE2paRB4r1HxdrniPw54j0pW87Rbu61S4 1CxuI3ZFdZYWkj3beDtYAkHn1z4f/tGfDj4o+K7HS/Bn/Ca6lbahDLNpmszeENQttKv44xkvDeSQ rC6kcqQ2HHK5qDw5+0h8MPEvxT0PwfEfGmhaxrjyR6G3iHwfqGl2+qSRo0rRwTXMKI8mxHcJncVR iAQDQB89a7+y94/v/jL/AMLXvvC/7N3xM8c+IvDOm6f420nx1o8lzYR31lE0YvNOufszyxrIHw8L RgHapzkc7vi/9m7xpqNn8D9d0Hw3+z22seCk1RL/AMD3OjTW3hOZr/Z/pFvGkbtHPF5fDtEd3mSf c3Zr0Pwp8dIdLt/2jfEHxS8Qado/hLwL8QG0bT7kWhVktjZ2LxxbUy00zzXDKoVSzF1UAnr3Hgf4 /fDbx9rWvaZp19r2gavo2nDU9Q07xRoF3o1zHZHP+lhLuNC8IIIMi5CkYODxQB8yaT+yd8Rbf9nL 4leFdR8R/D59a8T/ABi0jxtBJpdnLY2Fva2lzpk0lqsCofLYLZSRoBuDfIzsCzY9v0n4dfE3wn+3 z4+8f+HJ/AeqfDzx0NNfXLfUZrmDVNOks7Z4CbcJG0UyuPLOHaPaQ3JrzfWP2vPC3ij4qfAfRPhZ q2qNa+MPHMdjNc6t4Uu7W31nTfst28kllPPGiSAPHCd8ZPysCOGBr6q8e+P/AAt8NfA0PiXxheTa dosmqWmnG6S2eZY5bq4S3hL7QdiGSRAXOFUHLEAE0AfL3gz9m3xh4c8B/szaXe634YluPhx461bX 9YMEkxS6hu4dTjjSDMYy4N9GTvCj5WwTxn1HRfhNr2m/HP8AaO8VS6hpDWHxBtbGPSYkeTzLYwWD WzmcFMDLtkbS3y9cHivRdW+JPhDRPjhofw81LUni8Uaro93q8EC27tFFZ2rRrNPNKBshTdKoBcjc dwGdprzbwl+1J8G/G/xA8P8Ah3QdZ8QBvEE0kPhvVL/w1fWema3JGjOVtLyWJYZ2KI7qFY71RiuQ CaAPn66/Y91y1+HvwF1W10/4NeOvHvgTwMvhPWNH8c6Q19omq2+Uk8yGQxNJbyxyoWWQREsrsrLz kfU/wV8Dal4B+GmoWGreEPhB4J1C81BrmTTfh1pTWengbEQM5ZEMspC8yFF4CjHFc5pn7UPwf1nx 54j8P6bq+vXc/h2/vrLxHep4evPsGjS2Su04urryvKhAVGYFmG4EEZDDNzwb+0F4G+I8V1H4Ui8d 2iPpEuo2Oqat4K1GzsriFVyJYpZ4kSUEMGChsuvIyOaAMzR/gn/xmn8fPH3iu38NeIPB3xA8PaFp UGlTxGaQLYx3qXAnR02bH+1Jt2k5wd2OK+e7z9jvxW3wx+HenXF98NfHmpfC7X9Vi8A2njiyl1PT 9Q8PXyoFsNQV4yyTwBIkSdPNIFuhP33Ue46D+0R4J8Pfsn/CHxR4y8a3fjbWfGVgh0abQfCV0t54 gkCb5JoNNiWSaNFXDMDkRgjc3Nb0/wC098FrT9miX4uXniuaz8EW+txaLqFxcaXcxXGnXslwtsIL m2ZBLC6yOoYOg2ghjxzQBw/h74R/EDQPgL4007Svhf8AsleG/EWtXFujaHpGgTx6Lf2iE70vnWFH mfDvsPlbUychsmvlb4sfATxX8Mf+Cdv7Supaje+DPBMfjG/0AaZ4W8DC4bRvD0kN9DG11AJwmZpT IjOFjRP3MYweTX3Z4V/aN+E/iyfxnbxavrHh+78KaUNX1u08TaDd6TNBYEMReBLmNDJB8jfvEBAI weeKn8CfHHwT8Wb19J8JWvjy1e501r2x1HWPBd/YWlxESAssUtzCscn3lZVzlhg4IoA8zsfg58WP Hn7SvhLxn8ctb+HsuieENE1Gx0TSvCUd0Dqdxfwrbz3l0ZwPJxCGVIYy4BlYlzgZ8+0X9mn4zv8A B/4bfAnxX4w+Ht/8D/BWvWF9Dq1pDdDxBq9pp1yt1Y2k0TAQQkPHCskqO29YjhVLnb9H/s++P9d+ IXwAeXxiLNfHfh7W7/w94m+yxeVFJeWVw8LTomTsSZFjmVeyygV7htHpQB8w6X8FfEun+Hf2r7R9 S0SSX4pa3d3+hskkmLRJtEtNOUXGU4YSW7sdm8bCOpyK858YfAL4k63+zj8OPhm/gz9m34haNoHg qx0eWfxpb3puLK9htkhlntZIombyzsBABifjlhnj678b+LdE8A/B7xR448RXC2mh6Dpc+oX0pPSK KMu2PUkDAHckV86fs6ftDa/8Sfg/44vPi74d0n4ceN/CHlXmvaXazvJDDp11aLfWlzliWwYWZX/6 aQygfdoA8s1X9j3X7Oz+EHiC1ufhh8ZfG3hLwOnhLWofito5vLLWLdZfOS4SUJLJbzxuXUNtfejb W6A19VfBrwRfeBvhNNpuq+E/hP4L1O4vpLifTvh5pRs9MXICqfmRGkk2qA0hVc4HAArwLQPjJ+0x 8QvgfH8Zvh98Lvhs/wAPLy3bUPD/AIX1rVrqHxFrFgCSknmKht7aaZBvjiYPjcoZgSccl8Sv23G0 Hwh+zT4/8A+HdP1/4Z/EO1u9W8R3WoeZHeaRplt9m+0SxqpwXh86QupDZERxQB6zr3wu+L/hL9r7 xx8VvgvqPw71GDxrpthb+I9A8ZPdW6RXNkkkcN1bT2ySN80cm143TB2KQw6VyZ/Zk8Wv+y/B4fvf FHh7U/iDqvxd0vx/4q1QQy29lLJb6rbXctvboAzBVgtkgj3cttBYjJNaPxY/aV13wd/wUC+Dvwe8 IeH9E1/Rdeu4I/F+r3Uz7tLF2JvsMcIQ4Msgtblzu4CICOtfYpxxQB81ePvgRL8Qf2qvFHibWb+x j8Ea98ILzwPeW0TsL1JLm8ExmQbdgQR5wd2d2PlxzXklj8C/2j9TvP2ftG8b+MfhPP4V+FviS1vR caTDeR33iGG3tZbaKSZXXy4ZArhjEpdWfneoUKdDQv2wPCfhnxt8adN+K+r6rFbeFfHc+mreaX4W u7m00bT9lv5L308ETRwgtI53yMPlGSABmuw1j9pu30P/AIKNv8F5/C/ibUtCbwXaaxFqukeHLy9d 7m4vGhX54laP7L5YUmXGA+4FhjFAHl13+ybrfhz4o+O7nwd8OP2WPiH4a8TeIbrXYrn4j+Gnm1XS 57t/NuYvNSGT7VCZWkdAzRlQ+3O0DH0H4S+E2saD+2tqvxHkn8OQeH5/hzpnhqDTtOhaEwz2txPK zJFt2RwbZVCKGJGMYAwT454W/bA8I6Hrfxdsfirq+qqvhfx5e6ZNfaZ4Wu7iy0WwVoxA19PBE8cI wxYvIw+X5iAOa+2rWeC8s4bu0niubaaMSQzROGSVGGQysOCCDkEdc0AeMftJfDLWvjH+wv8AE34X eG77StM1zxJo7Wdnd6kzrbRSFlYGQorNt+XspPNeS+Kvhv8AtB/Gf4I+LPhH8XrT4J+H/AviDQpr G41PwlrGpXWo2s4UNbypFcW0cbKsqIzAuMge9eqePv2jPhj8O/jNH8OtfvfEl344m0VdXt9F0Tw7 ealcz2jSvF5iLbxvkK0bbv7owT1Gc/Uf2o/glpXwQ8DfEW78XzP4T8W6wdH0W6h0m5lklvgsxNrJ CsZkimDQSxmN1DeYAmNxAIBwujfCb45+MP2hfhV4v+OXiL4aPpvw6W5utJtvCMV35msalNatafbb jz1UQBIpJsQx7wWlOXworwLT/wBjH4r6b8Nvh94EjuvgNHo/hHx7pfiGbxcNJnPiPxLDa6ol6/2y Yx4iuGVTudWkEjqATGrHH1Mnxy0e5+MumXn/AAkGu6T4a/4V/qXiG48J6j4Iu4NUmS0uI0e73OA6 bQSot9heTerLwMH0O4+Mvw+h+GPw98YDWZLrRPHF7Y2nhd7Wzkmkvpb0BoQI1UsoC7nckARqjlsB TgA8B8R/BP436P8AEP45wfCfxV8OrLwX8U521DUJPEUF0dQ0G/ksYrKaW2WIGOdHSCJgsjJsbcfm HB+g/gh4G1P4Z/sg/Db4e6zd2N9q3h3w9a6dd3FkWMMskUYRmQsqsVJHGQD7VyGr/tIfDHQficnh fX28Z6KzawmkjWb/AMI6hDo/2t3Eccf25ofIG6RlRX37SxABya4/Rv2mI7n/AIKJ/E/4Hah4V8Tm 08PR6Iml6lp3hq9nV5r5Lh5TcyqpiihXy49kh2q2ZOTsOAD6xor5xvP2qvgzY+P7nQZ9d1w29trY 0S68QJ4dvX0O3vzIIvs76iIjbq4lIiOXwrkISDxW74J+KOr+J/22fjj8MLvT9NttK8E2ehT6fdwl /PuTqEFxLIJckrhTCAu0DgnOaAPcaK8Otfihq9x/wUU1n4NHT9OXQ7P4e23iWO/y32lp5b6a2MRG dvlhYwemck84qX9oD4o6j8If2YtZ8WaFpdv4g8XTXdrpXhjSLhiseo6neXEdtawsV5CGSVSxGMKC c0Ae2UV4r8APijf/ABe/Zl0XxZrmmWug+LIrm60vxNpFs5ePT9Ss7iS2uoVLclRJGxUnqpB716j4 hm1y38D6rN4ZtNOv/EKWrnTba/naG3ln2nYsjqrFUJxkhSQOgNAGzRXzh+z78TviJ4/uPjBonxP0 vwXpfibwP42OgSN4XmuJLOdDp9leCQNOA5b/AEsqflUfL07nx3w7+1Xr3xG+P8GkeBvEn7P+h+G5 tfm03S9M8VeIZ08Qa7FbXBguLmCCIbYVZkm8lXDGUKrfKHBoA+8aK+MLj9pjxRpv/BXm4+AmqeGd FT4dvYWMNv4ijkk+2R6nd2tzdQQSLkp5bpZXADYHzBRkk0zwf+0v4v8AGf8AwU0+IPwe0rwroMvg TRtAu7jQtaa5kW41W+tJYYLmPcCY1hSeV4c7dwaJvSgD7Sor5Bm+LPx68AfG34V6T8XfDXwon8N+ O9ebQ7f/AIRHUbx77Sro281xGXE6BbiLELKzIEK53YKgkZ/gb9prxHrv/BUn4l/AnxJ4d0XS/Cum XD2XhXXLZ5TNfXkFlZ3tzBOGOxW8m8DptxuEb+lAH2dRXxv8Af2lvEHxo/bI+Mng1/D+i2HgDw9B Bc+E9WgaQ3WqwNcXFq80gY7AhltpDGVHzJg96+lviD468O/DL4N6/wCPfF11dWXhnRLY3WpXFvaS XDxRAgFhHGCzYzk4BwMntQB2VFeQn44fDUftUL8F/wDhJA3xBbw3/wAJCLJbaQxfYizLv87b5e75 S2zdu24bGOa4K4/a4+CcHh74a6kmt+I71PH+k3Op+D7Sx8M31zd6pBbNGspSGOIuG/eIwVlBK5bo CQAfTdFeEQftH/CO4/ZevfjA3iW6tPBlnfNp90bnSbmK+hvRMIPsbWbRif7SZSqCHZvYsMA5FeUe F/2oLHxZ+3h4l8MafeanZeAvD/wpfxHrOm6v4bubDVLO7W+2F3jmRZdht/mVduGyCCTkUAfZ1FfO Phn4+6X8ZPhfqWo/ASQ63qLaZHe6Tq3ijQ9R0/QrhXZQ3+k+SPMKgtlI8kMpBIwSOa+Fnxs+IGvf tU+IfhH4yh+F/iC+tfDCa7a+I/AWoz3Nhb7p2gFrdxy5aKYlS64c7lB4GKAPrOiviLxL8U/2m/A/ 7R/wV8B65H8BdfuPHXiJ7SS10e01OK5trC3hM97eAySlcRooUZGN8sYPXFaPiz46/GW++IPxlk+E XgfwNr/g/wCFc4tNfXXNRuIb/XLxLSK+uLax8tTHEY4JowHlDBpHA4AJAB9mUV8h6z+0T4i8Y+JP hD4U+A+keHNX8R+O/Ccni06j4olmjsNH0tREFaVIMySTSSy+WqqQoKOS3ADb/wAPv2jdO1Lwfa2n xNsYfBvju38fSeBNXsrAy3djFq4QSwhZwvyQ3ELwyRtIF5mRD85xQB86aL4T+MHjH9n/APZr+BGr fBXxB4Cu/AOuaJc+JvFc15ZNpMEOjgEPYPHMZZnuWjRAPKTCSy7iCAGz/Fv7NfxA8fft5fGPwfq+ gMnwI1TT9R8UaHqs0yCE69f6Xb6b5Kop3q0TLcXO/H3pTznFfpxRQB+Wul/CH40+Kv8Agkr8Sbvx 98P7yH45fELxnp+q+IfD3nQu3l2t3YWqdH8sL9kshIVDfxHvxX1r4r8G+Jbz/gp/8FfGtlolzN4Y 0nwVr1hqmpoyCO3lnksWgiYE7st5chGAR8pyRxn6VooA/MP4c/Cv4tfDL4L/ALGHj25+G+veI9S+ Hmhazo/ivwjZ3Ft/almuo7dlzAHlWKQxmJQ6iTJSTK52kHW1DwJ8fLr4Y/tC/FDw14T8XeCda8f+ PNFvU8JaXqlrbeIG0OyS1tr0rMshhhvp4o5tuJchBGN6Nyv6TUUAflj4W+A/j3xR+0h8ZTZeDfi1 4B8D+K/gfceGtJ1b4geMZdZvmv3u2+WXzLq4eBcMSEViCmW4ZsV1dvY/GTxdF+x54Sv/ANn/AMVe EB8OPF1hL4t1S9vLF7G2S10u7st9kYp2eWF2dWDbFIQqCMkgfpHXG+IfiF4K8KfELwd4U8ReJNM0 nxJ4rupbbw5p07kTajJFH5kixqBztXknoMj1FAHN/Dz4iXPj3xl8TbFPDsulaR4W8UNodhqpvBKm sGO3heeVFCjyxHNJJAVy3zRNz2HjHj+28d+A/wDgpHpvxa0X4ZeK/iT4U1X4dt4bu08NzWn2uwu4 r83UbSJcTRAxOjsu9WO1lGRg5H0B45+Ingj4XeDYvEPjnXrTw7o0t7HaRTyQu/mTyE7I1SNWZmbB wAOa0fBvjjwv8QfA0XiXwhqf9saJLK8SXItpYcujbWG2RVbg+1AH5d3+g/FHwR+z1+zy/ib4cf8A FwLj9qTWdePhVtQgbzormTXLsCKYnyyfKcvGWKhmCA7ckj1fxh4G+KPxc8YftH/ExPhf4h8EWuo/ BubwV4a0PVpbYanr10zzXDTukUrpGisyQxl3BO5zhQMn7g8Q6T4D8T634ZvvEQ0TUb7w5qo1TRnm uwGsrwRSw+auGHzeXNKnORhzxXSDW9FCgf2vpn/gWn+NAHw9ZeGfiR8Iv2pfB3xWh+GPin4i6Jqn wi07wvqtjoEtq2paFe2beaF8ueaNWgl3srFHJV41JGDuHAx/DP47eHf2VvCAn8OePLHSvEPxU1zx R8QvB3gDX4rTXLTT9Qlup7W2iulmjz5crwPOIZVZzuwSNyt+j51zRcf8hfS//AtP8aadb0bBP9r6 Wf8At6T/ABoE2flZYfs9/FrxD8FP2ttM07wJ4x8Ot4h1rw7rXgrTPHPio6nc6wNOEMz29zdPPMVM jQeWys5VAyjJAOPeY5Pih8T/APgpx+zz8Qrn4G+Mvh74N8LeHPENrqupeIZrH7RHc3cFrshKQXEh 8rMWFfJDMW4AGT9tjW9GHXVtM/8AApP8ad/bmi/9BfTP/AtP8aBnnXwc+JE3xa+CMXjg+HZvDdhd 6rf2+mxSXgn+2WlvdywQ3YO1dqzpGJVUjKhwMnrXyHo/jTxZ4E/4Kp/ta6loPwi8VfE6zvLPw5EG 8NTWguoriOwlKRTC4ljxC4k4dSwUh8jkV99rq+iKMJqulIvZVuUA/nXOaVpHgDRPiF4o8V6WNFsv EXiNrc63epeAveGCPy4SwLYG1OBgDihgfFvwl+BfxI+H/iP9iiy1vRI5j4S0zxVL4sm0+ZHtNGm1 GNJYbZSSCyh3aJSoIyhPAxVF/g98Q0/4In+I/h1D4J1BPHVx4vutQh0ZWiEzq3iQ3ay537eYcS53 Zx78V+hA1rR/+grpv/gUn+NB1rR886rpv/gUn+NFpdgPiS8T4g/Bj9qT9pLXh8Kta+IXhb4gLaaz pmt2N7ZpbWEkGnR2k1nqBnmRoYE8kSiRQ42yS8BsBu//AGG7a5s/+CSHwCgurY2kp8KQv5fYK7uy 49QVIIPoc12PxA+CfwB+Kfi1de8f+GfC/ibVFtktmludRkRZolJZY5USRUkQEn5XVhyeK9fs77w5 p+lWthY32h2djbQrDb21vNHHFEigBUVQcKoAAAHAAoA+N/AelWFvoH7Yfwi8SeCrvx+Y/GF1qs3h qB4kn13TdYt47hDGZHRBlvtMILOvzW55HBrzvSPhn8avG+hfEz4X6BF8ZPBXwV1r4Y3mkW1v8U9U tLy7sdWkwluLSaKWa5aERlxKZpGGNuznr+ge7wgPFUuuq/hldcltVtJNRDQ/aXhVi6xGT7xjDMWC 5wCSe9ai63ooUD+2NMP1u0/xoA+Z/hf40+Kk/wAF9E+HF58EfGfw58X6X4UOn/2zeS2E2g215b2v lxGJ47hpJYXkVSuIgdv3gtfIfh34YfGPV/iZ+zXq+t/Dv9oOXxr4d8Z2t/8AEbxD4v8AHou9KLi1 uYp5rKyS7aExtLJuVkgj8uMhQMsQP1S/tvRySP7V032/0pOf1pBrejbudW03H/X0nH60CTPz1+IP wH+JPi34T/tAwWOgaqt9L8dLDxjomnw6slhNrtjaQ6cXFvcA/uZCYZvLZ9uJI1JwMGrNj8FF+Jtt 8QhF4H/aR8HeML/4b6p4e03xH8TPFkd5bQ/bQqm2SKO7mY5YBmfbgKpwxLYr9AzrWjZ+bVtM/G6T /Gj+29G/6C+mH/t7T/GldrcbPz3jtfjD4yvP2PPDV9+z94s8HR/DnxbZzeLNUvryweztVt9Ku7Lf aeVOzywu8gO/au1SoK5J2/bPxa+Hml/Fn9mjxz8N9YO2w8RaRNYtIM5hdlPlyjHOUcK491rrjrej jn+1tNPf/j6Tp+dA1vRcH/ib6X/4Fp/jTFqfAXwi+E3xp+J/wm+OXij436Tc+A/ib4o8DxeANEW5 uY5zbWkFkyzXgMRIVbm8mllKjnaidDxWB8KPhLfqfg/4Q+IHwn/afj1nwpe2Dy3N34/iuvC9jdWK AJdRAXmXt8r8kYh3YYKUHNfo8uuaLj/kL6X/AOBSf40v9uaN31bTQOxN0nP60DPmL4Q+AtU8Ofsx fHbSfF/gK71Ntf8AHXim/bQTJEsuuWV1cymJQxcIPOhIVdzLgEbivOPJvhX4c+LulfF6y8P+DPDX xt8JfAqHwbqFrqugfEvU7O+a2u9iLYRabKs81xgfvVcSSGNVEYXHNfev9t6L31fS/wDwLT/Gl/tv RRz/AGtpg/7ek/xoA/OLwD8Mvir8LfDH7H3xIuPhp4g8V3Pg74c3nhbxZ4X0+e2OqaVJdfZ3W4hW SVI5MNAY5AsmdpUjdg07Ufg98UfE3wh+Ifi668B6lomrePfj/wCF/FkfhC4uLeW50zS7C70qKWW5 KO0QkaKykndUdsAqvJBz+jn9uaL/ANBfTP8AwLT/ABpv9t6Lk/8AE30v/wAC0/xoEz5a8f8AgTWt T/4KEeIPFl74A1Dxr4CufgXe6DeW0MsKDUriTUkkNgpeRcSPDvIJKr6sK4j4FaP8WNB/ad0PTfD2 hfGjwf8As/2fhmeLVNF+J+pWd69neK0Ys006VJprgqq+aJBLIYwqxhOc19t/23o3/QW03/wKT/Go LjVNCuLSaC41HR5raVCskclxGyupGCCCcEEcYp2C585fsoRtqvgL4r/EiIOuleOviXqur6RkfLJZ xsljDOn+xKtp5ynuJAe9ewzfDWwm+O8fj4+KfiEl6hBGkp4knXSTiMx82mfLIwc9PvfN1rptNuPC +j6DZ6Xpdx4f0rTLSFYbSztJIooYI1ACoiLhVUAAAAADFXjrWjnpqumEd/8ASk/xqObUZ8xfta+B vH/xa+EfhP4OeCraez0nxZ4ihXxb4ie3juLbSNNtQbpvNid187zpYoYPLHVZHJwF58iufgL8cNK/ bOttf8UeM4Pin4T+I3gy+8D+OrrR/DVvozaTAIZZbG8ZFlbzdrvPDu5ZBKgAIJI++P7b0fdg6rpu cZ/4+0/xoXWtHB+bV9Mzj/n7T/GqFc/Pi0+NHxS/Zg/YL0fwL8Qfg14j1DxJ4UtLbwzpfi+1vLNP C99lha2N5cXBm820gIMRl8yLMZ3cng1P4a/Zh1rwne/sd/DvU7BvG/g/wx4L8U6T431mDalsZNSt IQwwWDbJZGmVdoPC84r72v7vwxqml3FhqV3oOoWE6bJ7a6likilX0ZWJDD2NWIdW0GC1ihh1PSIY o0CxxpcxhVUDAAGeAKTYz8/tO/Zg8c/DzTvgsJ9XvPit4qt/i9Yar4k8RJbJA0GlWem3FjZqys+d kMIhU7clpJHbHzGv0YJGevIPSsttY0d4yP7W07kYyt2mf5188L8CvBHmlv8AhcXxq65IPxQvCPp/ rKNQuec/8Kv8YH9kb9tnQv8AhErv+2vGmua/ceH7bMYk1ZZ9Nhht3X5sfMybBuI+7zgVHo2h/EL4 e/tl/C/xvdfDfxd4m0G7+Cmm+EtRm0X7NLLpWoQ3gmcXCPMjCPbIfmQPyre1fZyaxoyRhf7X044A GWu0JPHfmpP7a0cHP9q6b/4FJ/jRd9gPznj0740eFPhx+1d8P7X9nzxP4muPiL4u1l/C+rWd3Yx2 M8V7bR2yzXzSTq8UaEFshGJjUADPFfd/wu8KXXgT9mz4f+CL68XUb3w/4csdMnukJKzPBAkTOued pKnGe2K6g63o3I/tbTAcf8/af414l4l+EvhDxR471HX7n4p/FHS7i9cO9ppHxCubO0iwoGI4Y3Co OM4HfJ70Ju+wXPB/GPijxB4N/wCC3+qa7o3w58QfEW0/4UnaQXsOgSW/9oWobVrlkZI55I1kRihV gHBHynBGcc34U+C/xNXT/gVrmveCZdMurn9oPVvHeu6GlxDKPDtldWWpiASlWKNIHkt2fyy2JZWw SAWr7E8KeCPh14Q8Swa/Z6j/AGp4pTRV0aTXtY1xry/ns1nedYpJZHO8LJI5BIzzjOK9HGt6KBj+ 19L/APAtP8aYHgWr+DvEl1/wVd8I+Nl0W5m8HW/ww1HS7rU8p5SXUl/bSJCRndlkR26YwOtfO3wV +CnxL0T9svw94K8UeGbvT/gf8GrjWb74e6pNNE8Ory6lIfsiIgYuv2G1mubcMwBO4nnINfoN/bmj f9BXTcev2pP8aDrmjdtX0v8A8C0/xoA/I34x/Cz4+eNvgz8UtC1j4e/Hvxn8VrjxVLPYarB48+ze E20tNUSW0+zWSXaxu6WgjXynt9xkR2ZicMfsrTNP8aeBv+CofxS8ST+APFniDwd8QtB8O2djruj/ AGeWDTJrH7dHMLpXlV0H+kowZVbIz6V9Tf23o7H/AJC2m5/6+k/xoOt6Nn5dX0zpxi7T/GgTZ+VP h39njVvDnwP1P4H/ABH+Gf7Tvj2wOrXcTXXhXx5FD4d1i1mvZLiK4KPeRGA4dTKhjyHVtu/gn6Eg 1Hx58Kv+Ckf7QHiv/hSnxR8e+F/FmmeHI9H1Pw1DZSxs1la3CTq/nXMTAhplHTnn0r7T/tzRuc6t pnv/AKUn+NA1zRs/8hfS/wDwKT/GjUZ8Qah4h+IOg/8ABR5PjLF8A/jBr3hrXfhJZ6T9l06Cwa80 +8j1O5maCdJLtVVvLZWyjMuGHOai+JXh342/tD/tF/Ba48MaZ4m+BPhTwhFeeJrnUPFeh2l+8mrZ aytbY2yXDKxSJ55w24qN8Z+8vH3N/bmi/wDQX0z/AMC0/wAamg1TTrmfyra/srmTGdkU6s2PXANA Hx98Afh38YPhJ+2R8W9K8aasPH/g3xvBbeKYfFFjo8Wm21rqyqLS6tTbpIxVpIoreUMPlJVyTuJz 9eaxfSab4U1LUodOvtXmtLWSdLGyVWnuSilhFGGKqXbG1csBkjJHWuX8d+GNL8W+CRpOq+I/Enhe 1NwsgvND1yTTLgsuTt82Ngdp7rnmuG8GfDfwj4J8arrln8TfiHr0ywvF9k8QeO59QtSG7mKVyu4Y 4PUUAeH/ALOGreO7b9pX47J4n+CXxU8GaT488dv4g0vVdXhsRbW9uuk6fa7J/KuXZZGktZMBVYYK 5Izx82P+z74/8OfsRePP2V9A+B2o3XiXVvHNxqGh/E+KSxXS4IJtT+2QalLMZRcrcW0JEewRly0Y CHa2R+sK63ooH/IX0v8A8Ck/xp39uaL/ANBfTP8AwLT/ABoA+HfFvwD8b+P/ANrD9pu4gkufBo1n SPB114G8YSwrPFDqulPeTeaIlcMwjdog6ttDLIQM81P8Pfgl4l+EH7Y/w9u7LSNW8U+G9A+Dd/Y6 rrsQjDanrM2pLeT8M4PnTyNLIMjHzYLCvtv+3NF/6C+mf+Baf40f25ov/QX0z/wLT/GgD4I+Et38 Q/Gn7WNp8Vfjn8Evi3pvjBbuaw8F6a9taSaL4KsZCUaUutyTNdTqA0s+wlVYRoAoYuzWP2cviJ45 8a/tL3Ok6pN8LfFl58ULLxB8PfF81st0IlXQ7SxuJkjVwSGQ3cPzYIJ3Y4FffX9uaL/0F9M/8C0/ xpP7c0X/AKC+l/8AgWn+NAHyf8Gfg7f/AAv/AG8/GaaT4eutP+Gtn8L/AA7oGgaixTy7iSze781M A7t4DozEgAlyQTzj6a8c+FrDxz8GPFvgvVU8zTNe0e5026XH/LOeJom/HDVleMNO8OeM/A1xoN34 u1HRIJZEc3eg+IDYXalWDALNGwYA4wQOo4rhfCPwx8IeDvHVtr9p8UPiRrc8MboLTXfH1xf2jhlw S0MjlSR1BxkHkUAfnAnwK/abX9hZ/iRJ4IlP7SS60dEXTIrqITvog0g6Crebu24AZr8c5LY719qR fBzVPC/7d37L82g6DLc+BfAvwz1rQbjVUCKlrM40xIFI3bt0iwSngHockZ5+r11vRVH/ACF9L/8A ApP8ad/bmi/9BfTP/AtP8aAPz58VfCL4ofYvi14m0jwTe61e6V+0RY+OdF0A3UEZ8RadBY6dHKYC 7hFk3JcNGJCmZYRkgEGtJ9E+KHxE/bi+K3xEuPg74p8E+GdR+Alx4Z0aTWJrT7Zf3xu5ZfKdIpnE ZPmYQM3IUnIyBX3n/bmi/wDQX0v/AMC0/wAavwXEFzAJbeaOeI9HjYMp/EUAfOfw0tfEHwo/4Jof DDSp/hv4g8Qa5ovhTTrLUfCmkfZftYfykSZQJZUiYqSxYb+QDjJwD5F8Hfh7rEH/AAUBuPH3gP4L al+zr8KV8KzWHiDR7qGysl8Tai0sRtp1sbSWSOPyI1kBnYK7+Zt5Civu+igD5b8K+BPFPiP/AIKd /EX4t+M9FuNO0DwzoVv4W+Hi3JQ+fHMBdalfIFYlRJIYYQTgkQMMYAJ8q1XTvjD8KvG37Tfh/wAK fCPxH8RYfiVq8mueD9Z0y7s4rO0urnTbaxkgvzNMjxJHJbiXeqPuRiByAK++aKAPz80n4ReOf2d/ iL8AfFvhbwlrPxQ0Tw58L28CeLLHQpIPt8ZWSK4guoEnkjWSLzhMrDeGAZDg4OHr8BfHnj39g79o SbWdKm8C/FD4ieL5/GvhzTJLmKafQb61jtE0kPIhaMTf8S62d9rMqNI4BYLk/oBRQAUUUUAFFFFA BRRRQA0kivyk8eeLru4/bv8AhV498a+AfijZ+KD8Y/7K0aCTw3K8Fpo1vp2qRRR28q5WVriRjePt 52lQ3EIx+rhAPXmvOfF/ir4a6P8AE74feG/Geo+G4fFes6nKfBtlqMSyXE13FA5ke2BBKusTuC4x hXIz82CAcf8AFHSfh78SvBWgQat8SE8JppHi2OfT9U0vWLaCaPUrUSZtw0oZfMUeZuTBYbTxwa4j 4DeNPEfib4e/GnRtW8VzfELSfCfiu70fw94wZIRJq9stnBMxZoFWJ3gmmmti6KMmHkbs16h8QtL+ C3hr4Kaxe/Ezw/8ADyz8Bx351DUV1nR7eSze7mkx5zRshDzySPjOC7M2OSas+Dde+HPiP9mmW++F Vx4dn8ER2dzb2SaJbrBbW7R71kiESqvlMrZBQqpBzkUAfJ37NPwS+EPir9j/AOE154o/Zr8ITXd5 4Psrm68SappmmXH9oStAjNK213mLOSWy6g+uK+jh+y9+zgVz/wAKM+FJ/wC5Ztf/AIij9l0A/wDB OL4Gcf8AMjaZ/wCk0de8UAeD/wDDLv7OH/RC/hV/4TNt/wDEVxnxC/Zt/Z60z4F+Lr+1+Cfwvtrm DSpnilj8OWysjBDgghOCDX1Ufu1538WTj9m/xiB/Fpzrx/tED+ta4dXqxT6v9TzM7qSp5diJx3UJ fkzxv4ffs3/s8at8CvB+o3fwT+F13cz6PbtNNJ4btmZ38tdxJKZJznmutP7MP7OAbB+BXwq/8Jm2 /wDiK6/4Q5X9nPwvCx5ggeDHp5crpj/x2vG/2k/E3iLSfE/wwsPD+q6lpKLrK6nqj2cxj821hmt4 mifHVGa5XI6HFZZlVjh5Tk9k/wBT1OCMtq5vTwtBTSlOCd3tpC7O2/4Zf/Zwxn/hRfwp/wDCZtv/ AIiuV8Ifso/AvTfA32XX/gt8K7vUft97J5jeH7eQ+VJdzSQrkp/DE0a47Yx2r6I03W9O1rwpFrOl 3cd5ps8bPDMvAcKSD156g1x3wm8dt8Sf2b/DPjmS0isJdUtXle3icssTLIyEAn/drNziqipServ+ Fr/mjejhKtXCyxMFemnGN79ZKTX3qLfyPwC/bs+HXg/Qv+CkWqeFfAngXStHsotCsRb6VoOnCJXk eNnZliiXljkZwCeK+u/2I/2QtF0X4pfFGL4tfCez1fSU0fRm0eTxPoqTRPLcQNcXCxeYCN0bMkbY 6EY69OZ/Yg8H6B8R/wDgpX47+IfiGC61LUtGtRrelTPcuNlxdTON7gH5/kd8BuOfav2wCgpgj8a/ oTjvjyjhOHsJw9hsPG6oxVSbS5uZyUtHvtGz115n2R4tbhyrgs2rutUu4y0XS1v+D+CPzD/Yv+BH wU8U/C74tv4l+FPgHX7nT/ifq9lby6hokM7wwpN8kSllJCKDgKOAK+y/+GXf2cP+iF/Cr/wmbX/4 ivCv2Fjjwp+0LB/zx+Mutof+/i192V+Y+INOMOIcSoqyvH8YxZtl7bw0PQ8GP7L37OAP/JC/hT/4 TNr/APEUf8Mvfs4Y/wCSF/Cn/wAJm2/+IrA/aj/aIh/Zt+B+keL38Kz+L59R1mPTYLKO/FqAzRSy l2kKPwFibACnJI6DkO+Gf7WXwK+LGv8AhvQvCnjuwn8V6za+dBockUq3ETiPzJInJXbuUBs4Y5wc ZrzYcJZ1Uy1ZlTw0pUG5LmSuly/Fe17Jd3ZeZbxtBVfZOaUuxD4d/ZU+A9jLrp1P4K/Cy4E+sTXF lnw9bP5cDBNi8pxjB+XoK+Bv2u/g/wDCTwt+3l+zdoXh/wCHHgzRNJ1HWrQajZWOkxQw3SG7ClZF UAMCoIIPUV+yGBmvyy/bl8O+Idf/AGyPhLL4TVpfEmnW1vcafFlQDJ59y247uPl8vd74xXHksIPG Jz2UZv7qcmvxPr+Ea9CGYxjXkoxn7t3snNqN395b/ZG+A/wX1/xJ+0tYeJ/hb4B12fSfi5qNvYC/ 0SGb7JakI0cMe5TsjGThRgD0r7Gn/Zm/Ztt7OSef4H/CaGGNS8kj+G7VVRQMkklOB7180/sS6pcz /Hj9oux1CcTaje6jpOtXEgAHmy3Wno8rYHT5iDjpzX1L+0D4x0Twl+zB4pj1a8Fpc6zpl3p2moVJ M1w9rKwXIHHCscnjivS8QMRh1mdWtTa5XCnLTbWnB/gzyctyHGVMfHAcrdSU3HRXuuZ6rytr6Hw3 +2r8Ivgz4M+B/gnVPBnwu+HmlTXWrSGSfTdFgiE0JtJRyyKNygsrDtkA034D/Br4PeIv2zruw1T4 VfD+/wBCm+GWlXUdpcaJA8S3YhtWlkClcb287Jbqe9d94g8L3Hxf/Z3/AGYfCUUsET3fh+ZpfPyF AtoIY5AcA84DD61gfs46vBp3xv8ADes6hdQ2tqmnXunXkzvhY1t9N09+T2C+S5/CvyR1K0s0VXm9 yfK192v33X3H9BwwOCpcF1cHyJ16Ptoydtfeqe6//Kc0vU+vv+GYP2cSM/8ACi/hUf8AuWbb/wCI rltF/ZQ+BVv4+8Z3eo/BX4WTabe3sD6VEfD9swhiW1iR1C7PlzIrtjvnPevW/DfxT8EeKvC+gavp OtxPZ61fSWWmieJ4ZJp0V3aPYwDBtkbuMgZUZ715/wDFf496d8Kf2gvgx4DvtBvdWn+IWsT2MV5D OsaWAiWIb2UglyXmjG0Y4LHPAVvv8swGIzGqqWFjzyabsrbRi5N/JJs/nHG0amDk44iLg1pqrdbf np6l/wD4Zf8A2cOf+LF/Cn/wmbb/AOIr5k+J2gfs1fC/9sfwH4C1f4AfC+50TxLpyRwtbeErVpEv ZrtYYSzFQBHtEpI68Z5IxXqPir9qOPwp8cPEvhe50WCW2h13S9M0KYyEG+Etx5GoSnHAW3P0/WuQ 8eeKfDfjrxr8avEui3VprMXhG28PWcdzGm4QXEGpyzTqrEdRkAke4zXzOLzKM4uNGdpJ6/Lf8j5n HZtCdNqhUXPF6+ivf8Ez2a6/Z1/ZjstT02yu/gl8Jorq/maK1j/4Rm2/eOqM5A+Tsqk/hWif2X/2 cRGW/wCFGfCrp/0LNt/8RW746uhF8aPhFESf32sz8ev+iS/4160/Fs+OAFP8q+hnTcYwff8Azsdu Fx3tqleH8jS/8lT1+8/Mf4c/B34M6z8TfEWmX3wo+Hd3aWHiyxjgifw/bnZFNHPuQnZkqWUHByOK 2PAH7P8A8Fb7/goj8QbS/wDhT8Przw69peLp1hJokDW8TQSWMZKIVwpBaTkD+I074N6qqfHb4qMz ZW117w9Mfo32sH+Vdv4S8RWfgW98EfEnxPNK0Wr+ENc17VTBEWKGe7s5/LRe4UOqjPJ2+9eRjqqT hK/wyl9yk4pfij1vB6VXF5VjNOeVWEYJPV3a5tPO8LfPzPSND/ZQ+Bdr468Z3epfBX4Vz6Ze30Em kxHw9bN5MS2kMbrt2fLmVZGwOuc96+WfjV+zv8IbL/gp7+zbaaN8NfAWk+GWe5/tnSrfQ4Ut9Q8x XVPNQDa+0rkbgfavvjx58WvBPw20DwlqXirU57Wz8SazbaVpL29q8/m3Fx/q87AdqYGS54A5r5s+ PN3Hb/8ABRH4GeYyiRbm1Kn1BluQf5Cv0Xg6lVpYt1JQ92dOqk2rp+41p6N79HY+a4mx/wBUw0Xz WfPBP5zSsX9L/Zx+At3+yVrOrL8G/hsdRlstRlhuf+Eet/MQ+ZNs2ttyNoAx6Yqp8JPgB8Add1vx 2t/8GvhneJb6ha+Qkvh63YRK1lAxCgrwCxY8dya+hPBlsZf2OtOgIwbjQ5WI/wCugdv/AGavOv2e Ljzdf+IAJy3m6c5/GxhH9K8T2cfZVtNn+qPnfrlWONyuPM/fjrrv7kn+bOp/4Ze/Zwx/yQv4U/8A hM23/wARSH9l/wDZwHT4F/Cr3/4pm2/+Ir2ibU7K31q006a7hjvrpXeCFmw0ipjeQO4G4Z+oqCPW LCbxXd6LHcB9StoI554cfcSQsFOf+ANXkcjPv3WgpW5lvb5n4Df8FH/hp8PPBH7W3gzS/BXgrwx4 U0+bwfHPcW+k6fHapJIbu5XewQAFtqqNx54FcJf+Ffhyf+Cd+qag3hDwxFrLaF4YtoL9bGMXIuZL 3VDcP5mN2XQwBjnJCL6V+hHxy+GPhT42f8Fp7bwV4y06XVNIs/hO9zHEly8JSdZ5WjcMhB4L9Ohr 8orjX5v+GHr2Jy0hi1bSIlXs3ktetj9a/ori6GFzDgPJsqwtO2JVSleVkm/bqso67tq3XyPzPiKv icNiKtRT92p7q12aSufs5+yn8AfgR4n/AOCfXw68Q+I/hB8NtW1a6s5Xu7280CCWWQieQZZmUk4A 7noK/Lb4z+C/hpqfwV+OPjjwZ4e8MRaOPjJBp2jXWl2qJHHaLYTZjhKgYiZirYGASAa/XT9mbVU0 v/gi9pOsIxEdl4Z1K5Rj1Cp58gP5V+d3jXwbpGgf8G4Pw11ew0+K2v8AXPFqanqc65JuJS08Cucn jEccagDAworyvAPAUcJVi8ZHmm61GjZpNJ+/Kbd/8Fvme9XqVZ5ZSu9fZuT9VFf53P1I8D/syfs+ T/BfwhNf/BP4YXd7Jolo1xNN4ctmeRzAm5mJTkk5JNfl1/wUh+DPw/8ACfxv+Eem+APAHhvwwNX0 25ia20TT47UXMwniVMhAAW+cAE+tfuV4Zi8j4ceH7f8A55aZAmPpGor8y/2+tIGrftyfse2wP/H3 4gnif/dW705j+hNeT4QYqhS40hUrQU4pVm01dO0Jy/Q9vO4SlgXGLs24rTzaR7J+zP8ABz9nf4m/ sIfDLxjd/BP4X3Wo3OjRwahLN4ct3d7iDMErMSmSzNGWP1r3X/hl79nDH/JC/hT/AOEzbf8AxFeB fsH+J9K0b/glD4Eu9avodOtf7evNPjklJw0smoPFEgwOrO6qPc16/D8U/Eem/txeKvCetPaP4ClS K00icRBZLW/SxW8kjds/MkkZcjPKmLH8VfAcd0aGA4kxuGp7KtOKXlzNL8jWlmEKeGpTqP4kvxVz M1D9lv4AW/xe0TV5vg58JbXw5FpN3aXEEmg2yrJdSz2htztKYYhY5wD1G/H8VLr/AMEP2XNDfV7a f4H/AArN7Y6LJqrRf8IvbYMKErnOzGSwxiuLvviDq+r/AA88M6PrF4194kPjC11C7VIziCy86OZD kDAVd6IMnJxXT/E6++1/tCeMNLjJDSeBoLQDPUyX0f8ASSuallUozSn5/mv8z4jFcf06uFqVMMvh 5Vrvdxk7PzTjZmRafA34A6t+x+/jCf4H/Cq21Obw/LdO0Phm2TZKI25X5OORXhmifs/fCST9iX4l 6nefCrwKda01ls7e9fRIfNDwFFd1bbkZYnJHXmvrcYh/4J+ajbA7THaXFr9P9KePFeh+KPBcGo/A rxH4W0CG1sH1OJyNxOzzXbezHqeTk041KdK8WtHP7krGdXC47MIQqxqO6w2qT1lOpF/k46Hmfh79 l/8AZ6PgXRftnwR+F890LGETSSeHLZmdtgySSnJzk1tf8Mvfs4lufgX8Kf8Awmbb/wCIr1nUtd0H w3Y6cNa1nSdEjubhLOzN9dpAs8zDCxIXIDOcHCjk+lbqHPfNeRN3k2fpOHg4UoxfRWPCG/Zf/ZxH T4FfCk/9y1a//EV4HJ4B8GeCf+Cgn7PkvhH4G6X8JpLnU9aguNRsLfT4hqMQ0udhE32aVnK5AfDq ANo6HAr71IBr5z+KwH/Dbf7Lw/6jutf+me4qTY5/4/eFfDPjX9qL9mjw14w0DSfE/h658QavJcab qdqtxbysmkXLIzIwIJU8jPQ15Rrsf7GPhz4rWXgrU/2aseI76W7TTbaH4QTSi++y8zvC6wFXRRht wOCCCM5r3f4rf8nt/su/9h3Wv/TPc1ifE8Af8FQ/2WDzxp/in/0jtqAPK9St/wBiTTvEeoaOnwG0 TWdV0y2hn1u20X4UzX76P5saypFdiG3byZvLdXMJ+cAglRkVX8RSfsL+GfEWsWF38EfDeox6Totn rWrX2k/C6W9tbCyu0eSCeWSK3IRWSN2OeVCEsABWj8JPit4A+A03xU8AfGbxTZeCPGrfEHWtbjl1 eN4/7dsr67a4tJ7V8H7TthkjtyqZZWhKEDAzhjwXr/xf/wCCgH7R+n+HfiZ4j+HvhXWvAfhSLVYr DRLZry9trm31PC7rqNmtnCFx93I3nIBUUAfQmk/s6/swa74W0zW9I+C3wi1DStQtY7qyuofDds0c 8Mih0dTs5DKQR9RXKy/B79luH9pPT/hg3wA+HR1u78Nz67HcjwvZ/Z1ghuIrdkJxu3lplIG3GAec 8HX+Ovh3WfA3/BLDxp4T+E0Gt2d1oXhGPT9Jj0t2e+js4RHHKIWHzGYW6ybSPm3cjnFfDpk+HP8A wvv4kP8Asa3MlxdL+zvqh0w6FLcSWwv/ALZb7Tb+aSPtmzG/b82/yt/zUAfoJ/wzD+zhn/khfwpz /wBizbf/ABFKP2X/ANnH/ohfwpz3/wCKZtv/AIivh7wf4W+E/j74uWngb9mu8uZPBGv/AAl1mx+J 0kE9y8UN7KlummyXhlPy6kJWu2Y/63Ctv4214gfFXjbxt4P074o/8T231D42Ffg5OGZm+ySQR2dv JOU6Jie31sl8DIkX0FAH6nf8Mw/s4bgP+FF/Cjrz/wAUzbf/ABFcPo3wf/Zb1v4/eOPh1a/AD4dJ rHhbT9Nvb64k8L2YglS++0+UIyAWLL9lfdlQOVwTzj5v+JXws8F6143/AG7vEmo6Zcy6t4N8K6dc eEpI76aIaLcWvh8zwz2yowEcweOP5wN2EAzgkGD4ial4k1Gb9onVre41xo7zwf8ADafxZNowkW9/ siS6vm1VofK+cN9lNx/q/mA3YoA+0D+zB+zh/wBEL+FP/hM23/xFA/Zg/ZxwM/Ar4U8nt4Ztv/iK +H/+Em+HHhrS/wBonVfgToVj4z/Z4i8G6PHqVhbXd2vh9damvpY55UePLiOO0aGW68jPCDcNxNeb +Htav4Phf+1b4b+Gur6DeeCU0Dw3qVwvwws7+DT0tpb24i1aTThJLI7Sm0icO8BALR8AODQB93R/ CH9lp/2nZPhUP2fvh6Ndj8Lr4hN3/wAItZ/ZTA101sE3Y3eZvUnG3G3HOeK6f9mnRNH8NeAPiV4f 8PaZY6JoWn/EjWILHT7KERQW0fmqdiIOFXJJwPWvnL9ng/BH/h6z4oHwAltJvAg+ENnk6ZJM+mCf +1Jd32cuSuduzzNnG/O7591fUPwE/wCQf8XP+yn6z/6MSgD3uiiigAooooAKKKKACiiigAooooAK KD0pM8ZwaAGtyw71+UnjzxfeT/t3fCnx7438AfFCz8Tt8Y/7K0S3k8NSvDaaNbafqkUSW8qkrI9x IxvHxzsKgj9yMfq03NeI6h8YvgZf/HnTfh/q/irwtcePLDVtmm2WoWxLW9/5TgLDK6bFn8t3UBG3 kMwHUigDzv4/+INBuvFH7PWunWdHn8GaR8X4oPEt4buM2tnILDULeJLhs7VZb2S2Ta2CshToQKh+ Dtzbal8af2uta8PzW914Pu/FMC2d1bEPb3F3Fo1rHePGw4YBwiMVJG9HHUGvXfiDqvwd+G3wh1F/ iBa+E9D8G6zqflXttcaQJrfUbu5csQ8CRt5skjAkkqSxGTmrHgrV/h5rX7Ntzc/C2DSbXwXFa3MF lBpmltYW8RUMHVYSibfmz0UAmgDzX9lDWtcuv2FPgrp114M1rTNPi8D6eItVmvLR4JgLaPaVSOZp BuHI3IMd8V9QD7ozxXhP7Lv/ACjh+Bf/AGI2mf8ApLHXu9ACHpXm/wAWf+TePEo9YY1/OVB/WvSa 8l+OV9Lpn7KvjHUIFV57e0SaNWGQWWVGAP4iunBxcsRTiurX5nmZzDnwFePeEl96PHP2bfG0fivx x43SznuW0UBJtMilJACGe4LEDOBncucVmftHG4fxn4o+zjzJLP4XXV5CAejrqdk/HpkRV5h+yVDJ Zfst/D74h299NbbtduNG1iHyxsnje4MY6jI2ybCMY6mvePiXHbXX7RHjeK+TdaL8I5Ub0/eXkn9U H5Vz5ry4tU5R15+X8j1PDynieHa+Nw+LXvYR1f8AwGMrx/BW+Rz3wO+IFin7AcFzqeoQ2t7JLqtt pkUhw8xh8+XYvv5aM30FfCmofHH4m+AP2MfGXwz8DSp4cHhSztZrzXTKHuLgan9ndIoBjELI1xJl stkDjFdbq2pXHhOS48FOrxaV4X1DXrqd8kGLzoDbpn1ybiJR/vZr558eyX+uft9av8EbJJVg8UeL fDkFyIj832W3iVZuezKUyPoDX1fB3C2NzvPVUpKP7mPtW3qlFWk7rzcdV2ufW8H8Q8PZTkFXC4xS cZVHCMWteaEuWLj3tSm2m9ObzSPXv2MrrxL8NB8RfGb6S9ta3ep+F/DaT3ceY5GluZIrlEIPzMgk jJPqR71+1KkFRjpivy+1fQ4/hl+zrrPgxdRGqDRvjHoUbXm3b5pC2UzNjJxznIzX6gRHdCh9VFfH SzzEZniJSrr3oxin+K/Q+g8S8DhFiVjMLrTqznyva8VGm1/6UfC37DrfvP2oIx0j+N2tAf8AfSGv u+vg79h4Y1L9qdT2+N+sfzQ19419x4hP/hfr+kP/AEiJ+SZe/wDZ4/P82fCf7cESXdz+zBYOocTf GbS2ZCMhgqTEg+3Nc58ePBnhbwR/wU//AGRvGPh/w9ofhyTUfEWo6fq9xp9kkDXZe2QQiTaAGIzJ gnn5jzXUfthj7T8b/wBkqw+8ZPinBLt/3IXOf1rjv+CkcOvWH7KHgXx74auJrDVfC3jOC5F/C4El qJYZoVdc9/MaPFfonBqqVZ5LglU5FiI4im9Wl+854K6662PMx01CFeo1fkcX93Kz9Eiy9M8npXwv 8br7SYP+CnfwmttUuYbbz9MiSFpDgGQnUcD8a8G+AXxr8aePfh/+zjr+teJ9SutX0C7v7LxBK8xb +1IZr62soWm7MwWXOeuVz169d+1FEL3/AIKVfDnHzNZ6Sk/0McOpPX5lQyKpg+I8RlWJdpUXUg2t nywlqr9GFbNo1sBWr0tORKS+XLL/AIB5V8CPido3wh/bu1q78SO0Hh7xJ4X0s3l8zhYbAC0gAuJS eiDyXX6sK+lP2p7Y/GHRvhvpfgu8XxBpX2Y+Ig+n5lFzA01vaxuu3kqVuZDn0B9K/LD4l+O7zSPH t/4etohIniXwJp2izuQCEWK4SUnBHcRFfYMa/Tz9giSTXPgDpOsX01it1o/h238P2dotxG9wkKTz zvK6KSUVmlCgMBkRelebnfBVZ8O0sbWq3eJVOSWmlO0ot97KVO19tV5H9N5xnkMtz1ZrhqPJPCXp vW6lUSg46dG41Nl/K5dzp/hPLE/7QfgbwdGCJ/Br+KbG5hGSYka4tngJ+sc6c++K+drfQNY074b6 hoWnW8w1jUPi9qfhi28pMssNzaPEzn28pSx9q+hP2a9Fluv24/2h/GN7MZJb7UP9DjJPyxNcT27s O2CbBB/wGvryw8GeHdN1O+vbXSrY3N1qraq8kq7yt00YjMiZ+420Y+XHBPqa/PcNgpYyjCd+Wza/ 7d0S/CKPnsF4jYPCzqVaK9rGpGEnf+dOUpJ+SlNrzt5nxJqGrDTv27fAvhOFRFbj4sXkyoq/Kqx6 NEg/WeuR/bnv10v9tj9jfVy8aRWHiqaS4LHAWOS80yMn8N2fwrjPE3iu10D/AIK5fE3XNd1E2/hz wne2OpsWBZbcyLaxTOFHJZlCjjk8AV4N+0r8XLf44eO/hLZa/byaJrmmxyprEFtkLAs97YyW8qMe 5hMbkdjkGvo/D3iL+zc0rVo/EnUSVr3Tj7Npebu7f8A9Xi3hX+1aOCko3hChFy1153CdWNvmkn56 dT9Gm8ESeKf+CafiLWLLRIZvG2t6Zqer6XOLdWuka6unvIkjYjcN2Iflzg4Ga3vFPgaz8G/8EuPE OkRadb22sWngmJtRmjhUTTzQQq7F26sQwbGScV8t/tm/Ev4k+Bf2hfhb4R+Dut3Hh6LwX4RuvFmp WsczLa3lvCVhS3mQf6xAkcg2Nx+9ByCAR9i+I/GVv43/AOCYGs+OJLdLSLX/AIePevDG+5YGuLMk qDxnazkZ9q9zPuA6+W5Lh81nKLjXhJWW8bXtzf4lqn2P57yrLKOMxiw1veajTv3vvb5vU8X+Ifxb svGnw8/Z/wDiJ4UupbCK88RxApvVpIMzxQSxvjjOHYH6190kn7C4OM7DnFfz/wDg3xLeR6RY+Ed0 psfC+oTSod/yuRcyzlwvY/uQPev11+DvxY1L4i/Gf42aPcLFFpXhrWY7HTEUhjtVGSRywAJ3SRuc dulfLZfnccThsLzfFKP46tn1WI4PxGEx2c8lPlp0q0rX3dO1KEHfz5kz4y+Hd2+n/E346XLsfLMO h3QwO0bTqf8A0M123xjENr+yX8JTNL9mtZvhhdQTSMcBFePTmYk+wUn8K+G/jNPq+kftC+Fb6w1C +s7XUodQs7mOCdkScrYKyhgDg7SxIyDjPGK1PG/xM1F/+Cb/AOzn4ZtZFvri58La2l8026SYxtee RGFOc8bXAHPQDtX1n+pFfE5MsXGScZznddl7Sot/+3H96PP+jhXcauGp31U0152g2bmv/tT2vxP+ EXw/8D6zpi+Gb7wDqG6XUprvzobxI7KW3huMFQyESEFlORypBOSBp6t+0HYfFT9qH4T+J7bWb/Um 0+W4Ba9tFgl/dTZzhcr5ZMp8vPzbMbgDkV81a18N5td8QeIbbQYh9si+Gw1O7hIIJEBgmlyOudm/ /vnmvFfhp4lsfD3xj8M6jq8/k6LDcst4/lmTyo5VAZ8Dk4KqePQ4r+wfDrgzhrP+FVjsr5uejTty N3fM4+/pZv32tNfI/KfGrh/H5fxdmNPEN/GpQSdo2TU4abXs0nfbof1L+ELM23wK8PWMowyaLCjr 7+UM/rXxl8AfHT6N8Z5NFlg8y18QSxJJcHOYWih8pOnHzMoH5V9p6Z4m8OX19b6DpuqWtzfnRYdS ito85NpISkcw7bSUYD6V8N/CPwZceIdd1iwtb5NJ1AaRNLZXxj3iCaPVMo+09ceXiv5Jy2dGdLFK p1a+T1/I8bjmOMpZtkywT96Dnp3so3j6tXR9HeKLmQ/to+FdQMrLZaRDHZyg/cU3i3GSfQ5hiH41 n+BvE0Or/tl+M9SDS2ulX+nx2umtdJ5f2lraTy3KZ+8NzNjHXBrjfDupXni34afF5dYubUeLrS5i 023cTKWurmyh3xSR/wC1Iylgo5615b8ZvEsvwp+HHwK8UywXEl1HYSrNbo/lu7z+Vk57MhnZ8dfl 7da3y3AfXakcLS1nL3Fb05r/ADHmmPxmDqRxvs5ezc1Vaa1u5Kly+Vlq/M8B/Y5uL/xF/wAFu/2i tT1G8udTuoU1qLz53LtsXU44UXJ7KoVQOyqK/Nzxz9g0H4UeIfAkEh/tHSfGNzFdw7T+7WK4uI0y TweCfyr74/Y41rxHpH7f978RodJWXwj4xb/hH7rVblhhLozNJ5a4OTJttMk8jHXJINfG/wC0d4J1 jw38WPEfi3UHsm0v4gajN4j0JYGYslrLf3aqJAVAV/k3YGRhhz2r98zXFUMZx9g8v50nTeDlyr+a lHlcdOq52/RBjMW8blNKpy2kpScl2vJPfyulc/XD4R6hHpv/AAbw69cy42ReA9VTB9XgkUf+hV4L 8ZdJax/4NpPg7CwOYm0yY8dPNmkb/wBnr0DwXfJJ/wAG0HjC4jkyn/CNXkQbP/TQIR/MV3vxR+G2 o/EH/ggf4C8OaVfaLpMln4b0TU7i71OcxQQwQpFJK5KqxJCbiFAJY8DkivkuHcfQyurSxOIlyxWP fM3slBat+nO7n3sKbngVFf8APr8/+GP0LtIxFpdrEOFSFVB+gAr83v21bm2tP+Cg/wCxTcXiObX/ AISa+jLBTje0lgFH58/QH0Nfopoes6br3g3Sta0a8i1DSr61Se0uYTlJY2UFWH1FfO/7WEaJ+zDZ aottaS3mm+KdKuoZZY1LQhLyN3KEjKkqCOOvSvyDh/iCplONeMpx53yzSX+OEof+3XPVzutCnl9S s5WUFzX9Nf0Pzs+G983gL9hTWfDsNy1xcWXxT0qewtzIA0kaal9ocqPQKnJHtX1XqWmeJY/hB8U9 fvD9s8Y2nxItLhGzny2lsba3aNc9AqTsg+lfCsqvqHxAsYdItJr7WbjzrLSrWMgG4upZIWjUZxg7 0AGcAZr7Al+KN34n/Zr+MXiFNMvPD+oSePobh9OuWVprZrXy1mRiuVJU2cnT0r2OO1GtmtTHVruV ZKbv/c0lb53+8/mrhDiqvmmE9pWbilFxXaUnGV36puNvU+jNe8BXXhXwR8Wdd8hHt5tHsBY4YZYW qKX+mSo6+lcn4jsNfHxU8DeJfEf2BNZ8UTwRtZ2avsgjR7WQId3JbEbE9s19iusVzprQzRxzwyx4 dHUFWBHIIPUV4b4tv7LXP22Ph54NjhkOoaJp03iO4lZlEYgYvaqoGclvM56YxzXh0M2UWvaO17q/ qtF+B+vZ9wfSjSToSe8LR6X9o25eekmeB+OfEsVjH4W8M/afm/tjU5LmAE/LG9/sRj6g4lA/3T+P 1X8J/iNYfFb4E6J410+xudKjvA6TWU7Bnt5EYqybhwwBHDDGQa/OT4qa7ayftC/EJ4bmKS30Sxke GSNgytuu0nXBHXP2jg+9eux/FEfs7/8ABK7xP4jS4sbTUtG1Y2lpJegGJZZDEdzjIyArE4615ucZ hGEqWvu8sm/W6t+Fz9E8OeEKuIo45yj++dWjThd2io8kua/S15RbfTU539oXUIvjl/wWV/Zs/Z80 WJtX0f4eag/xB8fMoPl2LxR7dNRm/vmRtxX0kQ+tfpeB3Iwe9fnF/wAE2NIh8TfsqeLv2jdcSe9+ IvxX8WX+oavql1zM1rb3MsFpAp/hiRFO1Rx83sMfo/WaOuS5XYY27PAzxXyd461rXNT/AG8f2a7b UvB2s+G7eHW9bMN3eXlpKlwRpNwAFEMzuMjJ+ZRx78V9aV85/Fb/AJPb/Zd/7Dutf+me5oEJ8Vv+ T2/2Xf8AsO61/wCme5r6LKqXDFVLDoSORXzp8Vv+T2/2Xf8AsO61/wCme5r6NoAjeGGV1aSKORl+ 6WUEinBVDswVQx6nHJp1NkbZC77WbapOFHJ+lADqjSGKM/u4o4/91QOtfCX/AA3bp+f+Taf2p/8A wiB/8doP7d2n/wDRtP7U/wD4RP8A9tr7NeH2fv8A5h//ACaH/wAkcX9o4f8Am/M+7kijj3eXGke4 5baoGTSeXEAqiNMA5AC9D61yXgDxjH4++DegeMY9B8Q+GE1S284aVrtp9nvrX5iu2WPJ2txnGehF eB/tPnXbjUPgjoug/arhtV8dm3urBPFl5oEV7GNOvZPLlu7QNKqhkVgoUhmVQR3r5CtSnSqSpzVn FtP1W52Jpq6PqrbG2/5UO4fNx97tz60BY9zYVckYOB29K/Kjw9qHjfxb8Xfht4GeTUfEl3pB8aW+ q6PcfFnVdMs42hvdJe2RNStleXUBBFc+WryqGG9wQjArX6e+GrVrHwJo9m8P2d4LKNHiGoy3wjYK MqLiXDzAHI8xwGbqQCcVmM2ViiSExpFGkZ6qqgA/hQkUUa4SKNBjGFUDj0qSigCNIYo/9XFHHxj5 VArwj4Cf8g/4uf8AZT9Z/wDRiV73XgnwE/5B/wAXP+yn6z/6MSgD3uiiigAooooAKKKKACiiigAo oooA5fxpr134Z+Dni3xJYWDarfaTo11fW9ioObl4YXkWMY5+YqBxzzXxXH+1l4s17VdF8ReC7H4e +IvhtpjeGbDxhfQXcsst1qWtSRRtbWEiMUU2onhkkWUFiHC8HOPrr4iaFda74AY2fj7xB8N5NPlN 6+s6U1vmNER9wlW4jkjaLBJIYfwg5GK+Sp/HniL4XeJPBXgS6179nT4tnxQRq/hfRSieGNX1Niwk S5hQLNaSyEncrnyCzdDmgD7zbOfftXwd+09qlneal4H1a0+JPhrxX4as/iHocF18MYEtmn1O9TUo lBS4iP2hJreQpcmPBX/Ryr4Usw+5rSWWfSrae5tpbOeSFWltpGDmFiAShK5BIPGRkccV5ToVp8At Q+POoal4atvg9e/FKF3e+udLjsJNYRuVcyMmZgeSCSfY0AZ3xT0r4efEnwboVvq/xIj8KJpHi5Jt P1TS9YtoJo9StRJm3DShl8xR5m5MFhtPoa4b4DeNPEXib4c/GvRNX8VS/ETR/Cvim70bw/4vdId+ sWos4JmLtAqxSPDNNNbF0UZMPI3Zr2Dxf4a+ENl8MtQj8e+H/htaeDW1Br++XxBYWaaebqRiWuJP OAj852Y5dvmJJ5Oa3LWy8NWPwRktfB9roVl4YXSpDp0OjRxpZrEUYgxCLCBTkn5eOaAPEv2UNc1u 4/YT+Cum3XgzWNM0+PwNp/larPe2jwzYto8FUjmaQbhyMoMd8V9Pg5XOc14R+y6Af+CcXwM4/wCZ G0z/ANJo694oACcCvA/2nbtrL9hj4i3a/ei0tnH/AAEhv6V72fu183ftZnH7APxHj7S6TKh/FDXd lclHGUpPZSX5nDmabws0t2rfefmJ8Pvj3qfhD4Sfs6/CXQLyxit9a8Z6heeKYpbcPI1ut2jW4Rj9 zLiQkjk7B75+jv20/Hvijwb8dtA/4R3Uv7OsNT0eC112RI1aRrWE3lyYxkHAZhFnHJHGea/Iqzvp 0+NvhDVY51Elnr9rFAEPIXz9jD/vqUGvtT/goz4x1HTf2lY7WDElnf8AhAK24cwpmB2dffClc9gx r9Y8McmyzN6eQQpU1zRjUVXmtrKL+J+kWmr/AMp4vivjszhxNntPDvl56nLrpeDlPms/7yejPqjx H4q+FEn7e3jjwzeaxY6trWu6Tpmr6JHDtmtLoC4t5rhC6kqWxbRkKfvAN+Pzv4X0ufXv+DhDw1rN jby3Fnb63ezXkyrlYvL+1IuT7sQAOvPoK+ENG/Z2+K2kf8E8vAX7Wlt8R7rwoNY8VR2+m6fZaYk5 06zaSSCO7ZifmYyrgR4IKuDnPFa37PXhz4m/GD/gotoHhTVP2h/iDpGl6nfXl2niHw2V06/mm8li XCgbUDBfukEDJ4BNfW5DllHLcHj8bkVOdel7CrTnOXKrN+65WUm1G2qT1Plc7jiKmbYWpXqRgocr 5bybu36Wf3776H6Q/F3xDDd+F/ir4ft52Gtj4ntqkEYQkhILAnfnGOHjHHf6V+inwB8Q6r4o/Y7+ H+u65cz3esXOlj7bNOB5jyI7Rtux3yvNfjB4U/Yn8K+N/wBr1vDPij4ifF3XtU1K4v3/AOEmuPEL i9Rlgn8uf5QFZg67uRggkHg1638GPE/xv/ZW/ad+BPhDx98adT+K/wAE/Hmvaz4RFvqelxW8ujar b3LCGVZAWdlmbnBbjc45wCf5ixWVzw2ayqOVuaKXL073/E/b8g45oZ9wJh8JSpqTo1X+8tZ6qUeW z1V+VPs7dND69/YqXy/GP7VkHTb8Z9TfH+8qGvuuvhf9joGL4z/ta25/h+LV2+P96Na+6K+/8Ql/ wvVX3jTf/lOB8plzvQXq/wA2fnV+3R4ln8LfG/8AZY1a0tYb6+t/GVxLaW8zFUkm8lEjDEDO3fIu cc46U8fGOy+M/wAMH+Hvxk8BaRLb3/xGsvCt7pc/mxiRlt/PkuEZWBBE8MuxgfuqO9Y/7clnJrH7 an7F2iICwn8aXM7D+8InsmIP4Zr5D/bB8VfErxn/AMFc/E3g/wCEXjWw8BWHge10i91rV/sK3cqa nJG3k7I2G3zEhZjhiAQGPoK8vibFY2GDyeeEq8sqcJbaNSdadmmtU1ZWPExOGxlTGVpUZ2jFKUk9 rKLcm/SKueLWniqPwR+1nrOg6df3WjeGtB+Mont7axdlt7jT4b2ebySAQCuGhYAgjMY9Bj9H/jiR qX/BVHSLVVL7PCVy6/hpl+//ALNX4bRSeN9O/aC1Twx4q1G58S3emC31KTV1svLM0VwkbCSXbwvz OEyTyeO9ft58RblZv+CxUUMjxrHH4GvSzP0UDRpySfYbzX1OMnisTjMNmOIqJ1a1Cc5JbJpVI+t3 y3d+59HneByelkTngE2nJxcn9t/u5bK6sudpW6JGx8Avgh4T+In7M/i7xHq/hjRdS8apqWtad4b1 e7hJaxDIbb5e2Mr1IO3nGMnPDfAHwdo37P3/AAVL+InhqKE20Mfw60yTU5BcvLG9w1u9zdSKW5wZ IDt6YGRgZr5B/Z6+AHiL4q/sia98a/D/AMcfjb4C8S/EPxZrN3a+HfCuvNaWs+lwzsC0qBSQwEbq sikffVaxdd/Zj8XaB8bte0fTPjn8ZtEN34aW7McmtNLdSxMI1EAnf51AFwAVHXLAda8DhRYyhgcT S5nKLoyha+0eZT0TeyavZdXsef4leKEcZjJwlJ0+erGq/dbSaja10n73Jfp6n64/s8g2XxMtIJmH 9paj8PLDUdRXHInlvLq6Offber+Zr6/ydw4r8TIP2LfhZ4c+L/h1PH/xp/aJ0Xwh4h054pILvxfN E2qRRXMUMMV4wUMsTM6MFAUKzoOK8E+LHw78Q/CcfEy08OftaftHwwaLrFtp3hfQIvHsjPJatcfZ nMm05jEJWQhQo3q0ZBGCT8ph8C4Thh6au2vXZXd+yVnq9DxsqzvB0sLLmnpFvpZpW5ldecdb9fwP oL48Pp2ofGn9oaznjaPUNZ8Q2NkkyqCWQXlopz6hRbuce56Zr5V+KbXuotputC2+xX01jNG0sa4Y rZw2UAkz7mAkemfzwPA3wE+KPjua98V+Dvj74ztZI7Vblj4mA1NpJ3aR44JC7AsxkikPnEEgfw81 1nwx+AXxb+Pfx90Dwr4l/aC1DSLOVdX06I6R4bgiFuLeMiTHzAsshB+9g9wfTbKsmrR5s0o01y0+ VNvb4oyX3u+qvufTcK+IlTBZhgcPXxPPTfPPld+ZxqXUUrq1owTsm1Zn1D4U1fxF8bf2ofjX4n8Y fYptUuP2fL+bT7K3x/oscu3yYmPZuSfxPNfSPhDxIG/4Nv8AT9YnuAVh8CvbySAH5VS4aH9FFfm7 +zn+xN4DPxC8beH/AI7eGPGMOsaZdvZLJ/at5p7SokN3I9xGyFfNj32wCnBQhsivMLT4AWy/sY+K vE2g+LfibosEUN3Z2Etl4hm+y3c8AinEc8JPltEYZJFCqOqHqa+04tzmvPBrh6qlOpePI4Pmj7sZ RaTS2fOmvKPkfe4PLvrOPq59RjCjQoOnKUZSUPiSlFK+jdo6+bPcfgWdN8TeK/HUupStBapDdrJK uMqwgnYEZ4B/e/TJFfeP7DV/JL4o+Mr3F8NUurq4a6kvhH5YuWF5fBpdv8O7cDjtmvwj074f6nbe APFHieH4p+LdO8RWN5I1rcG8ENlJIts8uJIxkZYosfccqMc4r9lf+CdvjO28YeEdQ1yJovtN54ID 3yx4ws8cieZkDo2+Vzj/AGq/MZcNrLquGoaxdJL5ucIyevkpX76nw+K47zLF4huc1Kjiadp2dvfp r3Hts4q3nyp9EeAftBIi+IvgpNEo8648SasnJwCDaWsIz7bnrzv4J2Gqa5+0N8KfCl0iSy+A2js7 7y+UO7XGcH6EzqfyrV/az8QzeG/ht8JvE1uVL6VNrWoHeMjMd1ZKMjjglcfjXBfsf/BD41fHH4hf EXx/B8dtS+EupW2kafq99JpmhQ3fm+cXmtkCyMAoR7RHbru2kH1r9/y7HUqfBuLwXs+aUqblfT3O arJJu/fmastbtHxPhxmGLyfMsLj+eKoqL937TlyK9l2UX+Z+gX7Mngywvv2q9P8AEl1ax3cd9b6t ol1FMu+KWKCK2OwoeMHznzxyOD0r4e+Onw88P3f/AAU6/aF8L6TpFnpWm6LoN7f6VY6fGIIbdraw glUBEGAuNxxjHNcBD8BPjZ4m8Ea5q9p+0R48/tbw+95ezSaaXso7QzTCC4uiLdg7Rv8AKGUdFzjI 4rm/HX7KcHh7/gon41+Efhjxp44Fno+h+Zq13BqbrPfWqWEEt2HJ3HZIS52HIwQvIFeR4E8UYnh6 GYVKGvsaF5e81a1SGqutX0tvZs/SPFzGUc5zCWcT/g1qnu7S+GCXK7N62afzR+jngP8AaP8Asf7Q Xw/8QeEGs/GOjaP8LND0Tx88Mxf+xBhJpZJMdHUFiBzkbsZIIrA8OfFcatrPhjxNZRiwkg0nW49S gikyscV1aC6t5M9SN90Yh7pnvivh34Vfs0/DvWP2H/jf4qf4g+PPBPjLwpYPBrPhjRvEeyLxB5Uo iW4uourRLO+0BTt3DGea4Cw+B3grRdK8Y29343+IHhmKXwvp15p2lWeqt9n1ed2t2kt34+aP940g 7qwH4/BcRZRisBVx9G1nOsrdf55WVt0+Xf0tvp4fh3hsJU4rw9ar+8XLOSjK0VHnSg5c3Szs1fdn 65a3L4e/Z213wXcx21ymhxv4d1S9hhcSOZSL23nfLEbiSQTk8bcD0rw79pjVb/Wf2sEtxqd3daJq 2v3WoWdrLIWjga3b7E5QHoGEK9OM4+tfmppfwo8RT6LdaM/xD+ImgnRLp7K70i4uiY7WVmkcIkT/ AHMsGLLx8xY960/CfgD4o6l8Z5PDF98afGdndeH9Smgs5iPO+zSbWaU7XYgpuQ5TOCeetZ5TkeZZ HxTi8NSmnPBuEpJdE7K972aaklofqniZiamI4InjcVTcfrdCoozdpX5J88pOz5ly2jfS+/c/ULVL vwj4O+Enwn0f4W+dbTaRdWV7qzqzvnVPsd3c3Lb3J3ZNyOnyjoPu1zX7afw/A8WfsfeEjEEF/Yaf oFwv+350QcH05mJP1r5m0D9iu58ZeEWudU+MPxB1TxDcfar+zZ7sQWSvHaQ3S3KxKCd4WSUgZ5AA 4rG8Q/B64+Dv7df7Mfi3XfiB4k+I3izxL8YZrDxNrmoM6x38i3GntbSpEzN5Z/fOpwSCEGMAYr6P hHOpvPqedyfNK8pOV7u9nZv8GfyvkmEoPHVsNUre/UcbQ5XFJQ1dr77WfyR9ufD7UYbb/g1n8WCf zXWX+0bYbG+bnUm/oK+3b+OMf8Ez/g5pKES2t3b+FLKWM/MssZmsw6H1BCkGvgHwekx/4Nrtc0pV kaQeK7i1dUHI3agSenYZ5PbrXnV74/8Ajn8YPjz8LP2bNE8f6p8FPDPgPw3pV54pv7CG3upZriWV ZLS53so2hYWhYR7sA7ic44+e41zDETzjMMJzP2SrVHbpzSm4323aVn6I/UY5fSpZDhsU3Z1OeD8l Dka+/nlrs7H6S/DH4z6Z4O0rxt8M77RL6yvPCt3rH9mXE+yO1vzFP9oFtEc7iyxXVv2wdxwflIrT /ab1yLX/ANiLRL+FG8nWL20kEafMQGQvjtyP6V8I/F//AIJ5ab9t8B6x4l+Pnxq+Jt/4g8QyQvda pqqiKyvbyPjUbdYwNjDyocpkqwUdMV4342/ZW+Nlt8VdL8D/ABG/aE+LXjbTNAtFt2u9M1KSxtLf dBczQCOEEjJjgId3yxZgMnNeVllF0oQhJczUl5adF8u5+fcWYuNPLsThK1f3XDk0g3Zy1WnVcuj9 DB+GvjUN+1h4PsLy+sxeWvxh0+ztYFcCRoPMRc7OpGSMnGM4r9aPGPwtsn+OeveD/DmnG20vX9C1 DWL12kLYvJVu4iRnoC9yG9iBX4JX/wCy7oXhb9r+68CXPiXxFa+I7H4gaHpkWv2WoyC5sobsqzTx MQP3oZlYMRwy8cV+oPxQ/ZK/aC+G3w31n4oaD+3L8ZLvU7PR7hPE51WCOVLm2UL5MdnHnbavuVd7 jJbO7IOQf1jxMpTweCy+pXoKnF0W1Z3upJO700bve2u5PA3A9DFYSGX4Ztt1ovWPLeWkbLV7tbn1 x4O/aO0m2+G/i/V/FU8I0vwv4R0fVpVtlzdzfaLYeaNpPzETgoOgBIBrxfwh4n8Xa9+1NP8AHjXW sk8Ia7p2saR4SubdxsudOtoJrmKRgD1LRSHnBO3OK/Jv4lfs8+HvC/xeuLOH4o/FrUk1PSbaY61c 6x/pl1HNapcfZXAARo1aQNjbxxX0z8ef2PPhP8HPhB8N7Hwr+0V8cvDWra0k/wDYmjXXiJ5oRYC1 Z7iGGNFVYkaSSMMc8+c3Bziv56w9SWP5uWbbo6v3XZ2vd+cUk/uZ/QHFXhxmuXVssxOJSjSq+z5V GV+afup8/VX5k7W3dw8M6dqvjv4g+G/B3huW3F/4rszZx+cxVP3NrbuxY+gaEL+NcT/wUl8fa7N4 ytP2bPDlus9rrXjO61XVEiiZ5kijt7NICuOifNOzf7g6Yr5Y8Q/C5/hrfeCde0D4lfEfQPFdrPOb C+GruzaVJHPEkjQKMYJUvuXIDdDgZFfoN8NP2UI/hR+318edduPif4u+JN7pHwz1ZLaXxIRNdlri 1t2kmaXdghmnkwoAxjkknNfS43JMRhMFhcbV+CsrQfR8sU3b5yu/u6H0eAx/1urjMPQpq8Z1XU5W rp/WOVt/9uxUFpqve6n6yfAD4X6D8Fv2O/h/8MvDN1e3+i6HpaxQXV5t86cuTIzvtAGSznoBXsQO TXLeCpRc/CDwtcDnzdJtn/OJTXUD71awbcUz81xEOStKPZsVmI6DP418m+Otb1zVP28v2a7fU/Bm s+G7eHW9aMN3d3lpLHcf8Sm4GFEMzuMj5vmUDA9eK+syAa+c/isB/wANt/svD/qO61/6Z7irMg+K 3/J7f7Lv/Yd1r/0z3NfRtfOXxW/5Pb/Zd/7Dutf+me5r6NoAKKKD0oAbkeppDyOp4ryK5+OXw5tN UuLS41bWRPBK0UoTw5fsoZSQ2CISCM9wSD2zUL/Hv4Z441bXW9f+KZ1D/wCMVy/WqP8AOvvOb65Q /nX3nsSrtzkk89653xP4L8IeNtFh03xn4V8N+LtOimE0VprWmQ3sKSAEBwkqsA2CRkDPJrW06/tt U0O11G0aR7W5hWWFnjZGKsAQSrAEHB6EA187/tGeIvGGjXnwe0zwhN4taTXPGZstQsvDd1aW97eQ DT7yby1lusRoA8SOSWUkLgHnB6I663OhNPVHqN/8HvhLq3h7SNI1X4X/AA61PStJWRdKsrvw1aSw 2IkIMghRoysYcqpbaBkgZziu503TNO0bQrTS9IsLLS9MtYhFa2lpAsUMKDoqIoAUD0AxX5fX37Rn xc8K614H0K61rVLW7afxTpfiq98QWtvcr4QWG+0z7He6mLZQJ2gtrtcGA+UxnUyuFDSL+l3hWyk0 34f6RYS+INQ8VyxWqb9Yvmjaa+JGfNYxqqfNnPyAKBjAxVDOhooooAK8E+An/IP+Ln/ZT9Z/9GJX vdeCfAT/AJB/xc/7KfrP/oxKAPe6KKKACiiigAooooAKKKKACiiigDzH4y6v4Q0j9lX4hT+OtTGl +FpfDt9BqEizpHM8TW0gdId5AaUru2L3OK+EIPC/w80X9ne31rxR8dvDnjzxV4j8ReC4LW60zTrW O6Wxsb+1Gn2EVolyxVy7O0soY4MkjBAFCj7g+LHgGT4i+E18Mar4e+GnirwVc2N6NW0/xdpsl0DO Ydto8WCAiq5fzG+/tI2Mrc18EfCjX/Ax/aY8LeF/B97/AME+U8TWd+IIB4c8IXUOoOsRxOlndFtr zhA4BVmOeueaAP1POMk9eexr4X+KHg2Xw1+3d+z54on0b4bWHgJ/HT2+kr4c0oWGufb7nTrsBrib lbi1JMzSRxiMk+W53BGr7mwMcnHNfOfhD4Z/sz+Ff2jlk8I2XgK2+J1oJnhsE1r7Re2IkBMrQ2rz MYNwY7iiLwTnrQBgfGK103xD+39+y/oXiCCy1fwhOfEV2LK7jWa1n1GCzgFqWVgVZ1jkvGUHkEEj pw79niGzsP2efi5o+hpGnhHS/H3iOz0CGAjyoYFuHMkUYHCxpO06Ko4ULgDAxXb+MPhr8A9E/Zw0 7wh4303wf4d+HGmah5+nLquqfYorK6eSSTfFcNIrxyFpJeVcEh2HQ4rp/B8fw6tv2af7P+FM/hWb wNY6dPbacPDl1FPZR7Q29VeNmUtuJLck5JJ5JoA82/ZS8QLefsHfBTSV0TxLamHwPpw+13VgY7eT bbR/dcnnPUetfTQ6c14T+y7/AMo4fgX/ANiNpn/pLHXu9ADW+4a/Ov8A4KW+OvFvhr/gnzJ4U8D6 Hreo+IPF+pppo1W1ti1tpFuo8yeaeT7qbkBjXOMs2R0xX6KtkocHBr4z/bvvGsf+Cb/jF4jhpJra PHb5plFdmX0XWxMIJ2u7X7GdRQk4xnG6coq3rJL9T+dLwnp9z8Iv2lPC/gLzU1bTfEUtjfJcXBPm W8wZJSRnpvQYPsfavvr9v97GX42Tz3sjRxx/CS7uYsEBvMFrHsxn1bAx6V0f7S37Pg0v/gjd4c+N 1lpFsPiL4W1fRvEOk3NtErT3dnLbWkEtvKw+bZgl9ucgp7mvmP4yeLZ/20/25Pg/8N/hx4a8d6be atpGn6drg1bSXtHtrQKjXc5zn9yIwSHyA3AHUZ+m8PsfTy2dSpKShONOrr1cmmk/XZI6/EfD0K/F csThFei1GC7JRTbX3yfex+s8fw70rQv+DcDw94M12x8yOw+GFleyQk4aK62R3QPqGWVv51zPh/8A ZH8EfDv4rfCj4++A7z/hH9Hs9E06KXw/HE0nn3VwEie5MzuSAUlJKAfe5BAyK9P/AGifiPb3Xwt+ NnwN0/QZrSTTPA8U9pqSzL5UxeW1j8hYwMqVE8Zzn8K9Luppp/8AglV4fv4DuvIfBemXMTekkcUD Z/Na+c4b4tzPB46thsJXlGFWHLOKekrtp3W3z3XQ/P8AiCVGp9Zna/s6fMu6cXJ6PfofPPw0ul0z /gpJ4NtLxJIzfeFvtcLFcBmlWQE/rXwJ+2D8RoPCfi3xbb28U+rHwd8b9I8c6PdRTebboiIpkRMH GHMytkfKe/OK/QX4maXPpnxGsNWhu30nU9G+CMMtreooJin+3Rw5/KU/nX59eLfhpYah+zj+0T4L u4k1LxVHoN5daRc3KAP5WnfakGwjgBkhgb8BivBzOeLx2YQmlaMJycn/AHUrL77n12Q43IeFsNHL MSm54jDU509d68pJWfyUpfK25+lX7Gmq2etfHD9qfVNPlWexvfH6XtvIFxvSa2V1bnnkGvvWvyX/ AOCVHiRfFPwi+J2sK5Y3E2kF/wDfWxEbfrGa/Wiv0fxFt/bs7fyUv/TUDnyeVSWEi6nxa3t3uz4D /aZiF5/wVh/YdsyoZBq+uyyA/wCzawEfqtfnL8NINV+JP7YX7TXxJiglvbXUfiLq0UdwvKNBaAWl oxPpkkD03CvuT9s7xWPBX/BQf9nXxcZY4f8AhHfDviXVFd/uh0sspn1yyqPxr57/AGAdAubb9hv4 YXurJ59z4w8Q3l1I7jJnRr22lJb1yVf8DXBOnGSw0ZfZp3/8qSaPkuK8biMPhqvsnZ1Z+z+UqST/ APSkfIfxw0648C/t1W73EjJYeM/AyWVzI44mngltrqNR7gGM4r6w/aG8dy+H/jx4x+IcZ2m3+Duo mBs8tLLocMKtn13XAxWx/wAFXPAOjaB8Mfg58RdJ06206Lwxr5k1EQHBe3cW8HAzyRiL8Fr4V+LP xd8L/tF+OPhp8LvhPq2q6vr/AIst9M8NXbDSp4/KEkWnw3DfOo3KhhmJYZACE9Oa9DKMXh6tfEVK nupUp8t+8lLRfe9DpwdLGZdw1luWUpc7p4iSqWu/3fJGUW76rWMUftR/wT48IW3hn/gmt8Om2LJe tpMMfnuPmCFBIYx6ASSOcepNeI/tOeN/A/wr/wCCvnwv8U/EC5uofC8Ghvqd3Hb2jXHmNuWG3Gxf vHzYS2O3lg9a9v8ADS6t8Lv2vvgZ8LYjLZ+H10rWPtcEM5MRM7ubMMBwTstHI/u8+tfAH/BQLwx8 RvHX7TOtfEG00G91H4Z+HdPfT49Wh2mC2a2cJMrt1B82Y4B6ljjODjp8MMBg884nWWVavJTqXg3f l0sno+7tZLq2ebiGqmVQ56bdSnNNr+98Tv3WtmfoF+3Dp2ky/s16ZrcEtqPGXn/2foa3R3xyx3Lx GffDkbwqorg9UZFYEV+W/gr4R+OPG/7VV38UPEVtY+MPBlzqUs97qljeI0M9xbqsxRlDbjhGZuAV HTOQRXtfxol8efGT9vGbxF4U08654f8Ahl4I0yHUESUbkkvrRplCJ/y0d5XC4XJ+UdQOPu39mX9n 6Dwl+wz4NsfEthqGj+K7vwxJBqVjJIMWs1wXLuVH/LXYyKeeNuOOa+wxOUZdwvkHtJzhPEYiPLJf ajGp72ut01GMWn/08atqfOZ7k2PzXOsTDD+7Dljd/wAz1V0+6tax+YvhDxnL4E/ZY+JLaZ9vbxRb 6j4es9KiskDTC5uINQ8shWBDEMfu45K984r6R/Yp0+6/4am0i71CKWKZre+vI/NiKM3nCUswB7Es OnFfN194T1zw/wD8FTvDHwn1Cwks73UvGnhjWJYlIO1bRLg4OD0KzMfpmv09+GWn6fb/ABxsPEDJ bw3kGv3+km4J+ZYvs7ShD2xlM10cY5ThMk4XwuAw0E3iIQq8173ilFW/8Cizky1Shj8uxNZWlGPJ JPR3XLbd9IvVHGftQ399pf7UWmyWFuZ7m/8ACcdjCo43S3Et5aJz9bgV8q6tcWPh39jjx58NNsON B8az6dOWwQqybLbdz0O1zz2z7V9P+L9dg8UftAWN/qdytw9n4njsrMuRwsOqwttHsFya+DP2odC8 V/DLwrrupzX1pPY/E3XI9at1CnfbRtGJArZ6OJINwIz8reteL4W8PUsbmywdWaU5OPKvO7b/APJG 38j0uNOJama4GFLDNqDqO/muSFNX9GpWfTU+dPil4Q/4QrR/E3h6aazvI5NYg8p7dSsblrK2bGCB j5pDn3FfQX/BOx9Y+H/7XHxE+FMF8yWmh+Idf0S/hYDE8cMVxIjc8jLwIcjsv1pnx+8Az6X+0D8I /A+rwJHq2oeLbS3v8Nu8552gVdxzg4Uqv4V6B4HtY/h//wAHLXx38Kvpk2mRazM+t6arDAmim0id ZJV9Q0krfiD6VvxLh6TwFCdNp+0daS9IUqVKP38lz0OH6Vepk1KrVi4yjytrtbmTTPnj9sLTLzxh 4U/Zf8F2MhiufGWu3mlRn18/V4oO/bK1+rV14St/hZ8UfiR/wjGl23h3w5dWjaXDa2dusaT7rGSV d2PvFXwQe2WHevzV/aG0fxJqP7U/7B3hvwhYi+8WW2n3mt2NrkDzZk1KeePkkDJMfU98V+l+qa7c W/8AwTq+El/4y1LOp2Gpiz1q6mlLtugeaCdiTy2BGxzycCvzz+3oPE4fBx29klJ9HaUnr5q5zZ9l lSHDdCtrGUIqcXsm+VQs3/289PI+e/hP4eudN8f/ALR+jzBzZxfD/U4UJXkyRTpK/wBTmZa4zS7r Q7v/AIL5+Mj4hu0srTxX4Si063mdCw8y80qGIA47M0qjNe56b4x0fQfAHxD+IcdjFf2c+heM43WO XaLxE1m1giO7B/gZCPb61+fHge38T+Kf20Rrd/eXN1rtj4UOs2s0uMiOwG+LHA4AhUfh3rxeH+Jq NOvmNKN37ajN+TtKMkv+3mtF5H7h4c+HrxOVU8rx+IUZYet7yb9604Ss15RcYpv0PM/E+leN/hp+ 1X8UvhiLqwk1HUbx9I154kZkuIPtKX8pTcAQGKhhkDivrrT/AIe2/wAQ/jr4K8YaNpsVx4E8Ea9D b6xM8inMcmshLVSO+Y40zxgAn1r6C/an8Az+Nv26PAvjXw5okN7pmj/DPU9U8S30YRBFC1peC3kk yQXYv8oxk9O1dj+y58GtUuv+CXnil47i1/tLxvGup6M6nJjaIK0CSZ4H76I+owa+m8XOI6ObTySO XLl5cPeryu79pCTiuZ93a66pSOPh3hnDZbkubPFxarNQjQv1i23P8/zPhr9pnw3N4O/4KZfFbTLd bdNP1zU7PVo128AzwAdfUMJCf96vP/CvhfxJcfFGx+K2m6bfX/hrxkdav3ulQGKB4LmaFuRyMK8P X/nqMd8e1ft2WPjG01NfGXivw8/hfV9fuDJbWP22K4eOGK3tIeXjJA+cSY5zgg8Zr6S/Zo8DX8/w U8PeAbe3SS70PwbIZIpWAEUt5qkE0gJPfbbPx7VxZTOvhcsrZ1Ua5sZUVB3ve1JX5n8uT7me34kc TzrcN5LldGOsKNZ2ez9q3Hl9fck/mvMy/wBnkN4t8deANDkkFvLd+GJPPG0/u5DpP2Zjj27j2rx3 9vvwjbeAfBXgbxVYm7lufhZ4v0HXPNVQImjeW3hkkYddzSohAz/er6f+BGj6k/8AwUz8Qzx2kraX pltq0ks6riOIvfzRRr9SAQAOyn0r079vbwfpPiL/AIJWfHCOW0thq1zoURgm2/PJLbzLNCuf94Nj 618hwXjalDDOnPZu3k3om/zPz/Psm9pm9bEwXLKFWUtt4P3nFdt18kfHPwrvbSH/AIIo+OFuWR7G 0+Js6Pk8FPtKs36E18ffsuarq9/+2p8a9a1PUby5hN7Foj/aJC7SyWtpNFECTkkJyo5xjHtXLeAf ileJ/wAEqNN8PR+IoGj1KfW9Q1TTkuU3u0VtZtHMyfe4bzAD0yW619Y/sF+DLLxP+whqPjGHSZD4 j1zxIL7V5jGWkkaXWGCN9BFF1GOCfWvvMdTwmMxVTH3vzV6ttdGvdkm1/wBvafM+C4gxGZ1clxOD w94p+zv3vCU37vZNSs7b6X2R93eKvHGtaFqnw1+H+taOGXRdb0y2vNSP3WladFt2jPo8W4n0PB6V ryaj9u/4KK+L9EuoY57C61fTIijqCjmCwDSIQeDxcrkHtXtXxx0C91n9lTximkWQu9fs7EX2mIkO +U3FuyzIFAGSxMYAA5Ocd6+Ov2dT4y8TeJPCvjL4grMfGJ+IGo2mrGRArGWOwjjwQoA4EAHTtXyj zOM8xhR5LXhJ36Xs/wAdjHNMtxeCqQoOpKopVKUk2tFCLUORv5389bngf7TPwV8Y+Bf2rPGnxk1u PS4fCOt/ErwzNoc0FyHkcJIgk3x4+TYUxzwcjFfSPi39prw/8Wv+CZ3x+8VR6IdHstA1+Tw/bxyX olXU1SSB45QQo2CVG6EHHPJr6y+OHws8LfGf9nfWPAfi28n03TruSKWC+gZVltLiOQNFIm7gtuGM HrkivxB0LanhDxN+zxpV3c3Nhq/xR061UtxPdWca3KPckDgHAtzx39hX6zj+JMFxNkWHwmNi/rFH 3E1pGNKMYRTfdyso+rv1P6E4C4arfX3j6UrRoyhK1rtvmcnqtlFJyfkjwn4g/E3XtY8ZeGZYZLZN P0yMmyjlgV2+eGC3fcT94bbaLAPAIJxzivS/jD448cfFZ/h/8RfFdvY6Ronhy1j8PeHbW1JdtRS2 crdXLEt8pLgKTgZICgHYxHgOveGtcPhuPxFDYyvoMF1bae14WG0XE0TzJHjOclUds9BjryK+zPiD 4GTR/wBhjRIJ5Ekv/D9tC98yfdFxdXerSSDPfnbzxnivqeIsdlmQcG5LPBUKcq+IpVKEm1dpOSU0 /wC9abWt2r3P1HL8BLO+N8wo46clRw+Ip1IK9knyXVv7vNCN0t9Dntf8JaH8TP2XfHvj6/tLu01D RtC1DX9FiiuMrBI+o2iuj8DeojuG7D7oNfrZovgfRdX/AGf734xw/aR4k8U/CO2s79AQY5B9jEof 138hTzjCjvX5peG4X8Of8E3r/UtUSNLTxJ4P17TbVd2TJmXTVGR2IO8jPpmvo74VftW/D7Wv+CXV /wDDvTNY1A+PvD/wbuLm7dbdkigkSFoFjWQ9ZVLRscZHPU4IH559VxGeZDLLaEHUeCruytdQhUXK n5K8H967n4NgsbLKuKcwpxnySqVJOWu6lUcrPv0fyP0T+Fs3n/s2+AJj1fw5ZMfqbeM13ykfjXgX 7MS6oP2BvhaNWvLm9vv7FXdLPIXcrvcoCT1wm0D2Ar3xRhjmvz2dL2cnC+2h6maw5MdWj2lJfc2D Ak+2O1fKnj3xAur/ALdv7NVqNE8R6aYNb1o+df2Bhik/4lFwMKxPJ7j2zX1dXzn8Vv8Ak9v9l3/s O61/6Z7mpOET4rf8nt/su/8AYd1r/wBM9zX0bXzl8Vv+T2/2Xf8AsO61/wCme5r6NoAKKKCcAk9B QBHgf3V/KjaD/CPyrzm4+Mfwrtb+a1ufiH4Pt7mGRo5Yn1WIOjKcFSN2QQagPxr+EYHPxI8Gf+Da L/4quf6xR/mX4HoLJse9VQl/4C/8j0/kewrh/G3w88IfETTdLs/F2mTaiumXwvdPkt9QuLSa1n2P H5iSwOjqdkjrw3RjXXWd9a6hpVvfWNxDd2dxGJIJ4mDJIpGQykdQR3ryX42eNfEPg34X6MvhEabH 4o8ReJLDw/pl3qMZktbF7qYI1zIgIMnlpvZY9y732qSAa3TvqcDTTs0a2g/B/wCGnhd9PbRPCGlW j2NrfW0Duzyu8d68Ul2JGkYmUytDGXaQsx2Dmuq8JeFdA8EeBLDwx4X06PR/D1ihSyso5HZLdSxb Ym9iVQZwFHCjAAAAA+cfHjfHvwJpGiRQ+N9T8W+H7vUca34g0jwRb3Gq6NAlvK37u0jOyZJJhEu4 RM0Y3ZDbtycn4n+IXxXv/h98NvFvw78V+IfGXw5j0fV5vGfiPw34a06PUPtFvPAkIazvmUxlFW8W SJFMm6PG0HApiPt8EEcc0tYnhvV7DxB8PdD1/Sr06lpep6fDeWd55ez7RFLGrpJtwMblYHGBjNbd ABXgnwE/5B/xc/7KfrP/AKMSve68E+An/IP+Ln/ZT9Z/9GJQB73RRRQAUUUUAFFFFABRRRQAUUUU AfK37V/xDvvAvwIitH1r4T+HvDfidbrQdSvfGviC70z557dvLjtWt7eYtKUW4bkDGwEZ5x8GaP8A GCbxh8Pfgv8ABnVviX+xlPomkeJdAQtoOu6mt9dCyu4GgW1jazCRzu8aDqASWUbQ2R97ftZeLPhV 4Q/ZtsLv4t/DLVvinot5rcVtpuk6bpBvJobwxyMlwHGDa7VWTM4ZSoJAJLYPzH8APjHp2nfHmzGq /FW70TwJqES2Oj/De703V/ENzb3ksirHK+r3NshQAnHlgugDD94AKAP08IOc+/Q18TfEXw14M8e/ tReGPhn8L/CPh+x8T+HPF9n4s8d+MdNsIoX0AJJ9pEBnVQ0l7e/6togSRBLIzkAoH+2Rxn1zXzBo fwe/Zd1P4/a5rHhiPwzd/EE6yda1mHR/GFwZ/tgkDGee2iududwUHcmMADGOKAO4+NPwt/4XD4E8 PaPaeJrfw1eaP4kt9Xt7t9Lh1FGltw48toZfkbO853A4x09OE+BvifW774b/ABl8C+Ix4fvtV8Be I7nQ5Na0TSk0601ZWs4bxJvs6ErHIq3IikCkjfGx4zgdl43+F3wMg+EmoWvjvS/DujeDz4hl166u NQ1Z7GGPUbhn8y58/wA1CjuZXHDAfMQB2rq/DHhTwJ4O/Z2k0b4b6Xoel+EvsM9zZrpbCSGYyhna bzASZGcksXJJYnJJoA8v/ZS8Ri7/AGDPgnpP9ieI7Qw+B9OBu7qwMds+22jHyvnnPb1r6aHI5rwj 9l0A/wDBOH4F/wDYjaZ/6Sx17x2oAQ9K+I/2/cn/AIJ8avD083U7VfykDf0r7cPSvin9vxYF/wCC dWtXs28tb6zp/l4P9+5SNuO/ys344rfDV/Y1FU7XfzS0NsLgpYvF0KMd3Up/hOL/AEH/ABn077N/ wRSkglXD6f4O0psH+FoxbivJPhheaRp3/BSfXfH+sOsGheEvgfZreXewsYGZ4WOAB/cikGByeOK+ jv2obM2//BLD4k2FnGW8jwzFHEg7hXix+gr4n0gTeIfC/wC0jp+mSMt/rOg+GPD9rIoyVM880TY9 cAHivXy3Ezw+CzDErW1O1vWSPH4oxEqc8JUte8q7Xm4wg7fij0P4uXEF/wDtNavq0TiXT9Y8XWuh rIOkiS2mkzqv4+STX0H8K/GngnUPgf4L+B3iK7mi8TSeGp7W8syrAD7JLJbSxGQcLIDC7BepVCRk CvMfhx8PV+L3wCtdRS8t4b/TvHWi63bXMu7aWtbCySZOOpKiVPTP0r0f41fAoX2l3viP4aadNZ+O da8TWEmrXMM2MW7I9ncyKCQEK29xO528k88k1+a4OGJpyeLpLfX5X6ef+Z81h8NX5amIhFSU73T6 pvVL+up8rePL74mfFm6uvFrabeaB4di1/TvDWkmAulvq+j3d9IRKy9GYAWpz/CR2zWb418Nw6Fpt nr+q2kdq2oeELubWJmG0slzHc2wBHuWj57k1+r+n6Vp+meG7DSbG1gt9OsoUhtYI1wkSIoVQo7AA ACvEvjF8KNO8e+HPGj6sQdMvPBc2mGOLiVZFmFwjqSMDBQV9Bg6U8NgsRT5rymt33Sf/AAPuObFc EuvnGCx86jnKnOndPa0Zc2nbql6n5n/8EYbhx8D/AI0abIMTafrFnDIh/hIScY/Sv0x+Pnxz/wCF I6H8N7w+Hxr3/CVeNrLw6QbvyRaLcby05O1i21UJC45Pcda/Mb/gmBMvhj4q/tneH1dYmtH0vV4B 0JE0F47MPYMFFd1+2d4s1O4/4JUfsx+KJr2W613/AISKw1D7XcHzGeaKxuDvbP3juwTmv0ng6nT4 q4rwOFxEb+2jFPW3w01Fa/JM+vzqvDLva04P4bv7pa/mef8A/BWzXF0rxD4alMnlTf8ACBalHCQc fNNdW8X8ia/QD9lH4R6PoH7AXwBXVLFxq2h6DFdWq7yqxyTRLuYgcHIwRnpmvx3/AGxfFXiH9oe6 /Yth8QmwXXviBYWmm6g1nCUiDS6y8JcLk7R+63EZwOe1f0dWFlb6bolnp1pGsNrawLDDGgwFVQFA HsAK8zifB1svxMcNU+OEVB27xlNP5XOOlhqeMqe0krxvdJ92oWfqrHy3+2j4X0rxL/wT/wDG6anp tjqS29sJVFzAsgUBgTjI46D8q+Ev2Rk066/4Kd+ArK30jSba10n4VCezaG0VGiaS3tYZNuB8oPlZ 4wSXbPWv0v8A2jrI6l+w38TbUKWd9Dl2j34r8zP2H83H/BS+zkPzG3+FbKT9LpEr2eDaUKuDxzqK 6jRqNX6Oy1X3mmLp0pTs46xqQlf/ABRqR/8AbWfoHeeBtO+Jf7TnxXXVLrVLF9Hi0e10fU9OuWhu dPuY4Z5/Mjcdx9rGVOVYHDAgkVyX7Snga08I/wDBHz4t+GbK6vdVdNIku7q9vCpmup5LtZ5pn2gL uZ2Y4AAHQDAr2n4YR5+JvxqujkmXxnsyfRLC0X+lanxo8Iy+PP2TfiP4OtVze6v4du7e1UHGZjEx iH03hf1r4rg+vRwmdYTGVNFGrGTfkpp/oVDCQqUakre9LmV/mz4a/wCCaUba98Afih4y1WL7Tq+p eJ7ezluZRuMsVrY26xDn+6WbFfpiUAxyTz3r4K/4Jv6O+lf8E2dOuJoJbe51DxDfyyrIhUkpL5We QP8AnnX311r7fxbxVPEcYZhKn8KqOK7WjaNl5aaeReTQksDSc/iau/V6nwZ43+AfiTWv+C4Pwy+M Nposkvgmw8NSSapqYmQLFewpPFDGUzuJKyoQQMcHnjn0f4VeEdC8ZeF/ifpuvWjXFunjq7ZDHI0b IVAXIZSDyCQfUEjoa+p3HJ47V4V8DY/Li+JqgDnxteHj32mvEx/EmMzDCU4VX/AhCnG38qlJ6+fv M+dzfK8NPNsKpxUlN1G09d4JfofF/in4V3lj+2X8P/ANprF2umJq8cE2oCP52aW0mmZiCcFv3A6n 3rI/4KbeEbOz/Zs+EN3Yo4ktvEC6TEC3WP7JMyD6jYefev0xvvBvhzUfHWmeILvTIW1iwvFure5U kMJBDJCpbB5wksgAPrXxD/wUf8NeIfEf7I/gN/Deianr15Y+O7WU29lAZXG+GeFMgdi8iLn/AGhX 0vhPmlSnxtgq9WaUXNavRfBy6noYvh3LcNklLDYelZ04yTff95Kat6JpfI8w/aY8DXl//wAFc/2Y ZJ4FFjrfiX7RCSR+8NlFaSk+owS31rmP25F0H4R/8Fdv2Xvj/q99Do+g6rpeq+HfEF6ynYhS3c2z OR2Z7kLnoNmTxX6zSaPpN/e6Pf6hpOnXuo6axksLm4tUeW0dk2M0bEZRipKkqRkcdK+Bf29tL8P6 xP8ACew8UaRY63oc0uoR3Fndxh4pC32VUyPZypHoQDXjPOKmaLA4KlFQdGE437tucm/K6aj8rl4+ nDL8DiKkm3F6+idtvnqfCvh/x3oXxK/4OHP2d7Dwtqul6/4c8FeDrLShf6fMJYWupLea6nQOvDFW mKnHdSO1fa974YtvGXxZ8ReC9VZ7rTPD2vTW72+eIG1TWJ3kbHq0CAAnoCcdTXkFr8Lvh78Lf+Cw X7J2hfD/AMHaB4OsrjwZFeXkOl2oiFxcMLwPLIRy7naOSSeK+6/hL4XfTv22/wBpfWJ4W8rUdY0v yi/Q7bINx+MlfK8RZbTwGJwUqd37SPNL5qWnpokdfEGXwx2TZfhl8DTT9E21f/wFHynrnwouvh58 L/hj8Idd/wBIg1S+1XS5GVhm6tLjWtLcMcE7S8QY4ycZx2qr4I+FnhrQ/wDgs7rfw6svPfStK+G6 6dE8xBkkhksY0kZscbi0pJ4xk19K/Hq1luv24/2WbRVzbTa9qH2n12xwRzL/AOPRLXk3hhC3/Byn 8R2GdqfDe2PX/Yth/UVzcH8MUsbUx6T5fYU3Jeajy+76PmPZyjiaphM2xuKlC86y9lftzRUrr0se Wn4kjQPEvxt0Hxde2lpd6B8L28KpMQypdzRTGCJgDnBkSVWwScEnn1+7v2X7P7D/AME/PhJaHOU8 Owkk9eST/WvjX4o/CW6T/go4n9sabb3ui+Nr3U7qK2+/9oht9Ot2XKjkETg4HsDX3p8FdPm0n9kr 4aafcwSW1xB4Zs1mhkUq0bGFSVIOCCCTkYr4zIqeJ+uVfarSPMl96a/Bo/VfFfE5bVqZbUwX/Lyi pytayfuwcV5qUJ39VbY8Z+NXgbwr4/8A24vgn4b8Y6FYeJPDt3o2tm6sLyPdG5jW1ZG7EENg5B9f U1H8BdPkh/bS/aik8tY7G28Q2NjZqowqKLb7QVHtm4/lXvmteCYtV+Pngzxy980Mnh+zvbdLYRZE 32oRAktnjb5Q7HOazvAvge58K/Eb4pa5cT20y+KfEaanAsRO6NBZ29vtbI67oWPGeGFfRVYV5Spx cm4Rm5Wvorxs3bbXS/oj8vz2osV9Q5dfZRaflrUa/wDSkfNfg3x3qWg/8FC0+GtpKYNEuNV1ubU0 WMbZJZSJ7cFsZyAk5Azj5j14rt/2jtR0bxx+yfY6fo2oW2q6ZresCGOe3k3Ryi3WaWRcjqB5Dg/S uf8AjB8HNQ0HSvGnxJ+HsF/q3xD1PxFb38absNCrW7WO2MAcKgnklz6k5OBxynhbw/pun/Grw5+z 9Gs8Vh4d1fVb2FWk3SLZzaZiOTntvvJAM91PpXn4OviMNWUKi05tPS6svuTbP1PO8qynNsvWMwU/ fjSalHS7lGEnOb6255wUe6v2Pw78d/s5fDi18DeK9U8Nrq/hu9s9Tv232d+x8238rTwLfDZHlhri U46/NjOOK/oa/Z68D+F/hQ3xE+Hfhq0TT9F8P3ljDp8LNudbYadbkZbqcv5rE+rE96/GL4q2Z0jT /H2gxZb7Prd5aDP3j89lECfcmP8ASv1S+NfhfU/Av7RGpfFm012dLXxL4ZvNE+wRgjyZY9MnkSUk 8ZLQIBgfWvtM5VOlkeHxdKPxV6yf+CMaPL9zk/vPxDwXwVXMqNfAY+retGFlJrmbnFptLtdRlr/m fVWg/E3wlr3wT0X4gQ6h9i8NarIkdnPdIULNJP5Eakdiz4A+orifGNnp3w0/Zx+LOueFrjyNWCX2 teYxWR7a7ljyGUY+XnBAPXPevjS58d6B4Z/4J/eHvhqmq26+KdI8X2rnT8kulpHrKYYn6FcZ5PX3 q/rc7r4a/a4kt3ea78QWCSxqXJ5jvpbLp/3yK+Aq5zzU9ryUbu3RuMvzasfv1HwwoxzFVJtqmqzj BSXxQVSnFPW2nLNu+qdihffE7xN8Vv2b/EnhTRNaW7+Idx8Q4JdAtGuAZjFFDHeLtU4xHujZR/Dn jvXlOgfDO68J/wDBef4d+FJbeCOJPCNpq12p58yaDTpUmce5mD19k/so/DHwXP8AsqfDDx5eeHtP k8YW4uJ7fVvL23BBeWMAsOWAQ4APA4r6ql8JeGJ/iRF40k0LS5fFsWnNp8WsNbqblLdm3mIP1Clu cfX1r6vgDM1gKFetjI+19vRcEukW7SjL1i9fkji8TM/o4bMqmWZQnSp0as+bRJuWtOSunrBxWieq cpH4nfB79nbxL8dv2Otc8P8Ah3U9M0u90f4jaZNfPehtkkEVh5Uu3H8SicuB/ERjjrX1JqfwR1jx H8AvH+leI9L1NIdc+K1tZRR2sLLKumJdlDKMj5RtllIbGMYNd/8AsG2q2nw6+N9rxut/iZdwHHbZ b264/Svu/aG52g+lezxBmmLxaoYWpP3MPKcoWS0c7Nt99lbzPNzbiitl2d42pRir1XTbfX3EtvW/ 3H5wfFX4D/8ACMeCPhV4F0wG88PWN74kuEjVGKx2r2EskETsSTlSkfJPzFfeviz9rCXwb4D+InhB vBel6B4fh8TfBZNMvrPQ7OK3H2uV0m3SrGB8zRvEckZIxX7xatYJqPhrUtPZVxdW0kOWGfvKV/rX 5J6r+ybr2sSeFfjr8R7LUYovCEobxD4ONyqzXFrYCGFZYpcMrqY7ZX2HaXQY3AnFen4X8U4Phrif 65juZ0akZudtdUvdv/29+b7H4bxHTxNXF1MRGPNOq05PslbU/Uj4a6FL4Y/Z48B+HLhNlzpfh6ys 51/244ERvx3A13Y61UtbiC60+3ureRJbeaNZInU8MpGQR7EEVaHWvk61Z1akqj6u/wB59RdvXcRm KnpmvlTx94iXWP27f2arb+xfEWmG31zWj52oWBhjk/4lFwuEYk7j3+lfVpGetfOnxW4/bb/Ze99c 1rP/AIJ7mpGJ8Vv+T2/2Xf8AsO61/wCme5r6Nr5y+K3/ACe3+y7/ANh3Wv8A0z3NfRtABRRQeBmg DIbRNGd2ZtL05mYksTbJyeuelJ/YWi8Z0jS//AVP8Kw5PiD4IgupIZ/F3h2KWNysiPfxgqwOCCCe DkGoz8RfAeOPGXhrP/YRj/xprDT/AJPwOZ55QWjxC/8AAl/mdlHGkUCxxIscajCqq4AHoK5fxt4G 8NfET4dXnhbxZYNqGk3EkUoCTvDLBNFIssU8UqEPFLHIqukiEMrKCDXRWtzBeWEV1azR3FvKoeKW NtyupGQQe4NeDfH34ra58L9K+H39jXOg6cfEfiYaVc6hq2j3epR2cf2S4n3rb2rpLIxaFU4OBuJP ApNWN1JS1OgHwU0gRFh45+LQv96ML7/hMbrzQqK6qmN2zbh2zlck4JJKgipJ+z94GHw1tfB9jqHj fSPDaQ3Md7Zaf4kuYRqX2mVprhrlg2+R5Hdyz5DHcwzg4rwub9obxsfjh4b8Fw+Lvh3DDfeFodXG ryfDvW5Beyy6hc2vlJbrch7dVWFMvMxDFiRgdPuBGLE5JP4UFFXS9M0/RfDen6PpVpDYaXY20dtZ 20K4SGKNQiIo7AKAB9KvUUUAFeCfAT/kH/Fz/sp+s/8AoxK97rwT4Cf8g/4uf9lP1n/0YlAHvdFF FABRRRQAUUUUAFFFFABRRRQAhAPUA0bV/uj8qWigBjnB/wDr18SJ4W8IeNv27fANl8I/B/h7w74d +FGtXV54q8WaTp8Vqk95LaTQf2LA8agzkm4864PKo0cakmQkL9tOCSMGvBvCX7NXwT8B+NrPXPB/ gz+wNTtLyW8gNvrV95KzyljJIYTOYyWLsTlTksT1oA4r4w2um+If2/v2X9D1+Cy1fwhMfEV2LK7j Wa1n1GCzgFqWVsqzrHJeMoPIIYjpw79niGzsf2efi5pGhpGnhHS/H3iO00CGA/uoYFuHMkUYHCxp OZ0VRwoXAGBivU9Q+CHwo1D4Hab8Ob7wXpkngzTbs3mnaeJJUNnO0kkhlhlVxJG5aWT5lcHDsOhx XS6d4X8OeC/gbJ4X8I6Pp+g+HNN0uWGxsLGMJDCu1iQAO5JJJPJJJJJJoA8c/ZS8QC8/YO+Cmkro fiW0MPgfTh9rurEx28m22j+65POeo9a+mh05rwn9l3/lHD8C/wDsRtM/9JY693oAQ9DXw9+39KLn 9hex8NRn/TfEHi/TLG1X+84lMuPyjNfcDHCE18bftY/D7x78RfEnwAsPB/h+XWNK0j4h2+r69cLN Ggs4YkZA5DMCRiR/u5PHSvTyilTqYnlqNJcsnrtdRbX3uy8z0cnxCoZhh6stozi36KSb/A9n+Nul jVv2JPiFprjhvDU7Ef8AXOPf/wCy1+df7Jz3niT45T6XDBLcyTeIoNW1JjgRx2dj9sVSSep865tw FHPU9q/Tb4mwtP8AszeP7WIbpJPDV6iD/aNu4Ffnf+wZbBP2gfGcjD54/DwJ9vNnjf8AmhrOjifZ 5fiKX8/IvubZ8VxHUnLG5dT6c1b/AMmjT/8AkT76+EfwusfhL8Nrrwvpmo3OpWL6tc3sLzqA8Ucr 7khJB+YIoCBupAHvXqo60uOOMUvOea8ylShTgoQVkj6CjShSgoQVkthap3lsl3p1zbN92aJoyfqC P61cqM5yT71cldNGik4u6PwR/Z6uL74U/wDBZD45+ANUSKGbVfg7fRyGFyY5riwdiZBkA/dSTGec Guk/a01AXP8AwR5/ZQjYjEsrOc/7FtIv/s1cF+0TqEfgH/g4FtdeWVbXT7/S9Z0a5mbpi50aZlX6 mSQfnX0lNouna74E/wCCd3grXdPstX0+41fU47uzvIVmhmWBWUqyNkMM+or7fwkzKlgOOsHiXG8a EKkmu/JTcv0Plc79pi6jjJ29pCT++ol+dz5E+EVrH4y/b/8A+CcujzRC6tdO0jVruZG6D7Nfam6H 8HCmv6Me3vX83n7Atvd61/wWxsdLvZGmtvAeiX9rYKeBC0s7mQADgZLyfnX9IX8Wc11eKVWNTijG uLvH2k7ejk3+p35HVvR5GtYqK/8AJUzhPijaLffs5+NrZxlX0efIPshP9K/Jz9gUed/wUh8Q5XBt /hkePTdewH/2av138bQyXXwd8VW8YLSS6TcIoHcmJgK/JT9g23a2/wCCpvxQtSCDb/D9IiD2/wBJ s/8A69dHBMG8szSX8tGX4ygjnxmLUcyp0P57S/8AAFNf+3n6dfCdlmi+Il6OfP8AG9/k/wDXPZF/ 7JXrY+7XjPwRYy/DjxTcH/lr421lh9Beyr/7LXsw4Ffl+F/ho9nB/wAGIiIkaBURUUdlGBTqKK6D qGN1NeQfCSHyW+Ia4xnxddH8wpr19jg15t8PoTbX3joFdu7xPcMOPVUrqpStSqL0/M8PMKV8wws+ zl/6SemUhAI5ANLRXKe4GK/Pr9vu1b/hX/wz1JR8sXiBbcn3kkgb+UZr9Ba+Fv29FL/s7eAlAy3/ AAm9oR+CSH+ld2W13RxMKi6X/Jo+W42dsixL/u/qjyfx0m7/AILk/ssRjrD4Ciz+d7X6gYAJIAye px1r8xvFq+b/AMF6f2f48cweAYj9P+Pv/Gv06r3OK3+8wq/6dQ/G7PtEksqwX+GX/pcjxzxz4N1H Xf2n/g74mt7Xz9M8PT6jJey7wPJMtrsjODyctxx0rwvQfhb47s/+C4/jv4rXGhPH8P8AUPAdvZ2m refGVluF8lTFsB3Bh5bHkYwAc84r7WIzSYNeNk2aVcseJdJJ+2g4Sv0Tte3n7q/yPJeDpufN1vf5 2t+R4x4s8FaprH7XXwl8YW9vHJpWgW+qJfSmQAxmeGNY8L1bLIenSvZlGDRg9qcBj6V5cIKLbXU9 TEYypXhShPamuVel3L85MWiiirOYRvunHWsNNB0ePxrL4jj0ywTXJbdbaW+ECid4lbIQvjJUE5xn Fbh6UzGWFKy6lRnKN+V2vofzvfGqHzf2hfiRaAfK/jAdP+mmqKn9K/Wv9r5vI/Z10K73bRDqcik/ 79lcR/8As1flr8abPyP20/GFgVGZfGmnKw9d+rof/Zq/Uf8AbRgkk/YtV4z+9XX7BBj/AKaSiM/o xr2eJEocGYZdqmIf/ppfoX4J0Iw4shF7Tq2/8Ccl+p85ftNfBOx8KDw/4l0mSWe41rxFeXl4WG3y 8aesqpx1VTZ7ue5NWbhkOnWsjNgeLbzUbBMn7+3xPaMP0c199fEbw7D4i/Z+8Uaa1rb3N2+hXSWb SIGaOR7d0DKccHDYyOxNfC/hLQp/EXwj/Y21e4U5vvFN7LdgD724z3fPtvt1P4V+Z4nA08LiJqnH Sok7ejjF/wDpVz+ieH+LcRm2TUFi564eUo3b1adOpVj93s0vkfcPwf8ABV38O/2a/Cfgq+uLe6u9 KtWhkmhzscmR2yMgHo1el+ue9N74JNPAr7ClSjThGEdkj+e8fjauMxVTE1XedRuT9W23+LPMfhh8 OrD4c6L4mtLG3sIW1jxLe6vO9tDs8wzybhv9WAwufQDHFeoUnOecUtaa9SMTialerKpUd5PcQjnv VDUtPttU0O90y+jE1jd27wTxno6OpVh+IJq/zu9qCMik1c5mr6Mw/D2iweHPBGj6BaTXE9pptlFa QSTvukZI0CKWPc4Aya3B0pMHPanUJJKyHFJKyGMCT3xjtXyp498QLq/7dv7NVr/YniPTDBretHzt QsTDFJ/xKLgYRsnJ7j2zX1dXzn8Vv+T2/wBl3/sO61/6Z7mmMT4rf8nt/su/9h3Wv/TPc19G185f Fb/k9v8AZd/7Dutf+me5r6NoAKKKQkBSSQAOpNAFBtM09mLNYWjMTkkwrk/pTf7L03vp9n+MC/4V 56fjn8FAxVvjD8K1YHBB8V2Wf/RtIfjn8E+/xi+Ff/hWWX/x2nzS7mPsKf8AKj1GNESEIihFAwAo wBXl/wAS/hq/xCm8HXVp4r1rwbrHhjWv7V03UNNt7aZhKbea3KulxHIjKUnftnOOa9C0fWNI1/w3 aazoWqadrWkXaeZa31hcpPBOvTckiEqw46g1g+O/F+neAfhB4l8Z6qGew0ewkuniQ/PMyr8kSeru 21FHdmApGqSS0OZ8KfDWXQfi/P461rxjrvi/xPP4di0S4ur22trdJIYrq4uY22QRoocG4ZMgYIUc ZyT6tXz/APD749aH4m8OWkXjLTJPh343h0q/v9d0G7nNxHpv2CcQ3afaQipL5e+J8gAmOVHxg1V1 X9qT4TaNog1O9uPFZ02PTtPvr67h8N3ckWnpqG02iXLLGRFJIHQ7G+ZQylgoIoGfRVFIDkZ6e1LQ AV4J8BP+Qf8AFz/sp+s/+jEr3uvBPgJ/yD/i5/2U/Wf/AEYlAHvdFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFfGWq+BfCnhr/AILT/DrxPoejx2Ov+JvBHiCfXb0TSO168UmlpFuDMQoVSQAoA+Y8c19m 14F4i/Z58F+I/wBpSw+K9/rvxMi8WWBIsvsfi+8gtLeNjCZIUt1cRiKQwxl0xhsc9aAIP2ifhFqn xm+EXh7w7pbeD3fTvE1pqtxa+KLKW7sLuOHfuiliiZWcHcDjcvTr2PK/ADVbSD4I/FL4cDwP4Q8C a14D1260fV7LwnE0ek3MstrFepcWyv8AMoeK5iLK2Sr713MBk+o6r8H/AA9q/g+XRW1/4i6dG/iG fXBdWHi29guY7iYvvRZVk3C3HmMFg/1ajbhRtXFrwt8NvCnww+DHiDQ/Clpexw3Qub6/u9Qvpby8 v7mRSXnnuJWaSVyABlmOFVQMAAUAeX/sn+NdA1L9hf4LeHrKXUn1O28D6eJVk0m6iiyttGGxK8Yj bn0Y57Zr6iHIrwj9l3n/AIJw/AvP/QjaZ/6Sx17x0FACNyhFM2Lgg4NSUY5zSaA5/wAT2v2r4b6/ agbjNp06BfXMbCvz1/YYsYx8XPiJeom3/inNIBOeu83B/wDZBX6STxrJbSIwyrqVYexGK/P79iCy eLVviHc4faNM0e33EdSkU7f+z1Mr8rXp+H/DnkZnQ56+Fl/LN/jF/wCSP0HopOce9c54U8Qx+KPC Z1eG3ltY/t13a+W7AkNb3UtuxyPUxE+wNWeudJUbZ3fdzzUlRk/vMc/WgD+en/go1o4g+PHi/wAZ yOsM2jeKtNu4HBwzR4ht5l9TkXCn/gFfSGl65fXn/BQ79lvwXci1EHhPxz4ht7Lyhg+TLbxTjd6n Ltj2FeA/8FCrK38U/tA/tEaBKtws3hzwhaavaYfAaZmicnA7bExz3Ga8Y034v68vjH4M/EzRtQkg 8Qy6Zd6tFdoisYpFtQs7YYEEhY5BzX3HD9DD5fnNXEVlytYebXmp0Gvvuz5jDU1QwntZJzsqnNfe LhWU4xXdNPT1Z7h+wBpkVr/wXY/aOlSMLFB4n1fTo8djBPODj6nmv3842g+1fz9f8EpjeeJf2p/F fj3Ufm1PX7u+1a6OerTtPuP4tmv6BMHA9K+PxVV1p87lzN6tvq29fxOzJKyqqrJLRTa/8BSj+hDc oJtOuIiAQ8bKfxFfkD/wT6uk1v8A4KD/ABr11Nzf8UvZxEsuCCXiz+sZr9Y9H1pNbj1xYoJIf7P1 KaxfcwO8xhfmHoDu6V+S3/BMaGWX9ob9o24mO+W0+x227H3QZ7vaPyjH5V9pwdOpDLM3ldKKoJW6 turTSt+JpjYYX61QlKL9rqovpy2vK/npG3zP0o+BQB+BE9wPu3PibWZgfUNqdzj9K9lHSvGf2f8A L/sm+GZu8017MT6772dv617MOlfnOC/gQfkjtwP+7w9ELRRRXUdQhqCOJI95AClzuYgYyfWrGOa5 jSfEMWq+NfFejR28kUmh3cNvJIzAiUyW8c4IA6YEgHPpQJq71OnooooGFfFH7cduZ/2efBrhSRD4 ttnPtlHGf1r7Xr5a/a9sEvP2RZZ2QtJa63YvH9WnRD+jGujCK9aK7ny/GsebIsVp9lnzdr48z/g4 M+EsXXyPh/Efp8tx/jX6bV+Y98Vl/wCDjvwjbA5e18ARfJ3A8qQ5/Wv02YnFfScX29vhrf8APml/ 6SfZ7ZdhI9oy/wDTkx1Fc3o/iKLVvGPivR0t5YpNDvIbaSV2BEpktopwQB0AEoXnuK6SvkzkCiii gAooooAQ9KZ3p5+6cda5u316O4+KWr+GBBIJrHSbS/acsNrLcS3UaqB1BBtWOe+4elSwPxW+O2lF v+CjviaYYETfEfw9aBR6vqEL5/Sv0z/avsTf/snxQ4yB4o0gkf8Ab9EK/OD48SGL/gps0Dk7bv4w eGAPQ7bpTj9DX60fFnwlqPjb4SjRNNWJrkaxp90RK+xfLhu4pX59ditgdyMd6+z40wXLkGDox15l UfzlynmeFuewWcrFSjyKlWs/+3JP3vmej7Fk00xkZBj2n6YxXDeA/h5ovgX4ReFPCFso1O28Pqw0 +5u4laWMsXJYHHynEjLkY4Jr0JVAjVfQYo2gDpXxbpxclJrX/O3+SPbji60aUqUZWjJptd2k0n8l Jr5sYBgZzzUg6UYHpS9BVnOFFc5Nr8cHxW0rws0EhnvdJutQWbcNqrBLbRlSPUm5U57bT610dABR RRQAUUUUAMZttfJvjnxloPiT9vL9myx0mXUpLqz1vW2mFxpN1bKANJuFOHljVW5P8JPr05r60IBP NfOnxW4/bb/Ze/7Dutdf+wPc0AJ8Vv8Ak9v9l3/sO61/6Z7mvo2vDfi38OvGnjDxt8NfFPgLxP4c 8NeI/CGp3V1Edd0eW/trlLi0ltnQpHPCysBJuB3Hp0rF/sL9q3/opfwL/wDCEv8A/wCWNAH0ZTWV XjZGGVYYI9RXzr/YX7Vv/RS/gX/4Ql//APLGj+wv2rf+il/Av/whL/8A+WNAHCn/AIJ9/sZlix/Z 98D5JyeJ/wD45Sf8O+v2Mv8Ao33wP+U//wAcru/7C/at/wCil/Av/wAIS/8A/ljR/YX7Vv8A0Uv4 F/8AhCX/AP8ALGgD2bwb4N8MfD34YaL4L8GaPa+H/C2kW4t9N062z5dvGCTtXJJxknqa5H4q/DeD 4q+EtI8MapqlxY+GE1u3vtatbZpYptRityZY4EnikR4MTrDIXUk4j28bsjh/7C/at/6KX8C//CEv /wD5Y0n9g/tWf9FK+BX/AIQl/wD/ACxoA8x8WfscaXq2s6uPC3j7XPC2janqkF3e2tyZ9UuJIZIP smrW32m4uGk2XtqkCHk+U8QcBs7aw/jz8K/iHqvjPxp4Y+Gkesf2J4/vNFn1u3bQ4Gsrd7WSCKSV L1rhTBGLa2jDxeRIzFB5ZUsce1f2D+1Z/wBFJ+BX/hB3/wD8saT+wP2q/wDopPwJ/wDCDv8A/wCW NAH0WgO0565p9fOX9hftW/8ARSvgV/4Ql/8A/LGl/sL9q3/opfwL/wDCEv8A/wCWNAH0ZXgnwE/5 B/xc/wCyn6z/AOjErO/sP9q3P/JSvgWf+5Ev/wD5Y12Xwe8CeIvAXgLXbbxZr2keI/EWs+Ir3Wr+ 70vTnsrZXuHDeXHE8sjAKABkuc0AetUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcr408WeF fBHw21LxL411nT9B8NWqAXl5eviNQ5CBcdWLFgoUAkkgAGuqr5e/aYuINO1b9n/WdauLWz8F6d8V LKXxFcXjqttDG1nexWzSlvlCi8ktME8Byh4xkAGD4A+BH7L/AI4+GdnrXw4bXtQ8Ko72tsuk+Ota ggtjEdjQCEXS+SUI2+WVXb6Cu0/4ZX+Df/Ph46/8ODrf/wAmVz/wJurLVP2uf2o9d8Nz2954Pu/F OmxwXdoQ9vc38WlW6XjxuPlfGIY2IJAeNlPKkD6qH3aAPnb/AIZW+Df/AED/AB3/AOHB1v8A+TKP +GVvg3/0D/Hf/hwdb/8AkyvoqigD5zP7K/wcB40/x0eP+ig63/8AJdZ+m/shfAfSLSSDSfDXijSY Hbc8Vl421eFWOMZIS6GTgAZPoK+nKKBNJnxHd+Af2RrH9pOw+D1z4p1+L4nXsPnW3h3/AIWJrpun Xy2lBwLogZRGYZIyAar6p8PP2O/B/wAX9O+Gmq+JdT0DxbeyIbfRz8Q9ajbfcOzRhyt1sjeVy5UO QZGJxkmum+O3iLwvpv7an7LMd/r2gadeQeMtQluluL2KKSNDol8FZwWBCk4AJ4PFfOnxY1Tw9b/s w/t0+Fb29sY/iZqvjKM6Vp7Sql7fz3FppyaQ9uh+dwWWNUZQQHjfHKmgZ9ff8Mr/AAaP/Lh47/8A Dg63/wDJlJ/wyt8HOf8AiX+O/wDw4Ot//JdfQdmJF02BZTmURqHPq2BmrNAHyPqX7Dv7Mmtatf3+ s/De61e+vYBBeXN74m1KaW5iAwI5He4JdQONpJFZI/4J+/sirZ29unwcsFt4I3jhiXWb4JGj53qo 8/AVsnIHXJzX2dRVupNu7eu3y7egkrJrvv5nyR4e/Yc/Zj8JSGTwr8ObrwxIV2ltI8TanaMVyTjM VwvGSePeuL1bwl+xzoPxjHw+1nxlreneLxcxWr2E/wARddHlTTAGKF5PtXlpI4ZdqMwZtwwDkV91 18UftA+JvDfxV8Yaj+y/oWp6Fay3rWt38SNbuLmOKPQNPEqTLEhYjff3HlhY1H+qUmV8YRXgUYRj sinq3w8/ZB8J/Gm1+HWr+JNW0bxpqM0Tppb/ABD1tZGknJ8rzWF1tSSUodgdgz44zXa6J+xX+zj4 ZutQm8M+BtV8OzXxDXr6V4s1S1a5K52mQx3ILkbmwWzjccdTXzH8VtT8P2v7L/7dHhO8u7OD4m6p 40iXSLCSVUvr6e4tdOTSHtkPzP8AMsaoyDAeN8cq1fqBaeYLGESnMgjXeffHP65q4VJwi4xbSej8 /Ubim7s+dLT9kz4JWOmxWdlofjCxtIhiKC28d6zFGgJyQqrdgDkk8DvVr/hlb4N/9A/x3/4cHW// AJMr6LorNKyBJLY+df8Ahlb4N/8AQP8AHf8A4cHW/wD5MpP+GV/g0P8Alw8df+HB1v8A+TK+i6a3 Qc0xnw5458GfsgfDTxXDonjrxP4o8N6lJAtxsufHniApHEzFRJI63JSNMg/M5A4qPxZ4A/Y2+HXi 3S7LxZ4qv/Dmp6/HHdWxl+Iusg3URKRRzySJdELESURZZCF6ANxiu8/ajv7W+/Zz8daRp3xu8LfD C9sfD93LrdlfJaTm9tngbEMqyMJYkkUMoePDHf8ALkgV8ueFvEfgPRfhz+0hN8QNO07wLHrPwW8O T6VoWrz4ddL/ALDkhWzhMp3S+XcmaMgZbe65AZhQB9iD9ln4MsoZbHxywPQj4g62Qf8Aycp3/DK3 wb/6B/jv/wAODrf/AMmV33wZtdasf2Q/hTZeI1uU8Q2/g7TItUW4JMouFtIhKHzzu3hs+9emUAfO v/DK3wb/AOgf47/8ODrf/wAmVSv/ANkj4GanYGz1Lw/4s1S0LBjBeeONYmjLAgqdrXRGQQMHtivp eimm0TKKkrNXR8sj9jX9nr/hNh4lPgzW/wDhIxB5A1f/AIS/VftgjHAjE32neFxnjOOatat+zd8C NC8MajresL4y03SrC1kur27uPiHrSxwRIpZ5GJu8AAAk/Svpts7TjrXyn+0fqmqXOvfD/wAFXXgn xr4j+GmpXcuoeMrjw/pL3xlitDG9vp7oh3BZ5ijOT8pjgdD9+qqVJzd5O78yr6JdEeeTeCv2MtN+ B2i/FWTxNrFt4L8TSJ/ZesRePddJ1Z9pVfLRbnzJWCxt/CSFQ9AK9L8O/s9fs+eLvA2leJvDFx4q 17w9qVutxYahY/EfWpYbiNhwysLzBH8jkda+OP2ZfFGjpp37EuueJIrrw54ZtfB3ijStPu9bh+yW w1JpbaRdjuQp32yXIQ55CSgd6+yv2SZLa5/Zg13UdJIbwzqHxB8SXnh+RGzFNZSatctFJEehhfLM hHG1hjioA2P+GVvg3/0D/Hf/AIcHW/8A5Mo/4ZW+Df8A0D/Hf/hwdb/+TK+iqKAPnX/hlb4N/wDQ P8d/+HB1v/5Mo/4ZW+Df/QP8d/8Ahwdb/wDkyvoqigD4v+IXwx/ZX+FVrokvj7VvGXh/+2LtrTS4 28ceIZ5LuZY2kZESK5ZiQisx46A1iap4B/Y+8P8Awu0r4mavrfiTSfD2tMlpp+pXPjXX4575laQr CkRuPOfafNbbt4G9sAEmvbPjL4M8E+KvFHw+v/EvxN1D4Za9oF5d32gXlhq9rZTyO9u0ExAnVg6q kvIwQNwzXyR8MviNea/+0V+zl4z+J3iyx1zQ7aPx14f0HxjeLFaW2rS297bx2t2xULD5s9nbzMrI Ar7ZSgANDQHtOl/sifsmeP8AQ9I8c6R4VTxdZX/lajpuuxeLtSufPI+aOdJvtJJYdmzkH0r0H/hl f4OEnOn+OznnP/Cwdb/+S6y/2R3tp/2XNc1DS+fDd/8AEDxJd6DIv+qlspNXumiki7eU2SyEcFWB HGK+oK0lVqSSUpNpbeREKUIX5Vb/ADPnT/hlb4N/9A/x3/4cHW//AJMpf+GVvg3/ANA/x3/4cHW/ /kyvoqisyz51/wCGVvg3/wBA/wAd/wDhwdb/APkysDxN+z/+zx4M8Dal4m8V3Xirw/oGnxebeX97 8RtajihXIHJN51JIAA5JIA5NfVNfFH7aUOszeGvgPJa+Kf8AhCfC8XxZ00+J9deGKSOwt2huEhkY TAxg/aWtwjupCSMj4+WgDGj8E/sbXHwmuvii3iHxBF4X0+4/s2XV7nxxr8MkU0jRgWyo9wJSzt5O I1UlzswDgV33g74F/s4/EH4fWPirwXe+LPEfh67LiC9tPiJrZRmRijqQbsFWVlKlWAIIIIFfN8Xj LUpf2svBFl4q8eP8QPhX4I+NbWOn+M9RMCoJbnw5M8UFzPEqRSGG6maFZMD55YkOXXn6c/ZuurfU /iX+0vrWizwXng+/+KEjaJdWrh7W48vTNPhumhZTtZftcdyrEf8ALRX70Abn/DK3wb/6B/jv/wAO Drf/AMmUf8MrfBv/AKB/jv8A8ODrf/yZX0VRQB86/wDDK3wb/wCgf47/APDg63/8mUf8MrfBv/oH +O//AA4Ot/8AyZX0VRQB8n+LvgN+zz4E8CXfibxV/wAJ7pmiWzIs1wvjfxBOVLsFX5IrlmOSR0Fc p8OLn9jyw8SeI/iR4R8TySX/AIAtRLq2peIPEGryjQo7uN0DlL+QhGlRXUELuYcDqM/aF5c21lp1 xe3k0dvaW8TSzyyNtVEUEsxJ4AABOa/MpPs+rfsbaZ8fPFUH2bSviD8btG8VazJdqQltosd9Fa6U 0m4fu4kihs5mzhVZ3bIyTQB+hfgX4jeCPiZ4PfXvAviOw8R6XHctbTS2+5WhmXBaORGAeNwCDtYA 4IPQiu1r5Q+D17p+sf8ABRn9pzWvDd1a6j4Ye28N2kt5ZSrJbS6lFa3TXChlJUyLDJZh8cj5AenH 1fQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTWJGOvWgB1F fnt4J+InxRu/h38Hf2gdS+Iur32heOvHH9m6l4Lks7Y6dZ6deXFxbWa25WMTCeJlt3aRpCHzKCoy u30f9p34qeL/AAv8T/gx8LPBSeMF1jx5fai803hW2tZNTMFhbpK8MDXZEEJdpY90smQsaPj5mUgA +wqzNZ0zStZ8NXml67p2n6tpFzGY7uzvrdJoJkPVXRwVZfYjFfD2qeJfij4z/ZS+HE/wpv8A42at f6d4/uNP8fWssuk2niW2t4IrxJ7WR5QtrlLgW4DocOmCrEHJ91+EXi2y8W/sta0Yr/x3darpU99p 2t2njRIV1fT7yPdvt5/IAiO0MpVo8oyMrBmBBoAg0j47fsu+EtBi8PaF8V/gl4b0uyLRxabp2u2N tBAcncFjRgq85yAOtag/aa/Z0Ax/wvP4T/8AhU2n/wAcrA/Zg0Hw9P8A8E6/gfJJoujTTv4I01pG a0jZmJto8knGSa93/wCEa8Of9ADRf/AGP/CgDyj/AIab/Z0/6Ln8J/8AwqbT/wCOUf8ADTf7On/R c/hP/wCFTaf/AByvV/8AhGvDn/QA0X/wBj/wo/4Rrw5/0ANF/wDAGP8AwoA8o/4ab/Z0/wCi5/Cf /wAKm0/+OUh/aa/Z2/6Ln8JgPfxTaf8AxyvWP+Ea8Of9ADRf/AGP/Cvlr9tX4aw+MP8AglZ8dPD/ AIZ8Mabc69L4YmnsooLWNJGeErMdpwPm2xt9enegCz4k8c/sQ+MPE7a54v8AEf7MvinWjGsbahrE ulXdwyr91fMl3MQOwzgVt3fxh/ZFvvG2l+J9Q+IvwBu/EmmxhNN1afVNOe7s1weIpmJdByeFI6mu d/YyvvCfjz/glx8E/EdlpmjXgm8NQwzu1nGWWaHdFIrcfeDIQa928GfD3RPDfgr+ybrS9Dvpf7Qv brzRYIBtnu5p1XkfwrKF/CnJWdkY0akp04yas2lddn1RyY/aZ/ZzUYHxz+E//hU2n/xynf8ADTf7 On/Rc/hP/wCFTaf/AByvVv8AhGvDn/QA0T/wBj/wo/4Rrw5/0ANE/wDAGP8AwpGx5T/w03+zp/0X P4T/APhU2n/xyj/hpv8AZ0/6Ln8J/wDwqbT/AOOV6v8A8I14c/6AGi/+AMf+FJ/wjXhz/oAaJ/4A x/4UAeU/8NNfs7df+F5/CfH/AGNNp/8AHK8z1zxj+wz4m8UXmv8AiPXP2XfEGtXTBrrUdSbSbm4n ZVCqXkcFmIUAAknAGK+lr/SPCenaZcX19pXhyxsbeIy3FxcWsKRxIoyzMzDCqBySeAK5Cw8L+DvE Pi3QvHnhv/hE9W0SfS5LczWMEM8F9E7q0bxyJlSFZW+YZyGNNJX1Ma05RS5Y31V/Tqzzy8+Mn7I2 oeOtO8U6l8RvgFf+JtPTy7DV7nVdOkvLVTniOZjvQcnhSBzXTD9pn9nRT/yXT4T/APhVWn/xyuz8 PeAtD0iTXTPpOh3X2/WJr2P/AEGP92rhAF5Hbb2rpf8AhGvDn/QA0T/wBj/wpGx5T/w03+zp/wBF z+E//hU2n/xyj/hpv9nT/oufwn/8Km0/+OV6t/wjfhz/AKAGif8AgDH/AIUv/CNeHP8AoAaL/wCA Mf8AhQB5R/w03+zp/wBFz+E//hU2n/xykP7TX7OhH/JdPhP/AOFVaf8AxyvWP+Ea8Of9ADRf/AGP /Cj/AIRrw5/0ANF/8AY/8KAPnPWfin+xl4k8WWev+IvHP7OviDXbTH2XUtSv9MubmHByNkrksuDy MHir2tfGT9kjxHrOj6p4j+JHwD17UdLl83S7zUtV064lsn4O6F3JMbcA5UjoK99/4Rrw5/0ANE/8 AY/8K5PRfh7oml+P/GerTaXoc8Os3sFxBELGPMCx2sMBHTuYyfxoA5MftMfs7Fhj45fCct2H/CU2 n/xdKP2mv2eD/wA1x+FHI4J8UWn/AMXXqv8Awjfh3OToGi/+AMf/AMTXwn4F0LRtW/4L+/Gyf+yN KlsdG+HWn2aobRNsckrwv0xjOFevZybKPr9PEz5rKjTc9t/ejFLyu5GNarySiv5nb8G/0Ppf/hpn 9nrPPxw+FA9D/wAJRa//ABdH/DTf7OuOfjn8J8/9jTaf/HK+YtH0TRvhr/wXg8U6FNo2kr4f+Kng 2LUbSM2iGP7dZZU9RgHYkpwP76mvvNfDXh3aM6BopP8A14x/4Vee5N/Z8qPLPmjVpxmnt8W6/wC3 ZJx+QUa3Pfydjyn/AIab/Z0x/wAlz+E//hU2n/xymn9pn9nU/wDNdPhP/wCFTaf/AByvWv8AhGvD n/QA0X/wBj/wpreG/DoGRoGiZzx/oMf+FeGbHz1e/Fn9jvUfhzD4P1Lx9+z1e+EYiDDolzqOmyWK YYsCsDExjDEsML15rprX9o/9mqx0u3sbH41/B+zs7eNY4IIPEtmkcSKMKqqHwFA4AHFdtoXw80XS /HfjTV5dM0O4h1q+guIYhYIDAI7WGAqeOcmMtx611f8AwjXhz/oAaL/4Ax/4UAeUf8NN/s6f9Fz+ E/8A4VNp/wDHKP8Ahpv9nT/oufwn/wDCptP/AI5Xq/8AwjXhz/oAaL/4Ax/4Uf8ACNeHP+gBov8A 4Ax/4UAeUf8ADTf7On/Rc/hP/wCFTaf/AByj/hpv9nT/AKLn8J//AAqbT/45Xq//AAjXhz/oAaL/ AOAMf+FJ/wAI34c/6AGif+AMf+FAHz94m+MP7IHjaztbfxl8Rf2f/F0Fs5e2j1rVNOvFhY4yyCUs FJwOR6U/VfjJ+yRrvgSDw1rnxH+Aes+GIwgh0m+1XT5rNAn3AsLkoNvbA4xxXvp8N+HAP+QDog/7 cY/8K5W28AaLD8Yda8SHStDa2vdGsrBLb7BH+7aCa8kZ+mPmFyo/4BQwOLsv2jP2brDSraysPjR8 ILOxgjEdvBb+JLNI40UYCqocAADoBVj/AIaa/Z2x/wAlz+E3/hU2n/xytjwvo2k6j8SvHV5NpOlv p9vfRWVpC1lHsXyog0jLx1LyEH/drvR4b8OBcf2BovH/AE4x/wCFXOHK7HLhMSq9PnW12vudv0PK v+Gm/wBnT/oufwm/8Km0/wDjlL/w03+zp/0XP4T/APhU2n/xyvU18O+GmJA0LRCQcHFlFwfyp/8A wjXhz/oAaJ/4Ax/4VB1HlP8Aw03+zp/0XP4T/wDhU2n/AMcrN1X9oT9mDXNAu9J1r4xfBjV9Kuoz HdWV74hspoJ0PVXRnKsPYg17T/wjXhz/AKAGi/8AgDH/AIUf8I14c/6AGi/+AMf+FAHz1H8W/wBj 6L4Yt4Kj8f8A7Pkfgpk2NoC6lpw0/aW3FTb58vG7nG3rzW5pH7QH7MWg+HbTSNA+LvwX0bSLSPy7 axsNfsoIIE/uoiMFUewArvrj4f6JN8ZNH8Srpehpa2ei3lg9r9gj/ePPNaSK/THyi3Yf8DrB1/w/ oV98f/BWlLoOiG3tLe71O4AsoxjaiwpnjkZmP5VcIczOXF4n2MU7XbaS+bKH/DTX7Ow6/HP4TZ/7 Gm0/+OUv/DTf7On/AEXP4T/+FTaf/HK9VXw34dK/8gDRf/AGP/4mnf8ACNeHP+gBov8A4Ax/4VB1 HlH/AA03+zp/0XP4T/8AhU2n/wAco/4ab/Z0/wCi5/Cf/wAKm0/+OV6v/wAI14c/6AGi/wDgDH/h R/wjXhz/AKAGi/8AgDH/AIUAeO3v7Rv7NGo6Zc2WofGn4PX1lcwtDcW9x4ls5I5o2BVkdS5DKQSC DwQa1/DPxN+A/jyNPAPg/wAc/C/xbG9g0CeHtL1O0ula1RdpQW6EjygvBXbtA7Yr0v8A4Rrw5/0A NF/8AY/8K+e/iVpej2P7cf7MEmn6dptpK2t60Ga3t0RiP7HuOCQOlAHqN/rXwj+CPgHT7bUdR8Af Cfws1w0VjbySW2lWZlILssa/Im4gFiFGeprm/wDhpv8AZ0/6Ln8J/wDwqbT/AOOVzfxftbW7/bN/ Zft7u2t7q3OvayTFPGHU40e5xweK5HxP8bf+EX+PGhfD2f8AZa+IGoa1rst+NBltW0DyNQjswGll UveqyKVZGAdVYhhwDkAA9S/4ab/Z0/6Ln8J//CptP/jlH/DTf7On/Rc/hP8A+FTaf/HK8/8A+Fz6 FqHiPVtL8I/s/eOfHNxobpbeJpNH07TBDpN4Y45XsjJNcItxPGsi7xb+YoPy7t3FZvib4+eFtC+I Hi/RtN+AfjrxXaeFvDthr3iPUNO0rTYxp9reRTSoGgnnjnaRUglLxrGWG3AyeKAPUv8Ahpv9nT/o ufwn/wDCptP/AI5R/wANN/s6f9Fz+E//AIVNp/8AHK6nTdS+Guq/B3TfH8CeFbbwhf6XFqcGqXlt DbwLbSoHSR2cAINrDO4jHQ4rRvl8AaXdTW+pR+DrC5hsZL+WG5W3ieO1jIElwQ2CIlJG5z8oyMkU AcL/AMNN/s6f9Fz+E/8A4VNp/wDHKP8Ahpv9nT/oufwn/wDCptP/AI5W2uv/AAvv9H8RzeG7j4f+ J7/RbFrq8sdNuLWeWIeWZEDiPcYw4AwSOQcjNc54V+IHwv1b9nL4efEHxZF4B8AR+LdJtb20tNXv LWICSaJZPJSSQJ5jDcBwAT6CgCx/w03+zp/0XP4T/wDhU2n/AMco/wCGm/2dP+i5/Cf/AMKm0/8A jldV4g1b4UeFJbCPxTqXw78MS3zBbJNWuLS1NycgYjEhG85IHGal8QXnw08LW1jL4kn8CeHkvphD Ytqj21sLmQjIjj8wje3sMmgDmrD9oz4B6rrlnpmmfGj4XX+o3c6QWttB4mtXkmkdgqoqh8sxJAAH JJr2YHK5r4U8d+KdE+J//BLXw78SrXwjpfhqbVvFGgyJaRrHK1v5fiO0i4kEaZzsz0GM4r7soAKK KKACiiigAooooAKKKKACiiigAooooAKa+cDHrTqa3b60AfFnhD4N6PpXxx8P+AIvjh4f1rwP4I1+ fxHonw1gtbZNUsJpTM8SXUyzF5LWB7mR4kMKEYi3O2wZ674h/DDW7jwB8PfHPiT4yaD4Y+J/w/vr y6tPHmoaHBFpzQXYeGa3ubRplQRNE0SZWZW3wowPJU/MXw90zR4/2Pf2XfHENlp0fxj1D4tsNQ1L ylS/u72e8v01WGZxhmxCtxujY4AhXgbFx6v+1JY+JvGH7YX7KfgfQ9a0LSvDetarrs97e6rpkeo2 ourawR7XbA5EUswVroxiTcqspfaWQUAdnonhbVfCH7KS674H/aI8DW015r134g8VePNX0e2vdK1W W4ZhIAqXMaW8aOUVNsx2rGqksck938KPBVj4T/Z18S6jF43t/idq3im4vNd1rxZbJFHb6pcSps3Q pCzIkKRxxxIqs2FjGWY5J+V9O1O58V6n8APBfjq08KahoOj/ABs1vQtWm0vSo7TS9burKwv5LOV7 ZcxhjIu5k5Anh45Ar2z4GQQ6XrH7VmhaPBb2XgzTviDcpoVraIqWsBk0qynu1iVeAPtclwzAdHZ+ ByKAN79lHwd4S039g/4Ka/pvhTw3p2uXPgfTjcaja6ZDFcyl7aMtukVQxyeTk819OD7ozXzN+yl4 iF3+wb8FNKGh+JLXyvA+nD7Zc2Oy2k220fKvnkHtxzX0yDkZoAWiiigAqORFkjdJEV42GGUjII75 qSigD8r/ANkzXNQ/Z8/4KJfFL9j7WLaWLwJrGpX/AIp+FNwCNkVuZN93YYHICMxZc8/K/wDeFfpP a+IYrv4n6h4ft4HkFjZRzXdznCxvITsix1JKgsfQY9a/GX9uL4ieIvhX/wAFLfhp4/8ADXhNb/VP AGo3XiWS9NyEbUNOmt4Yr+xCkAEiJPMU5OC3Sv1o+DWpWvif4A6H8QbYh38Z20Wvs2QSEuY1eKMk d0iMaH3U17WZ5NWwMKdStGyqxUo67ptq/wArPQ+ewGPrYpQUekpqT8otpL1enyues5HQUo+7XFaL r91J8Q9e8NaukUN/bEXNi6Ahbq1fADjP8StuRufQ9xXag5XNePOLi7Hs4bEQrR5o9G0/VA33DXK2 mvtd/FrVvDsUCGCw0+CeefcciSVnwmMdNqZznvXVN9w9+K848CBbzWvG3iAMZBfa7JFExHRLdVgw Pbcj/nVQS5ZN9DnxdaarUqcer19En+tjpvFegWni34W+JPCt+C1hrOlXGn3I/wCmc0TRt+jGvif/ AIJp6xf3v/BJLwR4f1ZkbVPCeqan4euQpztNteyqo/75K19785r87f8AgnfI9r4T/al8LlWji0H4 /eIrS3jPaNpElUj2O/NZnoH6K1R1K8t9P0O6v7uVYbW2iaaZz0VVGSfyFVxrVgfF7aF5pGpi0F2I ip+aIuU3A9DgjBHbI9a4r4hudXtdD8GRB867ehLrA4FrFiWbPswCp/20rSFO8kmcGNxns8POdPWS 0S/vdF950vhPUtQ1n4daXq2qWsdld3kXnmBAf3aMSUByT82wrn3zXSj7tQxgLEqqMKAAAPSpQeOh qG022jpoQlCnGMndpbjqKKKRsMb261yGsa7c2nxM8KaBZpE51BriW7LKSUgij5I9DveMc9ia69ut eb6WTqn7SniW8KEwaRpcGnRNnjfKxnk/HAhrSlFXbfRM83Mas4+zhB2cpJfJav8ABWPRyeBXwr+z sjaj/wAFWP2z9ebEkUepaNp1vL6eXayF1/A7a+6jgnrXwv8AsUO2q+Kv2pfE8y5lvvi/qNvHJ2eK BURCPzNfX8Ofu8lzWp3hCP8A4FVg/wD2xmmI1rUl5t/+StfqdB+1R4J8WXXxS/Z8+K3gPQL7xD4k 8G+NY47y2s03yNpt2BHcnbkZwFU8nAyTX2WvKAgYpjIT6UbtuFweuK8LGZvVxWDw+GnFfuVJJ63a lLms/Rt29WdFOioTlJfa1/Qkopu7nuKC+B0JryTa46imq24dCKdQAUVmarrWk6FoM+q63qVho+mQ 4867vbhYYY8kKNzsQBkkAZPUirsM8c8CSwukkTqGR0YEMCMggjqCKdny81tAvrYmpvGTTq5fxX4h i8NeDL3VWja5nTbHa2y/euJnIWOMe7MQPbrRGPM7GVetCjTdSbsludL1qvdXEVrplxczOEhijZ5G PQADJNNtHuX023a7jjhuzEpmSNtyq2OQD3AOea5rxzY6pqnwl13TNHVX1G+tjbRguFCrIQrtn2Qs fwqoQXOkzPE1pRoSnBXaTaXXbb5mf8LoJF+DOmX1whS61N5dRlBOSDPI0oH4Kyj8K9CqrY20VnpF tZwII4IIljjUdAqjAH6Vap1Z802ycDQ9hhoU+ySPNdBZtK+PPi/RJCPI1COHWLPknqohmH4NGhx/ t16SOWzXmnjL/iWfEPwP4mGUjhv20+7bOAYrldqg+v71Yvzr0gN1I7Cqra8su/8Awxy5b7kqtL+W WnpLVfi2iSimBwRxTs8ZrE9W4N901wOnWN9N8fvEus3Vq8dpDplrY2Ex6SDMkspH/AmQf8BrvSQV xTVXntmqhPluc2Iw0azg39l3+fT8xwNOpAMUtSdIUUUUAMYEnpuGOlfKXj3wf4S8O/t4fs1X+geF PDeh393reti5udP02G3lmB0m4Yh2RQWBIBOT1Ar6uLAH39K+U/H3iEax+3d+zTbf2J4j0v7PretH ztQsfJjlxpFwuEbJye/TpzQB0PxW/wCT2/2Xf+w7rX/pnuap/EjStUu/+Ckv7NGr2umajdaVp9j4 lF/ew2rvBamS0txGJHA2oXIIXcRuIOM1c+K3/J7X7LuP+g7rX/pnua+iPLOeoHrigD4j+Gvi/wD4 Z6k+Inw58eeEviVdzXHjrV9e8P6zoXhS81a21q11K7e9XbJaxyCKSN53gZJih/dBh8rA1Qg+Ek/x Z/bs+Pt14qm+Kng7wbrvgvwxbz6fZXb6bFqivDqHn20syA7niDBHEMg2+YQT8wr7sAIG3JpuMNjO ce9K4WPnr4+fDq51X/gmX8SPhn8P9DXzR4Ll07QtItsYKxQgRW6ZPUqgQZPUjnvXy38SfGbfE7x7 8UPF2ieDfiDo/hi3/Zp8S2j6l4h8M3Wlx/a5HidrYCeNG3qq5PGDztLbWx+ljHKkVg+JvDmmeMPh t4h8Ja5HLcaLremz6dqEccpjd4J42ikCsvKkq7AEcjtRdXsB+aPwu0XS9e134By/DH4UeKPBJ8K/ CfUbXxxfT+G5dOhn+06dAtvaCUqFv3kuAZ1aNpAu1iSpkwY/Cmhaf4Lh+Gmu/Gr4R+LvG/he8+Ae keH9FtovBtxrD6Zfx+a19ZS2yRu9tLOr2/7x1RT5e1mG3Ffp1oui2Xh3wbo/h/So5ItK0yxis7ON nLFIokCICx5J2qOTya08nHG734pgfk9d+HfiloPwC+Dfwu+IXhrVYTB8KVt5L60+HUfi2/vtQeaR Do0lzIskdqkUP2f55Nqszk+YAhNaPw90650Oz+BHin46fC/xp410W6+BFp4dsoZvCNxq82mass7t dQT2wiZ7aSaD7OvmyKqnySjMOAf1T2nscZ60mxsfeOe5oA/NrwtoeqeG/wDg39+Eug6zoOq+F9Ts tU8PxT6TqULxXNn/AMVJbERyK/zbgCOT1696/SmvnT9qUEfsfXOTk/8ACWeHf/T5YV9F0AFFFFAB RRRQAUUUUAFFFFABRRRQAUUVy3jW+13Tfg74u1HwxZ/2j4ktNGup9JtNm7z7lIXaGPHfc4UY96AO pqOTJUfWvzss/j98YfFi6H498JasYvAOh3nhnQtU0688JSRSeJ9Uv54otTCtKqyW4tBMv+rUr5iy KxwpFfomScnPI70AfDvgvxT8Apv2xLHxpovwZ1rRrrxL4gvtG0D4lyWkZ0vVNTRZVuRAgmZ4Wk+z Tr9oMEazGI4dt67um+MOmfCXwN8Mfhl8GJPghqfxF0jXdauP+Ec8OaLcW8LWVxDHNey3AnubmExH mU7lk3Zcjoa8X8A6Z4nHwc+Bn7OE3gzxtZ+MPBfjxLvxHq02iTw6XBYWV1c3KXkV6y+TMLgGBVjj cyAztuUbGx718UPEfwN8c/CvwTr3xX+FXjPxfodzcXj6TZ33w81HUJ7GaMmCQy20cLvAzgnYzqAy 5IPPIBheO5fhr4Q/Y3+GfgHWv2ddbuNH8U68mkaP8O7OSwW5s7sJc3ayNN9qWJHAtpJPNScvuYck k17P8O9H0vQv2VTpejfDe8+E9hDa3RTw3dzW8s0JYuzSO8EsqO0hJct5jMd3zHOa+YPCGi+CdG/Y G8LaV+0D8L/GPiPwmPGWqXXg/QdR8L3mv3ej6c1xdHTVuYYUlkjK2jhAJATGGVGIIr0/9nHR9R0P 9lzx7BFofiHwp4Cn1/UrjwJoWvJJHeafpDKPLRo5CXhjaQTSRxPho4nRSq42gA7v9l4Z/wCCcXwL P/UjaZ/6Sx17z2r5g/ZRg8Yx/sJfBWXUtZ8M3OgHwNp/2e1tdGmhuU/0ePZvma5dWwODiMZPTFfT w5XNAC0UUUAFFFFAH5kf8FHPhzp//ChdC+K1pBFFf6ZrYstXu5SXVLK+gNlIQnTIPknjuM16b/wT g8UyeJ/+CPHwkjufMW+0KC60K6WT7yvaXMsQBHb5QvFe/ftFeAj8TP2Ifib4Ljhae81DQpjZIoyz XEY82ID3Loo/Gvzx/wCCTGsazpnw9/aC+FPiez1jS/EXh3xlBqk+n6pA8Fzbpf2ykbo3AZdzwSPy Od2fSvuMfioYzhbDOUr1KFSULdeSa54/dJT9Lo8+lS9liZKK0kr/ADvr+n4n6m674d/tTxFoGsWs 4stU0u5LpKU3CSFxtliYZHDDBHoyqe2K6tf9WKMA9RTScHGSK+I53JJPodMKFOnOUorWW/m9ihrW ow6P4Q1TVbjPkWdrJPJjrhFLH+Vc18O9Pm034KeHILrd9sezWe6JHPmykyPn/gTmum1PTbLWtAu9 L1GEXVhcoY54SxAdT1BI5xVwIqQKqjaoGAB6Cr5lycpj9XlLFqs3oo2Xzd3+S/EfzuB7V+d37HEk ei/8FCf29/AnmKs1n8R7PWfJHZb+z3q/4+Ufyr6e0z49eGdU/wCCgniP9nO10nxAfF2ieEofEd5q TRxfYPs8sqRLGG3+Z5uXBI2AY718peEH/wCEC/4Ob/ivos8bWlj8S/hVYatZY+7dXNhKIGP1CCWs ztR9r+Nx/ZHiDwv4yBKx6be/Zr9l72txiNs+yyeU/ttNeiKFcq/BOPlOKz9b0m013wnqWjXy77S9 t2hlGOcMMZHuOo96safbvZaLaWb3E120MCxmaXG+TaANzY7nrxWs5Xiu6PPoYadLE1GvhlZ/9vbP 8EvxJLmV7fT55o4jO6Rsyxg4LkDgc+vSszw7rlt4k8DaZrtmGSC8gEgjb70Z/iQ/7SkFT7ittlya 828HsdH8e+LvCTqYoYLsajpykcGC4yzY+kolHtkUQipRfdCxGIlSxFNN+7K6+e619E162PTAeBS1 A8gihJZ1VR1ZjgUocNCHVgykZBB4PvWdmd6khznHbtXnvw8jll8Pazrs8LRXOr6zc3JDKQTGr+VG SD/sRr+dehgK4yeaUIo6ACqjO0Wjnq4ZVK0Kjfw3t6vS/wB1/vIpWCWsrnACoSST0wK+IP8AgnsB e/sEXXiZlZbjxB4x1bUJsjklrplz/wCO19q6pZHUfDOo6es72purWSATIAWj3qV3DPcZz+FeZfAv 4Tad8EP2a9B+G2landazaaY0zi9uY1SSZpZnkJIXgfex+FfRYLM8PSyHFYbm/eVJ0mlb7MVU5tfW UdBzpSdeM+iT/G3+R69Xn+vahfD44eCdItZ5Y7aWO8ubxF6SLHGqqG9g0gP1r0CvN3L3H7VSgANH ZeGDk/3WnuB/MQV4NCN2/JHLmlRxjTj/ADTivxv+h6Jg1HNIsNq8krrHGgLOxPAArDm8QW1r8QdP 8P3CTxT31rJNaSlR5chjI3pnruAIbHcZ9DVXxppepa78P7zRtNmSCS+dILiYttMcDMPOK/7WzcB7 moUHdc2iZtWxP7qo6a5pRureaW35FHwBd32s+Gr/AMSXks/2fV717jToHPENsMJFj/fVfM/4HXeV Ws7eG006G1to1ht4Y1jijUYCqBgAewFWaVSXNJsvBUZUqEYSd31fd9X958I/ty3EvinwF8JvgZY5 mvviN44tLS5iRsP9ht2Wa5kH+7+7J+tfclnaw2enwWlvGkUEESxxIgwqqowAB2AAFfB9yG+Jv/Bf SwgGZdE+E/glpnB+ZFvr7jj0fY6/hFX3qcgcV9nxR/suW5dgVuoOrL/FVd1/5TjAjDe9UqTfey9F /wAG5LXC6pouoax8X9Hu7sKvh7SITcW6BgTcXjZUMw7LGmSPVnH92pNR8b6VY+KF0K3F5rWu5XzL DToTK8Kn+KQ/djGOfmIJxwDXZKoKhiMse9fGrmhqRUeHxl4KV+Vq9trrWz+fT7zI12XVbbwhf3Gh 21te6rFHvt7ediEmIIJTI6EjIB7EiovD+u2XiXwjY6xYM/kTqcpIMPE6kho3HZlYFSPUVvMMIcda /Prwd+0fYaF/wUO/atsPF2u+GPBfwM8DXGiWTarfv5QbWr5AHAfOMNwGAXhsEkcmkmnGz3NJwrrE RlF3i1Zrz6Nfk/l21/QVehp1QW8kc1ok0UiTROoZJEYFXUjIII4IwanqGdhUuLaC5gEdxFFOm4MF kUMMg5Bwe4IBFc14h/4S2G5tb3wy2lXaQqRc6beAp9pBIwUlGdjAZxlSDnnHUeZ/tC/HbR/2fvg5 o/izVdF1DxLcar4ksdC07SbGVEuLq4u5RGoQvwdoy2OOAa92UHGSCCR0q4zt5nPXw6qQau0+63KW m3VzeaPb3V3p82mXLqDJayurNGe4JUlT9Qa0R96qN7eQ6dpF3fXBdbe3haWXYhdtqgk4A5J46Ciw v7XU9FtNRsLiO6tLmISwzRn5XUjII9qlq+tiozUWoOV3b5272LhbnBpy8mvNXutU8U/FL7FYS3Nj 4X0W5H265XKNf3IGRCh/55pkFiPvNhR0avSVGO2KqcOWxnhcV7bmaTsnbXr6eQ+iiioOoKKKKAEI Bzn0r5z+KwH/AA21+y8McHXda/8ATPcV9FMT0Bwa+UPHlv4xh/bw/ZrfxFrPhnUbBtb1v7JFp2jT WksZ/sm4wXd7mUONvGAq84OR0oA6X4rf8nt/su/9h3Wv/TPc19G185fFb/k9v9l3/sO61/6Z7mvo 2gDifiJ4g8SeF/g7ruveEPB9x4+8SWcAew8PwXi2r3zF1UoJWBC4BLZIP3a+SD+0b+1Tn/kyXxEf f/hO7X/4zX3W2M8jNJ34r3MqzbB4SnKNfBQrNu6cpVE15e5OKt11V/MwrUpSaam16W/VM+FU/aN/ aoMoDfsSeIkXIBb/AITq1/8AjNfdEbFjyMcU480KMMayzbMcLjOR0MJCha9+Vzd79+ec9vK2+o6M JQVpTcvW36JHwR+0TB4t1n9tC90fQHS6gs/hLNqEMF58SNQ8M29ncfbnRbpfsoKTSAAD96UUAY3A E1w/wbvPEXxV+NV54pn+3+MtGXSvCk6X+vfEbVNAuYDJpNtLNIum2qvbyNI5aVlLBXZiuSp3V9/+ Jfhx8PPGesWmo+MPAfgzxZqFrH5drc6zolveSwJndtRpEYqM84B61S1T4T/CzW/Fsev618NPAGr6 9GIwmpXvh61muVEQAjAkZCw2AALz8uBjFeQbHoFFFFAHzt+1P/yZ/cf9jZ4d/wDT5YV9E187ftT/ APJn9x/2Nnh3/wBPlhX0TQAUUUUAFFFFABRRRQAUUUUAFFFFABXmvxR8NeF/EXwzubnxdq3iLQNJ 0Mtq7apo2t3Omz2fkxOWkMkDqWUIXyjblI6qcCvSq8V/aA+IPw++G37JvjnXviZe2dt4Wl0e6tJr a4uTb/2g0lvIBaJIAdrygFAexNAHzZq3xQ8QfD/4k+EfD3hj9oFPG0niGytL3T9K8feDJpreCK9f bZi51Wwij+xGZ8pELmN2duADivu60N0+mWzX0cEV6YlNxHBIXjV8DcFJAJUHOCQCR2FflX4c8Zfs wP8ABXS/D3hb4y+IPi98QPF/ifws5sFv4J9Ymisby1NrZZitlQW9qgZ5GCBiiysX3Nur9XTgMT70 Afn14I+IPxQuvhv8Hf2gNT+ImsXui+OfG/8AZ2p+C5bS3OnWem3dxPbWaW5WMTLPEyWzNI0hD5my oyu32n9ouH4vy618MH+GcPxDvNDi1W7bxdb+DL3Tra/mtxaSCAB74iMDzyhIBDcema4zwl8G9E0v 46+H/h/D8cNA1nwT4I16fxHovwzt7W2XU9PmkMrxJcyrMZJLWF7l3jQwoR+63O2wZ9d1vwt8aYfh ZoKad8b/AAzpGu6ct2+va3qfgeOa1v4mffE3ki5j+zmGP5dwkIbksOwAPFZPifqPjT4T/AXwX8Pf G3jrRbrxh4tv9G8Qa9rMFuNf00abDeTX1swaMwrcia3WAsEZdhZlJ+Vq9H+D/ijxJf6B8dPAXinX r3xZf+AvEk+j2+u3sMcdxf20un219CZhGqoZEW68osqjd5YJAJNeeXXwy+Hvhj9kfwBq1h8ffDWh 65pvi658UaN8TNXurOSx1PVr5rprxmj82OGWGZbi4UQxyDaApVsoDXq3wj8MaHo/wC8Z+IdN8f6N 8VNZ8V393rGveKtKMK2l/deUsAWFIXdI44ooYoVXezARjcxYk0AXf2XZI/8Ah3J8DF8xNw8DaZkb uf8Aj2jr3uvmP9lLwd4T079g/wCCmv6b4X8Oafrlx4H08z6jbaZDFcy7raMsWkVdxyeTk8mvpsAh QCcmgBaKKKACiiigBpzt5r8svid4u0T9k3/guyvxc8d3w8O/B74weCP7L1XWWgc21nq+nYaLzSgJ 3PEAq8c+Y3XBx+pxztOOtcF8S/ht4P8Ai38EvEHw+8eaNaa54Z1i1a3uYJowxQkHbIhI+SRDhlcc qQDTjy83vbAY/wAIvjL8Pfjf8J4PGXw612LWtJeQxTRlTHcWsg6xyxt8yN3GeoIIyDXW+LLDU9S8 DXsGiXkmn6wm2aymVsKZEYOqN6o2NrexNfg3+xtPp/wb/wCCzM/7NOpeJfEvhfxh4e1XUdOW+hMR svGGnRw+fYwXMR/1dz5TGTzFByFxwxLH+gJpo0lSJnUO/CKTyx68evFe1nWHy6liIyy+o5Qkk7SX vQfWLto7d1o1uk7o5OWdalKFVWb00/Ndv0Z5L4ntNc+LX7K+paZ4M8bar8LPE2pwCKLXbG3Se60i 4jlHmLsfCsQyMhzjIJx1Ffmvd/t++Nf2eP2Tfi/4E+PP9jeIf2ofhtfwWunQXaGzt/GdjcTolvqM IQAMBG5aRY8Ebc4HzAfrhpuj2GmX+qXNnEYpdRuftF0oYlGk2hdwXoCQozjqeeteT/FX9nP4NfGv xj4K8RfEjwXYa74h8J6pFqGiakrvBcQSROJFjZ4yDJCWUExOSpI6V41SUXJtbF4VVY0Yqq7yW/8A n8z4J/Yj+K2gftIf8Fbv2lfjr4aEo0Z/AnhnTYUkUg20ksTyTQEkDJSWB1zjB25HWvTf2thH8Pf+ Co/7Efxv8x7axl8UXngbWJVGfMTUoD9lTHp5iyn8a+sfhb+z58KPg58SfiX4r+HXhmLw7qnjvUY7 /wARLDKxhklQSY8uMnbGuZZWKrxudvpXzV/wUv0u+f8A4Jba14y0izN3rfgXxJpPiaxKtgwm2vI9 757YR35qToPsX4nePtF+Ff7PPjX4j+IfNbRfDWj3GpXaREB5FiQtsUnjcxAUZ4yRXjPhP9qzwB4o 8WfAXQJtJ8V+HvEHxc8Nza74astRs0/dQRR+ayzOjsquVKkAE/eHrXgX/BQTx3F4p/4JR+H/AAx4 M1FJ9Q+M+t6J4f8AD0iDcLiO9ljnLewMSHJ7ZFUP2mfDulfDf9uL/gnPrdnH9l0fw54qu/CULDtH daakEKE9/wDUcfjQJI/SxcgYx+dY8ui2cnja314xyDUYbR7VZFbAaNmVirDvyoI9Mn1raHcUZ570 02iKlKE7cyvbU4/WPBHhvxBrUd/reljU5UUBYrieRoFx38rdsz7kGtTU7+y8O+EZb6W2uPsFpGN0 dpbmRkQcZCLzgDnA6AVuH7tQsCSBke9UpX3MPqsIOcqUUpS62X49ytpuo2Op6Nb6hp91Bd2VwgeG aJtyuD3BrQrnNH8M6boN9qMulpJbQ3s3nS2okPkI5+80adELZyQOCeeuTXQg8YpStfTY0oOq4L2q XN1tsG3mndKKQsFGScVFje7DIzXzh468fr8MbL44fFKfRdR8R2fhyws1ewsXVZZFRN7AFjgAeeWJ 9AeDXsfjbxx4V+HXwo1vxz411m28PeFNIt/tGpajchjHbx5AyQoJPJAwATk15r4LHhT4sfBr4gaj p2oWfiPwX42nuI4L20lDxXdpJbJBuRh2Kg89R7GvSyydCFeMq8eaCa5le11zK6v0ur6nk5hzyrUY x7t/dF2/GxqPqkXxO/Zs8LeP/CGGvp7K313QwzAneyBzCxHHzKzxN6ZPpXpmk36ap4fstRjint1u bdZvJmjKSR7gDtZTyCOmK/G+1+PPiH4Xf8EVPEXwY0aWW6+OsXjK7+F/hawiGJZbqeYhZU9ESGR2 DngELz0r6g8P/Hf4V/sbaF8O/wBmf4m6j4qstQ0X4crqkHijUVNxaa1NG22e2t33NI828yFUKgBQ oB6V63EGR1cJnFXLaEXNxm1C2rkm/dt35lZr1Kwii39ZvbmSuvNf1Z+h+gqnjmo/tMH2023nR/aA m8x7vmC5xnHpnvXDeAfH2neP/gNoPxAttP1fw7peq6eL1bbXLf7NcW0fOfNUnC8DOc4IwQcc1ja3 f2UPxB8EeNtMvrW70m8Y6Xd3VvKskUsM+GhcMpIIEqqAR/z0NeFPB1YVZ06kbOLafk10N8XjPY01 USurq/o3a5J4Q+EnhDwN8Y/iP4+0WK+XxB42uoLnXZ7m6MisYEZIwgP3FAZuB618+/AL9q2++PH7 RfxY0/S/h7q+kfB7wzPLa6J8QZp0OnaxJby+VcEM23b8xyoXcu1CWYEgVs/t1/Eu5+Fv/BKf4weI tLvrjTteutJGkaPLAMym5vHW2TZ33fvGORyMZ4xmuk+CXwH0PwF/wS98H/Am809LazbwcNP1uJFC s9zcwk3bkj+IySSHP0qp4meJrxliZt/Cm3q0kkl90VZeSOjkSXu6H0Lp1xp1/pkepaZNZXlrdqJE urZ1dJxjhgy5DDHfNaY+7Xwl+wp4+sj+zJdfBnX9b0tfiB8PvEGoaBdaY1yi3EkUMxZJEiJ3tGFc DcBjivu0HKg+tdWf5Z/ZuZVsJzcyhJpP+ZdJfNWfzFh5qdOMkrXMHxT4k0rwh8NPEHizXLlLTRtG 02fUL6ZukcUMbSOfyU1+cH7E/wAH/D/xg/4JbfEDxH8XfDiaxb/HTxZqniXWbG8bLC3mnMdqI3B3 JsSJXjIIKkgjFfZH7R/wdvvj7+xz4w+Eln4yu/AqeIY4oLvVLazW5fyFlR5IthZeJFUoTngE9ele p+FfC2j+C/hh4f8AB/h20j0/QdF06Gw0+3QcRQxIEQe5wBk9ScmvJNj4R/Yn1/xZ4A+K/wAaP2Qf HGt6j4ln+F13b3Hg3WL6I+de6BdqXt1d+jNCf3eeOCABha/RAYKgjp2qBLaNJpJVjiWWQgyOEGXw MDJ74qcDCgUAfnD+1cy/Ej/gq5+xX8DI4vtNrYeILr4ga2mceTHp8TLaN+MvmjHtX6OYNfm/4XjX xh/wdBfEvUpHFxB4C+D9lp9sVbIhmvLhZWU+hKu/+TX6R0AQNEHBDAEEYPFcV4d8Pah4b8WatZWn lN4SuM3NlDuw9lMzfvIlHeNiS4/uncOhGOq1nWNN8P8AhTU9c1m7isNJ060lu725lOEhhjQvI59g oJP0rg/hH8Yvh98dPgZpXxH+GOur4i8Kag8iQXPkPC6vG5R0eNwGRgR0YDgg9CKpTaTRzVcLCdSF R7x2f6enkekqMNwuB16VLQeBXk/xt+MnhD4B/syeJvit44a9/wCEc0RIjcRWiK08zSypEiRqzKGY s44yO9S2dCVlY9YorM0XVItb8IaVrMEF3aw39nFdRwXURjmjWRA4V1P3WAOCOxzWnQMKKKKAEJA6 mvnH4qSI/wC23+y/sdX267rW7ac4/wCJPcda+jWXcO2PevlLx94O8JeHf28P2ab/AEDwr4b0O/ut b1tbm50/TIreWYHSLhiHZFBYbvm5PUA0AdF8Vv8Ak9v9l3/sO61/6Z7mvo2vnL4rf8nt/su/9h3W v/TPc19G0AZ+pXX2HR7u9+y3V75ELSfZ7WPfLLgZ2qvdj0ArzL/harAYHw3+KY/7gX/2detsCemK TjvnNZVIzb0lYxqQm3eMrfJHldr8Tmu9Rt7U/D74l23nSrH5s2i7UjyQNzHfwBnJNepqPmzjGadt 44oAIPoKcISXxSuVTjJL3nc+JPjx4l+KS/td3XhXwGvxI1OCH4YS6tbad4U1XTrIxXwvHiSeU3eP MXAVdi7h6qeteU+Bfj18QPiF+0Jp3gibx7NpPgbxHYaBd2/jy3sViiubiTSLa4l0yxV48W891IZZ N84+VNyRgyEbPuHxt8Gfhx8Q/F8OueLfDranqsenHTjcRaldWpktS5cwSCGRBJGWJO1wRmnTfB/4 YTeDvEHh9vBWhDRNbitYdSskh2xSraxJDbbQCPLMSRxhCm0rtBBBGa0ND0xFKoq5ZsDGSck++akq nbwx21tDBFv8uOMIgZyxwBgZLEknA6kkmrYYE4oA+d/2p/8Akz+4/wCxs8O/+nywr6Jr52/an/5M /uP+xs8O/wDp8sK+iaACiiigAooooAKKKKACiiigAooooAK878eaNqeqWEkq+LdO8PeGItI1CPW7 S/0iC7t7kSwbY5pDLwqQkO7JjbICVbgV6JXx5+2R8Ql+H3wL0dtU+JGh/D7wv4kvZvDuoJf+Brrx C+pvdQOUgjS2niaHMcdwCx3ZLKBg4yAeMeBPi3qt78Q/BdnH+0n4sHhfUNStrXStRvvgMdK0PV13 KEt4NQeNYlEwGyJwwDbl2bsgV+kfYZHOemc81+RWga98RvE+h/Cv4c+Ivi7438R+CdM17SCbaX9l 7XbD+0Y7S5he2jlvDLshVWjjLTEADbubK7s/rtlicnjHb0oA/L/4faZo0P7IH7LnjSCx01PjBqHx bf7fqIiWPULu9nvL9NWilYfO2IVuCyMcAQrx8i4+iP2mviB4ctZ/Avwx8R3Os2PgrxZPNP4p1ew0 q7vI/wCzbXaXst9tFJh7mRkiIOP3Xn85xXNeDfFHwDm/bEsfGuh/BjWNGuvEviC+0bQfiW9lENM1 XU0WVbgQIJi8TS/Zp1+0GFFmMRw7bl3fRt9N4D+Af7NN7cWWlroXgzQYpJYNNsEaR5JZpiywwqSS 8ss8u1Vzy8gFAHxH+z34B0j47f8ABJb9mu18L+LT4UuPBOpm/t5n8PJdRmaNLy38kQ3ShGTbc53b WAwMc9Ppf4H+Kdb1r4BfEfw94jk8Pajq3g/xBqWgT6zoOnLZWOq+UgcTpCpZY3AkEcqqSBLG4HTF eUya3+z54t/4J3/BHVI/g9r2peG9bu0h+HngS2YQ6ol263BaJHW4VIisUdw7s0wUIrZPQV7j8H9V 8A3f7K+r6H8P/Bsvw5sfDr3ml6j4TuLWOC40e7RS8kUqxs6szCRZRIrsHWQMGO6gDE/ZS8R/av2D fgppJ0LxJZ+T4H04G8urHy7Z9ttGPlfPOe3HNfTQ5HNeEfsugH/gnD8C/wDsRtM/9JY6947UAFFF FABRRRQAUhAI5paKAPnb4xfsy/DX4xeIPCGv6na3Phbxh4d8U2fiCx8S+HkittSea3+URSTbCZIn T92ytn5cYxgYq/tB/Amf4vaJoGueF/F+s+Avih4Wle58K6/aXD+XBK4G9JogdrxuAFY4JA7MMqfp BiBz7dq80+G3xY8B/FzRfEWo+AdbXW7TQ9dudD1U+Q8TW97bsFliZXAPBI5xg9Qa7sszPEZfiYYn DytKO2ia10aaejTWjTVmtGZ1aUakHGWzMT4Har8XdT+B1uPjb4b0vw945sruW0mfTrpZYdRjjOFu lVeIw/J2598DO0eQ/EHwd+2N4u+NGv23g74r/Dv4ZfDczhNLmh0U3uqmLYuXYOuzdv3jG8cAVy37 KXi3xP44/bo/bX1fUfEetat4U0zx/a6FoWn3N48lrpxtbTE6wISRHudwWC4ycGvuvAx0Fd+G4glh 8ZVxVOhTvO/uuClGN3f3Yyulbpe9kTOipRUXJ6ef+RU0qG7tvDtlb390L++igRLm6EflieQKAz7c nbk5OMnGaw/HHhDR/H/wf8UeCPEEC3Oia9pc+n30ZUHMc0ZQkZ7jOQexArql4z/Kl4Poa8Nycndm x+C/7GGgfE/4pfty/DL4SfEXTZ4/C37JyarZ3N3Jny9T1Ke4lhsTtI6LAoZOT8seeNwr7X/4KUQL pv7JXwq+IrHYvgT4v+HtdZy2Nqi5MLZPpibmv0As9H0jTtT1G90/S9OsLzUJhNfz29skcl1IFCB5 WUAuwUBctk4AHavmH9uP4Zz/ABb/AOCVPxn8HWNt9r1X+wm1HTogSC09o63SAY6kmLAHqRSA+rFf dEH7MM/Svzs/at/b10r9nj9q34cfDXSdEtPE/naha3HxHvnSUx+GdLuJUhilZk+VZWaTcN+RtUDG ZFI19K/bj+HHhT/glz8Ffi74qn1TxD4t8YaDDb6R4X0a1N1qmtapEgiuIYok6YmVgWOANy9SQD5l 8GP2TNY+KP8AwTk+OWu/HLT5dN+Nnx9jm1LWzeQ7JtERSTpdoFK7kWDbE5UjcM7TyvAB+pCyCWNX jYMjAFWHQj1p+33r4z/YM+Ker/Ez/gnb4Zs/FkmPiF4Jup/CHiyB3DSRXlg/k/vP9toxEx9SxPev s6gBp449a+P/ABd+0pq7/wDBTrwL+zd8LfDNl4w1OK3fVPibqVxI8cPhvTzH+4AdRj7RIzKQhzxt GPm3L9AfFnxjH8Pf2Y/iF47kkSIeH/Dd7qSM543wwO6j8WVR+NfF3/BPb4XX2hfsAn4xa1r2s678 Y/i/APEPiTxDrBWWYuVdbSMcf6pEIYKeAXYDAwoAP0Ryc18P/wDBRXxvrngv/glD4/Xwre3lh4q8 QXNjoGkyWdy0M/m3d1FGRG6kMG2b+nbNeafsmftoX3jr4O/CTwV8TGvfFvx01/W9X0/XIdEsY1XT Es7mdBcXCLhY48RhRjngnGOun+2e6eNP23P2H/go0jMmrfEiTxTfIo/5Y6Rb+cu8f3GeToepX2rq xOX4nDRpzrQcVUXNG/WN2rryun62JhOMm0nsfnJ4y1TxN4L/AGIf2gv2FNa8c6/4n8Uj4w+HPDfh W61S5aedrHVPLuRGC3Plj7NM3oC+OMgV96/8E5vGukeBv+CWXxC8N+JNRaLT/g94w17S9W1CXnNv byNd+aAOo8uTjHXHFei+N/2H9F8a/wDBZ7wd+1Te+JEh0zR9Oha58OrabmvdQgR4reYvnARUdW6b tyDsTX52/tHP4t+GP7Yf7SX7J3hvRLjS4v2j/Efh668G31pFm1t7aVhBqZZe33TnHRVPtXNurEuM nNdrfM6X9nCfSP2of+DiG8+PvgnwP45074TaJpcmrrd69p4t411Ke1FukigMVxIAXXBJIXJxX0V/ wUJ+Glto/wAev2df2lr7Vb7WbTw18QdH0e/8PamqTaZDZXNwyzzJGRxKW8rJJIygOOBX6a+DvCuk eB/hV4a8GaDbLa6JoemQadZRAdIoYxGmffCjJ7nNfF//AAU10a71X/gjL8VLnTyUu9Hl07VY3HVP IvoHLD8M16dfO8XWrKs5+9yqN+topJelkkr7hGlBKyXmfcOr6JpfiDwdqeg6vaR32jajZyWl5asS FmhkQo6HGDgqSOD3r85viT8Jvgj+ySdN8azfG7xj8IPhlq+oHTT4Vup5b7Sbm9kjkkgKjDPBsdPN Zxn5Y8ZAzX6HeENcg8UfCjwv4mtWR7bVtItr6Jl6FZolkBHthhX51/tW6fofxs/4K9/sn/s9appl l4n8NaXHqnjHxppV0gktzbLbmC1Ei98v5owezD1qstz7H4GnUpUKrUKnxLdP5O6uuj3XRoxxWCo4 mDhUVzivhB4d+J37fnjjwh8d/ixrMHhj9m3w74lOoeBPh7p8JEuuXNm3lx397McEx+arsseMHGMY +Zv1K8U6Tda78ONc0Ww1zU/DV9f2EttBq2n7PtNi7oVE0e8Fd6kgjIIyKTwr4T8N+B/h7o3hLwjo 1h4e8NaVbLbadptlFshtoh0RV7D+tdCQD16V5N9bo6IrlSR/P3o37PVl+yT/AMHFn7NOnaZr2t67 p/im2mN1r2sXJlutUupbS5S5klY8bnnAbHOA65Jzk/0BqcKB3r4e/bd+Evjzxr4I+EfxK+Efhu18 V/E34Z+PLLXtP0gtHDLqdqW8u5tVmcgRqVZXJJ/5Z9MgV9R+NvGc3hT4ZLq0Wj3eoa/dvHbaVo6E GS4vJcBISwyFUEku+cKqs3QV25nmMcQ41HFR5YpO3Wytf1ZnpTi23ofH1z4u8WeMP+DjXSvA+jeI dds/A/gH4Vyah4h0qG+kSzvLy9n2wmSIHbIyo6FSwJXBx3r9Aq/L39g3R9T1z9uH9tb4ra/qx8Ra vP43tvCzaiV2qJdPgJuY4x2iEkqKo7LGuec1+oVcEW2k2aQbcU2NYkVFJOkVpJPI6rGilnYngADJ Oa8Q/ae06+1X/gnT8cbPTL2807Uf+EH1OW1ubSZopYpI7aSRSjqQVbKjBBr5a8NfFy80j/g2Lsvi pfXlxcatb/B11FzJIXka58hrVGLHkt5m3JPU1RQn/BOi0i8YfCn4z/tHXn+na58U/iPqV5BqEo/e /wBmWszW1nBnskYWTH+9z2r9HK+WP2KPBL/Dz/glL8CfDU8CwXa+FLe8uUX/AJ6XINy2ffMtY/i/ 42eNvD3/AAWf+E3wNU6Svw88V+A9Q1Vy9vm6N9bSP8qyZ4TYqnGOSTzQB778V/h3pnxb/Zz8ZfDT WdU1rRtJ8SaZJp95eaTMsV1FG/DGNmVgCRkcgjBNfnb+xxpvhz9mP/go5+0F+yFDfrpnh24XTfFP w+g1G9UzX0UlokN4FLYMku+JGKr/AHZDgAGv1SB681+bv/BQf4a6p4h8M/Dfx98HfDsmoftReGdf ivfA9zYKgupre33S3UEm8gSW+xmJQnliB/EQZlJRV2a0aE60uWCu7N/JK7+5I/SEnjrxX4AfGv8A an8S/tR/8FOdG/ZKi0G0m+Gcfxs01LS/igdP7SstLMh1GCYk4kBmj3Ky8AKc5yDX35+x7+0h8Q/G n7DvxSv/ANoW2ttJ+J/ws1S/0/xgyrHFuWC3F0sjLH8iEIxQlTgmIkda53/gnP8ACvw3qn/BNj4Q fFDxn4V0XU/iFPrGs+JNO1m5tQ11aSX9zMryRueV3xBVPqMVRkfpMoABxTqKKACiiigBjNt7V8qe PvEX9r/t2/s1Wx0PxFpf2fXNaPnahZeTFL/xKLhcI2TuPf6V9WkZ6186fFbj9tv9l7H/AEHNa/8A TPc0AJ8Vv+T2/wBl3/sO61/6Z7mvo2vnL4rf8nt/su/9h3Wv/TPc19G0AZ+p6ja6Vot3qN68kdpa wtLMyRNIwVRk4VQST7AE15b/AML3+G54/tHXs/8AYt3/AP8AGa9fYAtkgUzy0x9xD+FY1I1G/daX y/4KO3CVMHFP29OUn5SUfzjK/wCB5XafG74e3+q29na6hrbTzyrFGG8O3yjcxwMkw4Ayep4FeqRv v5GOnalCL1CKPoKcoAPTBopqol77T9F/wWRi54acl7CDivOSf5RifPvxP8YeNJv2nvhz8H/BOs2f hG41/SdR1nVPEM1il3NBbWTW0YgtopP3Zlke5Ul3DBEQ/KSwI808f+KPjB8P/FYg8YeP9a0XwDp+ kLcjxzo3gGPUUuJ2mmMo1CJN5tooYVhJeNEV9zsXTbtr6O8c/DTwt4+1DQNQ1qPU7PXNCmebRtZ0 m/ls76yMi7ZVSWMg7HUAMjZVsLkZUEcZqXwD8I6t4futI1DxH8TrnTL22kttVtn8ZXpTUY5GdnWb 95yGDsp27flwvQYrY5TzTXfHnxL8P/tXjV/EOqeIrP4FX+paRZeHtU0bT9LuNPuZLyKKIC5Zi12q yXcqorxrtG5ckDJr69UYP/168kvvgv4L1XxZpN9qL+I7vTtMu7W7sPD8msz/ANkwTWoX7O62obZ+ 7KIyqflDKGxkZr13HNAHzv8AtT/8mf3H/Y2eHf8A0+WFfRNfO37U/wDyZ/cf9jZ4d/8AT5YV9E0A FFFFABRRRQAUUUUAFFFFABRRRQAV8/8A7RvjPW/BfwKhk0L4MX/xzuNV1KPT5tBhiWS3gjZHc3Ny pSQtCvlgELGzEsoA6kfQFNKndkHFAH5o/AEap4E+PA16/wDD/wAc/D2n6tGtgngPw74Fu7Pwjpry yD/ScXMssgdSSTInkpgk+V6fpTjHf2OKkKkjGaYV2qCTwPSgD82/AOmeJx8GfgX+zhP4K8bWfi7w V49S78RatPok8Ol29hZXVzcx3kV6w8mYXCmBVSNzJmdtyjawHuXxA/4Wd8VNW+Efjb4b+E9K1jwR pV5d6le+G/Gt5deH7ma/iYw2kssbW0rmOIiaRUZV3MYZMkKteW+CfiD8ULr4bfBz9oDUviHrF9o3 jnxx/ZuqeC5bS2/s6z028uLi2s0t9sYlWeFktnaRpG35myvK7fqv4w2F/N8OI9TtPE/xR0GPTpfM nt/AdpDcX96G+QLskikJVSd3y46c5HFAHw38JtI+I/hL9hv9kTx142+H+tWa+ANdvW13R9Ltrm+1 GCwurS9tlu2tPIWYyJLLHuiRGYI5YZwcfS/wS03U7rTP2g/iPd6TrOgaV478VS6rollq1k9ne/ZI dMtbFZZYJAHiMjWruquAwUqSATivEtH8U/H34gfsI/CnXfC+s+OvFOqr8Qr+38TSaC+nafr7aLA+ oRRQXYuQkEN8jLaLOgC4dXAAr6Y+EPi6x8V/sta00d549l1bS5r7T9btPGvk/wBr6ddx7jJbzmEe U20FSrR5RkZWDMDkgGB+yha+Ml/YR+Cs2paz4ZudAbwPp32e0tdFmhuox9mj27pmuXRsDriJc9sV 9Pj7o4xXgn7Ls0X/AA7m+BiCRGceBtMyAwP/AC7R174DkUAFFFFABRRRQAh6V5v4+1/VvDviL4fT 2k0UWjXviRNP1gSIDmKaGZYsE8qfP8np64r0mvIvjtY3F3+yz4qu7KPzNR0iKPWLQf8ATSzlS5H5 +UR+NY4ltUpNbrX7jnxcpRoylHda/dr+J6sowM8nHrX5n/CvV7L4Af8ABcf9pv4c6zcx6N4D8feH IfiRpDSLshgngTy9SYH1bDSMT/zyr9JdMvYdT8O2OpW0qzWt3bpPFIvRldQwI/A18TftXfsTaZ+1 H8b/AIa+LLr4i+Jvh5DoOn32la9/YB8u81awuQp+zrLnai7gwYMrqyyMNvetIvQ2i00mc1/wTcs7 jUv2PfiH8Wp7aa0h+KPxQ1zxXZJMCHNvLcGKMkdsiLj2FfZfxH8ZS+EfBcA0i1i1XxbqlyLHw/pj Pt+13Tgkbj2jRQ0jt2RG74rY8D+DPD/w8+EPhnwL4TsI9M8M6DpsWn6bar/yziiUKuT3Jxknucnv W/LYWs+o2t3PbW81zbFjbyvGGeLcMNtPUZHBx1FKabi0iaqlKLUXY53wVoN94Z+Gun6VqusXviHV UUy32o3LEtcTuxeRgM/Im5iFQcKoAHStzUNQstJ0G+1PULmO1sbSFprmaQ4WNFGWY+wAJq/t2qc+ vavjj9qr4g6j4P8AEnwr0HxFb21r8FPFOvR6X4v1dI3ae3curQwtj5UglIIdiD8qsMrxnfCYKtiJ eyoRvKzsr72V7HZl9CjKrCFWfLBbvsuvz7d2fS/gbxJd+LvhfpPia60mTRf7RRp7e0lk3SLAWPlM 3yjDMm1iv8O7GTiovFvjrwn4Kisj4u1H+yrC9LIt3NbSNbLjHEsiqVjzuAG8gGuviEKwRJAqCIKA gXoB2x7YpZLdZVKSKkiEYKsMg1z2moJX1KVTDvEucoPkbeidml0V2nt6O5+YH7H/AOw/bfCf9rzx /wDFrXNf0Xxp4TtNQu4fg1bWl6bm30TTrqaSeeRBkokhMnlDHPyyNn58D9EPFnjS08JzadDNo/ib W7u+Li3h0jS5LknZjO9lG2P7wwWIzzjoa6jTtN0/SdKjsNMsrTTrKMkx29rEIo0ySThVGBkkn6mr JADfj1py5nGy3JpypRrXlFyj2vZv1f5n5cI8n7O3/BbXwR4ys9I1Pwb8Lf2h7SfT9f0i+Kqlh4kt /nhmZVdkSS4XA4PzGR+4r9QNS1Gx0rQb3VNSu4LHT7OB7i6uJnCpDGilndieigAkn0FfmD8bvBlx +3N+3A3we07xNr3hf4TfCi4TUNY8TeH5US7bXiGES28rKQskILjIGVIkPXZjnfi7+yD8efCvwC1T wJ4P/ar+L/i34O+JriOz8aW3iuxTXdX07TyGe4ntZ12yuXZY4zGAMI7nnGK9jOMmq5Z7KOIkuacF NrrFPZS83G0rdmrmOFl9crONGO7aS/RX+7Xd9zh4fiv8Yf8AgpP8WtW+Efhvw5rHwh/ZStZnufEf ipopTd+MbFLnbBb28jxosYl2EsqFsAHc3Gw/sDpHh+y8KfCzTPDHg+wstN07SNLSx0a0Yt5EEcUY SFDjLbQFUHqcZ718ZfCP9q39m/wdDpPwUtBqXwu0Lw+i6T4XudctDBp+qW8OI1miuOVG4jJMhU7i c85r7s+0R7lXcpZl3AA9R6j2qcxyfG5e6bxNJwU1eLa0kn1T2fyemzJl7s5QlpKLs09Gn2a6M/Bz 4F+IF/ZZ+Fn/AAUd8Z+N7LQYPjn4V1zzTqWntmESatEZLSO3DDCo1w2/bjJAVT90V9Vfsl/sUeJP B3xS+Ev7RvxO+MXxK8eePk8EOL3QPFF498mnXl8geXyJZG3RoqtsMW0/Plt3Ra+V/wBoj4TeIPGn /BzJofwstvOh+HPxHi0PxR4vtVQNHfwaOk7bZAf4C8e0jrlxX7r3GoWWn2qyXdxDaxF1iUyOFBZi FUZPckgD61zYzGVcTV5579F0S6JLol0XQz92C1djQAwK4HxJ8MPAfi74t+CvHXiPwrper+LvCEs8 vhrVZkPn6e06eXLsII4ZQODkZAIwea7sPkZwaeGBrluaC15H8fPAq/E39if4reADALmTXfCt9Z28 ecbpmgfyv/ImyvWt3FNY54I496AufHP7AHjZ/Hn/AASE+CGqz3ElxfWOif2NeGQYZZLKV7YqfoIl ryz9mu3Pj3/gtT+2h8XpjHcWehS6X4G0WVV4VYIRNdLn1Egi/M14N+z3+058IP2RdM/ak+FfxV8V x6PqXh34vapP4T8M2trJPfXtneeXPBFBEgJOWcjccKMgkivqr/gn54C8WeFf2KdZ8a+PNFuvDfjb 4m+M9T8aatpd1E0c1obyX90jqwBVvKRDtIBG7GKAPuymscYoDA1DczLBZSTsHKRoWYKpYkAZ4A5J 9hQJj259fwr8uPGHxW/aL+E3/BW/xr4H8YfEjw1e+BfHXw71XVvhik+m7LLRLmwj80pMgG95VRJC 53sGDqcD7g+9vCPiHxv4s8Wvq8/h+Hwv4FERFnFqkbDVNQY4xK0YIFtGOyPudu4SvFP2r/2SdO/a j074es3jvWvhvrfhXULp4dY0m1WW5ktLu3MF3aqSyiPzF2ZbDcLjac0qFZXU4r79iKdRVFdHyR/w S6+M/hqX9nsfD3xXFqWhfFbxdreo+LFmv7UxQ+I1uZmkae3bGDtVSpX/AGDjOCB+lnxZ8Q/EHwv8 E9Q1b4YeB4PiH4yWaKKz0efUVs42DuFaVpG42oCWK5BIBAIqn8L/AINeCPhP8G/h/wCDfDumQ3cP g7RhpWjanfxRyXyQnHmfvdoIMhG5guAT24r1bHPavXxOMwX1qlWo0LJJc0ZNuLa325Woy7XutbMU YT5Wm/mfJvw98LftL+JPCXxCPx81vwDBp3iHQJrHTfCvh+0LDTHkR0ZnuD9/KsQRl+x3DBB/IuPx 34k8X/8ABux8Af2WPB2j3ut/Fjx/4g1Hw/FpUU6QyW9tpV+9zd79xwvyiNeSPvE9sV/RKVOO1fDX wa/YM+G3wf8A22PFvxzg8R+J/EviLUNW1C90HTb2UJp/h8Xzs9wsES/eZixG8kfKFAUEZOeOzL63 jPrE6UYrT3Yrljp0stfV3u973HCnywtdv13PVfgN8SvG/iu3u/CfjH4E+Kfg4+gafbpbfbb6K7tJ o8GNI4pUA3MoQZ+XAGOa+GP+CkPiLxD8K/2zP2SfjV4b12Dwe+mS67pV94hudGm1KCzWeCAoHhiR 2fIEwACk556A1+u2z6UhjDffAb60YnH0pY1YihQjTSafLrKOn+NybT6pt9ghB8nLJ38/+GPj79iz 4rTfF/8AZt8ReJZ/i1cfF6WHxJJavqMnhSXRFsiLeB/syRyKrSKN+/zNo+/t/hr1jwxaXfiX9qnx r4yvoHj03Q4l8P6CskZXP3ZrudQf7zmOMEdoa9qEYVcBVA9hUWFVzgAc9vWuLMK8sZiXXqJJt3ai lGPyikkl6I78Hi/q1KpCKu5rlv1Sum/vSt6Nn4A/theKbr4MfH3/AIKBeAUuJ4E+LPhLw5q+hxAF TNO9zHY3CR467laTd6ha/dD4beE7PwJ+z/4I8FWFvFa2uhaFaafHFEAFXyoVQ4x7gn8a+D/2wf2K tT/aS/b3/Zt+IVlcafa+GvC91JD40aWfbPJZxTJdW6RLj590gmjbkYEgPav0lUEMemO1ZXRxodRR RQMKKKKAGMGJ4r5Q8d2vjCH9u/8AZrfxFrPhrUbF9b1sWsWnaNNaSxn+ybggu73Mof5eOFXJ5yBx X1iWA6184fFSWJ/23P2YAkiMV1zWtwDZI/4k9xQA/wCK3/J7f7Lv/Yd1r/0z3NfRtfOXxW/5Pb/Z d/7Dutf+me5r6NoAq3d1b2VjNd3k8VtaxIXllkbaqKOSSewFcifiP4AGf+Kz8ND/ALiMf+NdnJGs qMrhWRhgqwyDVUabYgf8eVp/36H+FXHktqcWJjim17GUV6pv8mjm4PiD4GubuKC38XeHZ55XCRxp fxlmYnAAGeSTXYgg896qf2dZAgiztAQcgiIcH8qtqu0+1TPk+yXhliEv3zTfkmvzbPk/4vfGvxN4 O/az0z4faXrHhXw3pc3hE6y9/qfg7U9clll+1mDygllNH5ahRu3ODzwKb4C+MvizxZ+1f4n8F3ev eELXT9F106cNNh8Ear9qvI1soJ/O+3Gf7NCS8pIjZGYKu0/Mc16d4u+Et9r/AMfbb4jeHviN4q8C 69H4f/sSZNNsrC5hnt/tBnBK3NvKQwY9VIGO1dX4L8CW3gs+KJLfVdR1W71/WW1W/nvFjB89oIYW 2hFUBT5IbGOrHGBgBHUd3RRRQB87ftT/APJn9x/2Nnh3/wBPlhX0TXzt+1P/AMmf3H/Y2eHf/T5Y V9E0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMfO0Y9afTX5A+tAHxV4Q+DmhaX8cfD/gCD446D rXgvwR4gn8R6J8MobW1TU9PlkM0kaXMyzGSS2ha6Z4kMKEYi3O20E+h+Nn8f+Dvg/wCFW1j9pP4e eB9bhuLiPU9f8TeGbaOz1bzHLQosLXcXlPEmF+WQ7uSV7D5P+H2m6PD+x7+y540i0/TIvjFffFx/ t98EVb+5vZ7zUE1aKVx87fuRcbkY4AiXj5Bj78+IGgT+KvAbJ4dg+H914miJfSbrxTo/9pWkJJCy Hy1dGyVyuVcYJGQRwQDxXTvBOsfD39k20vPBfx+8K6L52s3niLxH438RaNbXum6tLfSvLK4VbiGO CLzJF8vZLgBVUls5Pa/CfwVpvhL9nTxLqdr45g+JureKLm813WfFlssKQ6pcypt3QrCTGkSJHHEi qzYWMZZjkn4v+HOnabJ8P/2a/BPiKy02fQoPjl4ms/EttCUk0i71e3j1aWMW8QVVW088O8MDL+7M aLyyAn6S+BkEWnaz+1XoejW0Nl4N074g3Meh2tpGEtoPM0qymu1iA+UD7XJcFgvAdnHUGgDoP2Uf B3hHTv2Dvgnr+neFvDmn67ceB9ONxqVtpkMdzLutoy26RVDHJ5OTzX00OBivmX9lTxC13+wd8FNK Gh+I7QReBtO/0y5stlvJi2jHyvu5z1HHIr6aGdvJBPtQAtFFFABRRRQAVS1G1gv9Eu7G6jWa1uIW imjbo6MCGH5E1dprAMMEZFKSurCkrqx5D8C7yab9l7w1p95L5t9ogm0S6P8At2Uz236iJT+Nd74k 8RWnhnwxPq19a6reW8bqpi02wku52LMAMRxqWPJGTjAHJxWlbafY6bFNHYWdrZxzTvPKkMYQPI5y zkDqxPJPUmuP8K+Mxr3jfxh4ZvrJNM1zQL5Y5bYSmTzreRd8Fwp2j5XG4dOGRhk4zWMF7OCi3rt9 w8Ngq0sPLl15Er+Sulf72jX8LeJh4o0y4vI9C8RaJBHKEiGsWX2Z5hgHeqElgMnHzAHIPFdVUPA+ bGD607OVzkitY3S1JgnZXdxx615X8Z/hdovxm/Zo8XfDjXB5dtq9mVt7kD5rW4Uh4J1xzlJFVuOe K9SR0k3bXV9pwcHOKdtXPSujC4iph60a1J2lFpp9mtQnBSi4yW58mfsiWHx40D9nC18KfHXR4LXU dHY2mlah9vjmnuoI3eNRIqk4+VVZWzyjAHBFfWJO0Z9OtOCKDnHNNfgAdicUY2usRiJ1lBQ5m3yx vyq7vZXvouhnh6Ko01BO9u55zYeO9YvPiANFl+G3jmwtDcPF/a9xHbfZAq5xJ8sxfaccfLnkcCvQ pYxNbuhaRA6kEocEZHY9jWHpfibw7rmuaxpmja3pWqahpNz9n1S2trlZJbOXaG2SqDlGwQcH1rol HyDPNc/salJ8s73317aPyCjGUU7z5vu/Q8r+Enwf8G/BT4Xz+FvBUF6tpcajPf3l1fTme6u5pWyX llPLkDagJ52qOa9QIG3BAxSXE0FtaNNcTRW8QIBeRwqgk4HJ9yBSqQ3PWunF4yvi60q1ebnOTu29 WzSMYxSUdLHnvi3wB4G1zwPf2useANA8U28cx1GPTpLCEma6X51dSwAErMoG4kZ7nFZHgDwdrMGu 3njzx08U/jzVIBD9mgmL22jWmQy2cHY4IBeTGZH54UKB64FU54zS7VC4A7VhUc5qEZSbjG9lfRX6 pE1KftKinJ3f9amLL4f0ObxjD4kl0fS38RQ2rWkGqtaRm7igZtzRLLjeEJwSoOCecV4z4q+H/i23 8F67dR/E3xNrllDbvdx6XqdjZuDLEfNiCyxxJIuHRepPpXvucjnOKZIoeNkK5DKQQe+aIRSnGXY5 sdhIYmjKnLqmuvVeRm6XqlvqPhXT9WgcfZLq0S4VycfKyhgT+Bqn4Z8VaJ4w8LrrXh29Go6S08kU N0sbLHMY3KMyEgbk3A4YZDYyCRXken+D5vGfwD0zwTfavfaboumapPYa5ZwDbJqVrDJIEtzICGjR h5RbbyygrwGNeg+I9fs/h54N0qe38M6pdeHLcrBcjRrQSf2XAqHEnkqd7RggKRGrEA5xgE0q7cKs k9kdOBr4epllOtJ/vJWuukdNU+7v20SWt29O/I4/GuZ8WeJbDwl4Ln1rUINRu40dI4rawtHuJ7iR 2CpGiKCSWYgZ4A6kgAmrmg6/o/ibwxZa1oWqWer6VdJut7q1kDxyD2I79iOoPBwa2tq5zjmle8fd Y780fde589eAfhH4WvPizrfxl8XfCX4e6F8TtXnVo7+LT459Tt4ERUjE9wcqZ8LyYwAoIXc2Nx9/ k3rbuyKZZFUlV3Y3HsM9s1OFAGABRgelEY8sbXuEIuMUm7nm3hrxh4v1TxQml+IfhlrvhhTGzNqD ahaXNpkDIUNHJvye2UFejYyaftHoKMUqcXFau4Qi4rV3I9gXgZwPepB90UYFL0FWWFFFFABRRRQA UUwk4rM1nWLDQfC9/rWrXkFhpllA091cTHCRxqCWYn2AobsrscIynJRirtmtXB/EjwjcePPgf4p8 H2niLWPCd1qti9vDq+lTGO4tGPR1Yc/UAgkZwR1re8Pa5H4i8D6brtvbX9lb3sCzRQ30PlTIrDI3 oeVOOcHnmtsAMgJHPvWmGxE6NWFWm9YtNddtfRhVpuMnCSs1oz4t/Zs+MXjVPiLqn7O3x1he3+Mn huAy2WqKC1v4l04cJdo4GN4GA2cZ68MHVftWqn2Gy/tgaj9ktv7QEPki58oeb5ec7N3XbnnHTNW6 9PPMxoY7FPEUqKpcyTlFfDzfacV9mLeqjrbZaWSxoU3CCi3ewUUUV5BqFFFFADSobrXyn498IeEv Dv7d/wCzTfaB4W8OaHfXWt62tzc6fpsNvLMDpNwxDsigsC3OCevNfVbNj1/KvlTx94h/tj9uz9mq 2OheI9K+z65rR87ULMRRyf8AEouB8h3HJ79OlAHQ/Fb/AJPb/Zd/7Dutf+me5r6Nr5y+K3/J7f7L v/Yd1r/0z3NfRtAGVrWt6R4d8N3ms6/qumaHo9pHvur7ULpLeCBc43PI5CqMkDJIrzn/AIX78Cu/ xq+Emf8AscLH/wCO12fjTwX4W+Inww1nwX420Sz8R+FtWg8nUdNugTFcJuDbWwQcZUHr2r5m/wCG Af2Nf+je/AP/AH5l/wDi6APZ1+PnwMeRUj+NHwmd2YKqr4vsSSScAD971r1dW3cd8V8iRfsC/scQ 3Mc0X7P3gNJUYMjCGXIIOQfv19egAHgUAeSfGb4m3/wv+FsOp6D4Un8eeLL+8FrovhyC9FrJqEgR 5pQshVgNkMUsn3TnYBxnNVbL49/DbUvBF74gsdXurmwtr/S7HCWUhlml1NLZ7LykxmRZFuosMPlH z5I2NiH4g/BfR/iX8b/C3iTxbqmq3GheH9MuY9N0bT726090vLhkV7s3NvMjkiFTEI8AYlkJJzge T+D/ANlC18F/GvwXrel+Ob5vBugSS58MPp+5b0RS3UmliSdpSxNmL25QMVJkHk5wYgSAep6f+0N8 ONT+LWieD7SfxDJd61rV3o+j6h/YdwNPvru0SV7mOO52+WfL8mVSSQCUYLuwa9xr4M0H4WfEaz/b A+GWg6eNff4T+CfF2s69FLqejW9skIu4LsLEtytw73f729cRhYYtqA+YzMqk/edAHzt+1P8A8mf3 H/Y2eHf/AE+WFfRNfO37U/8AyZ/cf9jZ4d/9PlhX0TQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA Uxxle/4U+igDynTPgn8LNG+Ol58S9K8C6FY+Obl5ZJdWjjO/zJVCyyKudiSOAA7qoZv4iaytU/Z5 +DWsfDjw34Sv/AOmSeHtBkuJNGtYp5oTZG4cyT7HRw4DscsN2DXtdFAHmF38G/hhffAW2+F0/gXw /wD8K/tlQW2iRW/lQQGN96Om0go4f5g6kNnnOea0dI8F+F/h/wDA288LeDdDsPDvh+1s7hoLK0Qh Qz73dyTkszMxYsSSSSSa76uH+Injnwt8PPhnceIfF89wmltPHaR29rZyXVxeTTMI44IoYwXlkdmw FUE/gCaAOA/Zd/5Rw/Av/sRtM/8ASWOvd6+MPht8E/2YPH/gu7m8F6D4z0u20i9fTL7RZvEmt6ZP pEyBW+zyWjXCGH5GRlXaFKOrLkEGvQx+yn8FCP8AkD+Mf/C71n/5LoA+jKK+dP8AhlP4Kf8AQH8Y /wDhd6z/APJdH/DKfwU/6A/jH/wu9Z/+S6APouivnT/hlP4Kf9Afxj/4Xes//JdH/DKfwU/6A/jH /wALvWf/AJLoA+ijyprmvCniCPxR4T/teK2ktU+3Xdr5bsGObe6ltycj1MRb2zXxzqvgT9l3Rv2p 9A+D2oaF8XYPFus5GnXDax4l/syZ1ge4MQvvP8gyCON2KBywxyKx9c8K/se+DPipeeCb+x+IVpPp 97bWusX9lrviF9K0i5vGDQRXV1HP5MMkhkRiGbjzUZsbwSAfoJ1rynxX4W1eP45+EPHfhi3829iL aZr9uJAgutPk+YNzgF4pQrr3wZAM7q4hf2VfgowyNH8Y47f8V3rPP/k3Tv8AhlP4Kf8AQH8Y/wDh d6z/APJdZ1KamrM6sJi6mHm5Q6ppro01Z/131PoYq2/IPHpXP+J/DNl4r8KSaPqM+qwWckiPIdPv 5LSVtrA48yMhsHHIB5HBrxn/AIZT+Cn/AEB/GP8A4Xes/wDyXR/wyn8FP+gP4x/8LvWf/kuraTVm YU6koTU4uzWzPX/CPgnwx4G0S507wvo8GkWs85nuAjs7zyEAF3dyWZsADJJ6Cusr50/4ZT+Cn/QH 8Y/+F3rP/wAl14d4r8L/ALKfgnx5e6L4m0H4yaXaWV5BaX3iCTUvE39jWss+3yxJe+d5QUl1UvuK qzAMQaUYqKsiq9erWqOpUk5Se7bu38z7b0LW49al1kRwPD/Z+qS2LFmB3tGFO4Y6A7ulbzglRxmv z+17wx+x54Q+LWoeD9Rs/iFBd2d/bW2t6lZ694hl03TLq7CGCO8u0nMUUsgeL77ZAkj3EbhXu4/Z U+Ch/wCYP4x/8LvWf/kuqMjhviT+yXYat8Yn+K/wZ8V3/wAFvi3JNvvNV02PzbHUwzAyC6tSQjlh kkjGWwWBPI+wLdJI7CGOaUzzLGA8hUAuccnA4GevFfPX/DKfwU/6A/jH/wALvWf/AJLo/wCGU/gp /wBAfxj/AOF3rP8A8l16uYZ3jcdRpUsTPnVNWi3bmS005t2lbRNtR6WMqdGEG3FWue5a7oeleJPC V9oeuada6rpN5F5dza3MYeORfQg1zngrwbc+DIb/AE6HxHrWseH2Kf2ZY6m4mfTlGd0azn95Ih4w JCxXGAcdPMP+GU/gp/0B/GP/AIXes/8AyXSH9lP4KD/mD+Mf/C71n/5Lrx3Ti5c3Up04uXNbU+jK 5jSfEMWreN/FukJbSRPod5DbySFgRKZLaKcEDtgSAfhXx38Qvh/+zT8MtRni8R+D/jfcWdtY/bb3 UdJ1HxNf2dnBk5eWWGdlXaFLMOSqjJAHNc34o0T9jHwVqyvdQeP9RS50W217UtR0HXPEV/BY6dMA sF7ezQTsIomVSVaQ52RscbUJFln1R411rxR4D8eJ4xeW7134cywrFrdhFBvn0jGQLyIKN0kfI8xO SANw4BFeuQyLNbRyxEOjqGVh0IIzmvnSD9lz4H3VjDc2mmeKri2njDxSx+O9YZHVhkMP9LwQQasj 9lX4Lk4bR/F/4eO9ZH/t3WcINSbbumdeIxNOtSguW0o6XWl10uu679VbrqewaHoNzpPi7xVdtNFJ Y6pepdwxrndG/kpHJnPHJTPHrXVbcpgivnf/AIZT+Cn/AEB/GP8A4Xes/wDyXR/wyn8FP+gP4x/8 LvWf/kutZScnqedRoQpQ5IrTV/e7s96sdOstOheGwsbWwheVpXS3iVFZ3JZnIAGWYkknqSa0DyK+ dP8AhlP4Kf8AQH8Y/wDhd6z/APJdc94r/Z8/Z48FfDfW/Fvia28V6XoGkWUl3f3cnjvWiIo0Uljg XeSewUZJJAAJNJKxqlY+iNG8RRat4y8WaOltJDJod7DbSSMwIlMltFcAgdsCUDn0rpa/PKDQP2PJ Pgp4G+Iek6T8TtTsvHpZ/D1jpeseIptU1Ty0O9vsqXBlxGkZ3M4AVQoJGQK9V8EfAr9m/wCIvwu0 rxl4Rt/GOp6DqCMYJW8a65DIrKzI8ckb3QeORHVkZGAZWUgjIoGfXFFfOn/DKfwU/wCgP4x/8LvW f/kuj/hlP4Kf9Afxj/4Xes//ACXQB9F0V86f8Mp/BT/oD+Mf/C71n/5Lo/4ZT+Cn/QH8Y/8Ahd6z /wDJdAH0Welc5a69HP8AFbV/DAt3WWx0m01BpiwwwuJbqMLjsR9mY577h6V8i/EX4X/s1/DLUPCl hrvhz4r6pqniW+lstHsND8Ra/qFxcSxQtPINkVySoEaM2TgcVj6/8Pv2XPCvhjwzr+seEfi3a614 oke20nQodW8Qy65d+SHkdfsqXBlCRrvclgFUPnILjIB960dRXyT4H+BX7OPxF+F2leMfCMHjHUtA 1BGaCVvGuuROrKxSSOSN7oPHIjqyMjgMrKQQCK6hP2T/AIIxxBI9E8XRoOir461kAfgLugD6JKtg +teE/GbwH498fy+FtF8O6rpGl+GFv/P1o3MZkfKYaFxH92UIw3CNjgvsLZUFTn/8Mp/BT/oD+Mf/ AAu9Z/8Akuj/AIZT+Cn/AEB/GP8A4Xes/wDyXWVejGtBwlszbD4ipQnz03aXR9V5rs+z6brU9f8A CHhLTfBngqDRNLN7NGsrzT3V5O01xdTOd0k0jtyzsxJPQDoAAAK6sDC4zmvnX/hlP4Kf9Afxj/4X es//ACXXHeOPgd+zd8Ovh5deJ/Fdt41stLhljgRYfGeu3E9zPK4jighhjuWeWV3ZVVEUlieBVxio xUVsjnjFRVkfS82vxQfFjSfC5t5DPe6Td6gs4YBVW3ltoypHqTcg5/2T610tfAl74E/Za074bw+N ta8G/GLRnbUxoun6ff3/AIji1i8uJdrCC2tjP5soYKGJQFcRkkjYSO48AfBX9m74l+Bm1/wvp/j1 7eK7ls7y1vvF+vWl3ZXETbZIZ4ZLkPHIp7MBkEEZBBqij7Dor50/4ZT+Cn/QH8Y/+F3rP/yXR/wy n8FP+gP4x/8AC71n/wCS6APouivnT/hlP4Kf9Afxj/4Xes//ACXR/wAMp/BT/oD+Mf8Awu9Z/wDk ugD6Lr5z+K5/4zb/AGXv+w7rX/pnua53xV+zv8DvCngy61u48J/FDWYoCoNpovivXby6fcwX5Yku tzYzk46DmvN/A+sfsp+E/F3jDx3ZeH/iJ4c8RfDv7Nb3x8UprU9zay6mpjghtoLmSTzbicEIFiUv +8UcbhQB9J/FH4V3vxD17wLrejeOde+H3iTwpqM95p2o6ZZWtzv8+2ktpI3juI3QqUkJ4AIIHNcv /wAKm+M//R0Xjf8A8JHRP/kavRvh98UfCnxLsNYfw82r2t/pF79j1fStX0yawvrCYosirLDKqsoZ HVlbBVgeCcGvRaAPnT/hU3xn/wCjovG//hI6J/8AI1H/AAqb4z/9HReN/wDwkdE/+Rq+i6KAPnT/ AIVN8Z/+jovG/wD4SOif/I1H/CpvjP8A9HReN/8AwkdE/wDkavouigD50/4VN8Z/+jovG/8A4SOi f/I1H/CpvjP/ANHReN//AAkdE/8AkavouigD50/4VN8Z/wDo6Lxv/wCEjon/AMjUf8Km+M//AEdF 43/8JHRP/kavouigD5b1z4AeP/Fum2Wk+Mv2ifHPiDw7FqtlqFzpo8OaRbi6NpdRXUcbSR2wdVLw pnaQcZwRX1GM7eetLRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXzB+0zMNDHwS+ IGotPF4Q8H/Ea31PxNcRxPILWzeyvbQTuqAny45rmFmbGFUFjwpNfT9RyYERLY2989MUAfLH7Puo WnjH9oT9oX4neG5Dd+APEevadDoWoJGVg1NrTT4oLi6hJwXQyfut+MEwnBIANfVY6V4S37TP7OcM skEvxx+FEciMVdD4ntQVI4I+/R/w0/8As4/9F1+FH/hUWv8A8XQB7tRXhP8Aw0/+zj/0XX4Uf+FR a/8AxdH/AA0/+zj/ANF1+FH/AIVFr/8AF0Ae7UV4T/w0/wDs4/8ARdfhR/4VFr/8XR/w0/8As5f9 F1+FH/hUWv8A8XQFzwr9o/4z/Crwb+3D+zbpXinx94c0HUND8UXl/q8F5dbGs7ebR72OKWT+6jO6 oCeMsK8f+LWv6ZZ/Bj9r74J3Mdy3xV+IPiUy+CdKFtI03iCO/tLKO2uLcqpDxwsjq75xELdi+0YJ +0j+03+zaWLH45fCUnuf+EntP/i6X/hp39m4nd/wvP4TE8jP/CT2n4/x0Bc9vs0aLTIInbc6RqrH 3AGas14SP2n/ANnHt8dfhR/4VFr/APF0f8NP/s4/9F1+FH/hUWv/AMXQB7tRXhP/AA0/+zj/ANF1 +FH/AIVFr/8AF0f8NP8A7OP/AEXX4Uf+FRa//F0Bc92r8+f2hvjh8L/HHx2v/wBmfxF4/wDCvgrw hYG2ufiXqWsXqW8txEWSeHSbRX5Z5gFM0vSOJtqku4KfSH/DT/7OP/RdfhR/4VFr/wDF0w/tN/s2 liT8cvhMSe58T2n/AMXQB8YfFnXNO0/4Qfte/A26iuD8WPH3igv4M0nyJDPr8d9a2UdtcQMqkNHC UdHfP7oW5LYABP6fWitHZwxudzrEoY+pAGa8RH7Tv7NxII+OfwmJXpjxPacf+P0o/ae/ZwHI+Onw o/8ACotf/i6Aue70V4T/AMNP/s5f9F1+FH/hUWv/AMXR/wANP/s5f9F1+FH/AIVFr/8AF0Cuj3am P0Gc/hXhn/DT/wCzj/0XX4Uf+FRa/wDxdH/DT/7OP/RdfhR/4VFr/wDF0DPJP2r/ABz8LLn4W+KP h54i+MviL4d+Lhok0ttpGhu4utX86IiOAQ+UxulcjZ5cZ3HcwyM5Hg2n+M7D4W6B8abH4taCngvx P49+Fmgt4b0C20+Rk1GddFayl0izSNW3SRXPyeQMsBMp6ZavtE/tN/s3Fsn44/CYkdz4ntP/AIuj /hpz9m4sT/wvP4TFgck/8JRaZH/j9AXOv+EGg6t4Y/ZN+F3hjXlaLXNJ8I6bY6ihbcUnhtIo5Bnv 8ykZ9q9JxzXhX/DT37OOePjp8KP/AAqLX/4uj/hp/wDZx/6Lr8KP/Cotf/i6BKx7tRXhP/DT/wCz j/0XX4Uf+FRa/wDxdH/DT/7OP/RdfhR/4VFr/wDF0DPdj0r5c/aDt/iNqnjr4a2Gg/DTVPiR8OrO +l1fxPYabqlnbT3NzbbGsIGFzLGGhExM7YOd0EYxgtXWn9p/9nHHPx1+FH/hUWv/AMXSf8NPfs4f 9F0+FH/hUWv/AMXQB+f/AOz54vTwX8LP2Pvij8TdIvPA3gHTvCviTw/JrOpyRSW1pc3NxbTQTyPE WEKTLbzxqZNvzIFP31z9vfsqwXDfsyatrhsLzTdN8ReOdf1zRorqBoZJLG71O4mt5tjgMglRhKAw BxIOBXQf8NN/s2kY/wCF5/CU44x/wk9px/4/T/8Ahp79nHP/ACXT4Uf+FRa//F0Cuj3aivCf+Gn/ ANnH/ouvwo/8Ki1/+Lo/4af/AGcv+i6/Cj/wqLX/AOLoGe7UV4T/AMNP/s4/9F1+FH/hUWv/AMXR /wANP/s4/wDRdfhR/wCFRa//ABdAHNftDr+z63/CDS/HbxNJ4Ta0u7m48N3ya7eaU6TeQYpik9s6 EN5cuNpYZycA4OPlX4f+M7rwj40+APxb+K2reIl+GttH4z0HRvFnimKXzreymv7eTR5rt2XepntL ZlWWUBn2x7zvkAP2Yf2nP2bm5Pxy+Ex+vie0/wDi6X/hp39m45U/HT4TH2/4Si0/lvoC5hfsp285 /Zk1bW20+703TfEPjfX9c0eK5gaF5LK61O4lt5vLYBkEqMJQGAOJBwOlfSteE/8ADT/7OOOPjr8K OP8AqaLX/wCLo/4ag/Zx/wCi6/Cj/wAKi1/+LoC57tRXhP8Aw0/+zj/0XX4Uf+FRa/8AxdH/AA0/ +zj/ANF1+FH/AIVFr/8AF0Ae7V8W/tp6JcX3gT4M+Ir3WNf0HwL4a+JdnqHjTUdGmkjubTTXt7m2 aXdEC6IJJ4t8i4MaFnBG3I9c/wCGn/2cf+i6/Cj/AMKi1/8Ai6af2nf2bycn46fCcn/saLX/AOLo A+G9F1+20n4seF/iJaeIvEnib9mHwZ8XXbRPEutXdxfpYW914fmtpZ1uZi00tnHfzGJZWLBDM43C NAR9bfsz3EXiDxJ8fviLpAebwX4w+Ihv/DN8UZE1C2h0yws3uYwwB8t5raYK2MMF3DIYE9b/AMNO /s3Y2/8AC8/hNjHT/hJ7T+W+nD9p79nAdPjp8Jx/3NFr/wDF0Ae70V4T/wANP/s4/wDRdfhR/wCF Ra//ABdH/DT/AOzj/wBF1+FH/hUWv/xdAHu1FeE/8NP/ALOX/RdfhR/4VFr/APF0f8NQfs4/9F1+ FH/hUWv/AMXQCdz2PV9TsNE8NahrOqXKWem2FrJdXc7nCxRRqXdj7BQT+FfnHZadqg/4J/eHPjp4 n0e9+2+JvizpvxH8WwJbM8trpbXkaWryIuSRa2KWbttHSBmxnNfW3/DUH7Nzll/4Xt8JWI4Yf8JR aHH1+euk8LfGv4O+OvF0fh/wZ8UPAPirW5IWli0/StcguJ2ReWYIjEkDuccUAePfAvWNN8eftsft B/FLwhcLqvw91a08P6TpmtQowttTubKG7a5eFiB5iJ9qhiLrlSyOucoa+tq4nxj8QfAfw50az1Hx 54x8M+C9OurjyLW41nUY7SOaTaX2IZCAW2gnA7A15/8A8NQfs4/9F1+FH/hUWv8A8XQB7tRXhP8A w1B+zj/0XX4Uf+FRa/8AxdH/AA1B+zj/ANF1+FH/AIVFr/8AF0Ae7UV4T/w0/wDs4/8ARdfhR/4V Fr/8XR/w1B+zj/0XX4Uf+FRa/wDxdAHu1FeE/wDDUH7OP/RdfhR/4VFr/wDF0f8ADUH7OP8A0XX4 Uf8AhUWv/wAXQB7tRXhP/DUH7OP/AEXX4Uf+FRa//F0f8NQfs4/9F1+FH/hUWv8A8XQB7tRXilh+ 0h8ANV1+x0vTPjV8L77Uby4S3tLaDxLavJPK7BUjVQ/LMzAADkk17Uudgz1oAWiiigAooooAKKKK ACiiigAooooAKKKKACiiigDgPiboGseJfg/q+maF428SfD7UTGJk1nQUt2u4xH85RftEUsYDY2kl CcE4weR87eBvi54vg/4JX/BzxJJef8Jf8YPGOh2NjohviinUdTuIyTPKECr5caLJcSbQBsifABxX 0t490bxZr/wu1PSfBXifTPB/iC5VUh1TUNG/tOGJdw3gwebFuJXIB3jBOcHGK+dfAv7J+nWX7PHg bwD8W/E6fEo+CUNv4R1XR7W68OXGn25gWFkZre7ZpHYKctuUEHG3qSAeWeD/AB98Vpv2EPh/4Yvf iRq1/wDETxN8WdQ8FyeNprG3+1RW1tqV+JJ0iCeUsptrJkQlSFZ1JDYwfZvhh4h8U2XxT+P/AMIP E/irVPG6eEILG90fW9UjiW8a01C0kcQTtEiI7RywzYcKCUZAQSNxxvC/7Imi+C/2W7vwD4Y8aa3p uvx+NpvFuieJZfNvJNNvDeSTwgQ3E0gdFjkMEg3L5oLsdrOSPS/A/wALL/wJoXxK8T+KfFQ8c/ED xWftOtawmnCwg2QW3k29vBbq7+VFGgPBdiWd2J5wADG/Zh0rQJv+CdvwPaTTdHmnbwPphctbxlif s0eScjNe8f2Bof8A0BNI/wDANP8ACvnz9lLwf4U0/wDYO+Cmv6d4Y8Oafrlx4H08z6jbaZDFcy7r aMsWkVdxyeTk8mvpoAhQCcmgDI/sDQ/+gJpH/gHH/hR/YGh/9ATSP/AOP/CtiigDDk0HQ9h/4kmk dP8Anzj/AMK8A/Z50bRpPh94pMmkaW5PiGZjutEPUA+lfS03+oc/7J/lXz3+zqD/AMK98SZ76vv/ AO+okP8AWu+h/ulX1X6nx+ayf+sOAX92r+UT2/8AsDQ8/wDIE0j/AMA4/wDCvlvW/A+m+F/j98Dd Hms9Ju3/ALe1u6aRLNQCLmZ5wvI/hEoX8K+uycnNfP3xHG79rX4NHr5c9035iNaWX/xX/hf5M04w k1gYW/5+Uv8A05EzvhroujN+1B8XidI0so1zbkD7ImBhph6V75/YGh5H/Ek0j/wDj/wrxj4Z8/tE /E6QdZJlP5T3Ar340sx/ir0X5IvhBt4CV/56n/pbPlqyt/DWmftf+J7/AFLT9GtdOgN2ZZZLVNqA W+n8nj3r6MGh6CUDDRtIKkcH7HHz+lfIXxKcxeJ/idNnGbbUQD9ItNFfRup+JL21+KHw70a2kjWy 1WC6kuVKglhHArLg9uTXVjMO5KEl2/JJnicM5wqVXE0JrSM7+fv1Jx/CyOwTQtBYEroukMP+vSP/ AAp/9gaH/wBATSP/AADj/wAK4X4S3D3PgPXGdy+zxNqaDJzgC7kGK9Sry6lPkk4n3WCxP1ihGra1 zx/VPBml+H/hF8SJ30/SJ2vTfX8e2zQeWHh4XkdRt/Wsn4HaDoq/s7aXDJo+lO0N3cx/NaITxO/t Xf8AxJm8j4B+MpM4/wCJROB9TGR/WsL4SR+R8NL23xtEWtXigen75q64/wC5y9V+R89XbfEVLypy /GS/+RMP4zaDo3/Cl2SPR9KQvqdovFog6zJ7V5toml6Sf2gfgXH/AGVpe1/A8hdfsic/uk9vavZv i0nm/DWyi679Zs1/8jLXjWgzF/2mvgOg6f8ACCSf+iwP6V2YNXw7/wC3vyPmuIpuGdR83R/9OL/M +n/7A0P/AKAmkf8AgHH/AIUn9g6HjI0TSM/9ecf+FbB4H40n8H414b2P08+b/B2kaK/7dPxYiOk6 WVXT7DC/ZEx90+1bfi/wNpei/D34y629jo8sWsWhuIYxZKDAI7KOAqeO5jLcetZ3gps/t7/FjrzY Wf6KP8a9E+LEmz9m3xu/P/IImH/juK9fER/2qkvKP5I+Byiu3keNl2lX/CUjzbV9K0b+2fgDjSNL /e343f6InI+wS+1e7f2Bof8A0BNI/wDAOP8AwrwbVJv+J3+zeCfv3QP/AJIP/jX0gOlYYxWUPn+b PU4aqOdTE+sP/TcDI/sDQ/8AoCaR/wCAcf8AhR/YGh/9ATSP/AOP/CtiiuE+rMf+wNDxzomkf+Ac f+FeV+DdI0WT49fFOI6RpR2X1ptBtI+P9GX2r2s/dNeM+A33/tJ/F9M52X1n/wCk4rpoRvCb8v1R 4ObVOXF4Rd5v/wBIkcn468E6boetXGsNY6RLHrnjbSp4olskBhWOKGAqTjnJjLcf3qqa9pGkf8Ng aYo0jS9gu9NXAtE7xX/t713Pxll8vw54MOcbvF2nj/yKK5fWvm/a9tz/AHNQ0tf/ACBe/wCNd2Ej anFvtI+Xz2o3jKkb7VKP5nuEug6H9lkP9iaRwp/5c4/T6V4L+zxoujS/CrVt+j6U7DUFPNohxm3h PpX0hLxayj/YP8q8D/Z2GPhfrA/6foj+drBXNR/3Wp8j18zv/rBgf8NX8ontf9gaH/0BNI/8A4/8 KQ6Bof8A0BNI/wDAOP8AwrZprda4T68+fPj/AKJoy/s7XuzSNLQm5jzttE5A3H0rt9D8DaVF46uv E7afo7wX3h3T7FIPsSbkaCS7kZ84x8wuVH/APpWB8e13/AK5X1uB+iOa9V0ds+DtMb1s4/8A0AV2 z/3WHq/0PlcK/wDhdxP+CH5yPnz4L6Lo7+NPHYbSNKYfaVwDZpx++ufavoL+wNDzj+xdI/8AAOP/ AArxD4K/8jv45/67of8AyPdV9Dfx5ozL+Ox8GO+U035v82ZP9gaH/wBATSP/AADj/wAKP7A0P/oC aR/4Bx/4VsUVxH1Jj/2Bof8A0BNI/wDAOP8Awo/sDQ/+gJpH/gHH/hWxRQBwNx4C0mb4x6P4nGna OtvZaLeWDW32JMu081pIHzjHyi2I/wCBcd66b+wND/6Amkf+Acf+FbFFAGMdA0PP/IE0j/wDj/wr j/iDoeiL8DPGDLo2lKRo9zyLOPj903tXo7GuL+Ip/wCLEeMj/wBQe4/9FtWtD+NH1R52bO2BrP8A uy/Jnzj+zTomkNrfxTWTSNLdV8QNtBtUOOX9q+qv7A0InnRNIP8A25x/4V85/s5II/FPxQUDGdbJ P/fyb/CvqQdAa785/wB7l8vyR8r4bXXD9G7vrL/0pn50/soaTpMv/BS39vuObTNOlji8d6SI1e1R gg/s88DI4r3r4k2elW37cH7MT6daafbv/bmsrIbaJFOP7HueCVHrXif7Ji7v+CmX/BQHof8AivdJ 6j/qHmvW/H3g/wAJ+Hv27/2ab/QPC3hvQ7+61vW1ubnT9Mit5ZgdIuGIZkUFhu+bk9QDXln3ZufF 23t7v9tL9l+G6t4LmE67rJMcsYZcjR7nHBr3l9B0IRknRNI4H/PnH/hXhnxW/wCT2/2Xf+w7rX/p nua+iZeYiKAPhTwh+0Nq+r2vw68Q+K/gV4V8O/Dvxr4nuPD2ka1p/iGO+ure4Wa4hha4tGtYiI5G tiD5byFNy5GMkejaV8dPg1onwZ8C6x8SfFnwug1rxHp1ze2L6Hp07WuopBMI5WtY3jMzBC8YII3Z JIGK5H9m79mrwx4T+D/hLxV418EXsHxU0zUdVu4P7V1ae7XTZLi7usS28JmeCFnhkHzRqDhj0JIr j/gV8H/Hnhv4gfsp6h4o8HXNgvhH4eeI9P1eaZoWOm3d1e2bQx/K55kjjk5XIAXBIyKAPpPWPi38 AtB+Enhbx3qfiXwTH4U8Slf7Av4bcTjUsqX/AHKRozvhQS2F+UAlsYNdb4J174ZfEnwDF4p8Bz+F vFPh2S5mt4tRsLZHheSGRo5FVtvO11ZcjjIr4n8H/D34n/DTx/8ACTx9P8Mdb8V2ug6v450660LT ri0+3afb6prJubG9gSSZI2iaGJVYB96rKny8MB7H+xRJLN+xfqN7PpUOhvd/EPxTc/YIZVkS3363 eN5YdCVbBJBKkqSDg4xQB0Ok/FbwJF4Y+JHjnxr/AMIP4T+GOi+MD4d0jWbi2C+fJHJHazSTOcqo N60kK/KoAjySQchrftHfstx+GX1aXx34Eiso742c/mWTLLBIAjEyxGPfHHiSM+Y6hMOp3civBJPh /rmq/sh+Ovg3p2iv4h8Q6B8e7bVNUsSqAS6ddeI4Na8/DkBoxaztn1MTqASMV6L4n+FXiXUPjd+2 frdv4QNynjL4Y6bpHh67xDu1SeOx1SOW3UlsjDS24O/CncvJwcAHsPiz4rfAnwR47sPDHibXPCmn a9dwR3EVnHp5uHWKRtkcshijYRIzAhWcqDg4PFO0HxDY3H7W/jn4Xa54b8NwTWOj2OueHriCyUNe WE5kgl8wHI8yK4hcEjAKSx8ZBJ+UNf8AB/xd8L6R4b1L4TeBvix4e+Mr+DPD+n3+qW97pk3hvV5b aBU8nUoriUuog8ydWkhVXI+6z8CvojQbWbxF/wAFVfGXiazQHSfCfw9tPDd5OF4e/urs3zxA9/Lg S3Y+n2gUARftQaPpVt+yTNPb6XptvMvizw7seO2RWU/25YdCBxX05Xzr+1Px+x9cf9jZ4d/9PlhX 0VQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcN8Rtf8YeGvhRqOr+BPB1p478SQbTBpF1rS aZFIu753adkcKFXJ4RicYA5rzPw98W/iB46/Y5+GfxL8AfDDTdb1zxXY295caNf+KFs7bS4pYmdm a58hmkAYKgCRZJbOAATXp/xD1m/0H4SaxqGl+FfEHjO+8kwx6Toqwm6m8z5Mr5skaYXO45YcA4ye K+K/BniL4/8AgX/glJ8PfBfhP4J+OtJ+KOnW9l4cu2vUsJxpcYhzPqiRrc7bhI8FUj3AtIVBATLU Aeyx/tIXp/Z8vtal+Hl2vxNtvGX/AAhq+DI9XidJ9XMgVUS827DbmM+eZdgKxhspuG2uu8C/FHUv HWhfEvwv4s8LR+CfiD4T/wBH1rSIdTF/b+XPb+db3EFwEj8yKRCeqKVZHUjjJ8QPw+1TT/2TPh7d fDz4bePF1/wB47h8RSaL4nuLaLVfEkj+at/ctKJWjaeVbueUbmVTIoX5FwR3vww8O+LLz4ofH34v eKfC2o+CD4vhsrLSND1KeJ7yOzsLOSMTTiF3RHklmmwgYkIqEnJ2gA7L9l3/AJRw/Av/ALEbTP8A 0ljr3evl39lDRddtf2FPgtqN34z1jU9Ol8D6eYtKlsrRIYQbaPaFdIlkO0dNzHPfNfUI+6MnNAC0 UUUARS/6iT0CmvAP2eU2fD/XFPe6t2/O0hP9a921GQxaLeSAkbYWPH0NeJ/AVQng/W1HTzLI/np9 ua7qOmEq/I+SzSN8+wT7Kp+KX+R7tXgnxAG79rT4X/8ATNJW/OWIV75jKmvAfHzY/at8Bt2S3XH/ AAK6jH9KMu/iv/DL8g4zf+w0/wDr5T/9LQnwvbPx58fH++7n8ry5FfQJ6188/CvP/C6/Fj9fMinb PrjUbsV9CE8nrSzH+KvRfoVwc/8AYJf45/8ApTZ8Q/FstGfiLMvVotUA/BdPH9K9WvL4TfHf4Dnd nzdHvXPvutocV8y/tP8AxJ8O/D/4K/E/XtQ1LSn1KxsNZuo9Nku1E0/7yzjiGzIba0ihcj0ODkYp f2cvjBL8c/h7+yx8SJrWzsL260S9tb+2tWZoop4Wkt2CliT/AMsc8+vtXspwnCML6pN/+S/8A/Oe TEUMTWxHL7kqlKN+7dZv8FJH178EJhN8PfE2Dnb4t1T9bqQ/1r2evn/9nqZpPAvjIHoPFd6w+jPu /rX0BXi4+PLiJL+tj9M4Prutk1Cbe6/VnnXxZYj9nTxaAcFrEoPqzKv9aj+GyeV4d8QQ4xs8QXf6 vn+tP+Kq7/gTrcOcea9vGP8AgVxEP61J4E4uvGcAP+q8QygD0zHG39aa/wB0fr/kY1briCD7wS/G o/0K3xNXf4P0ZP72vWf/AKNFeD+Fm3/tKfAx88L4JZfzWT/4mvfviGu/RvDiZ4bxBaZ9/mJ/pXz7 4OGfjr8FZc/d8LrGf++bz/4mu/A/7u/R/kz5bir/AJG1J/3qf/pyH+Z9jH7tNP3KTnnJzTv4RXhP Y/U0fOvgnP8Aw3l8Uj62UH6BP8a7z4yP5X7Lnjp/+oVJ/SuG8FD/AIzn+JDf3rMD8jF/jXZfHAkf sneOyv3v7NI/Nlr2q6/2yivKH5I/NctfLw7mD/vYj/0qR5jqMufEH7MIz9+QH/yQ/wDr19Rivk7U Xx4h/ZZ5P3AT/wCASj+tfWI61z5grKHz/wDSmerwfU5qmK/xQ/8ATUB1FFc9qniC30vxZ4f0maOV 5tWuJIYWUjCFImkJP4Lj6mvPjFydkfZVa0KceabstPx0OhPSvCvh3Ju/ao+NS5ztvrL/ANJ69yJ5 PNeA/DR937XHxzT+7f2X/og12YVfuqvp+qPm8+lbG4DzqP8A9NzLnxzk2eHPAYJxu8Z6eP8AyLWT qo3ftXlv7ur6WM/9u91/jUP7SmsafoHw28Ia5q9zHZaRp3im0vL65kzthhiJkkc4BOFVSfwr8/vg /wDtqXfxx/4LI2PhfSvCeqeHfhT4jsIdQ8JXms6e1veam1mJUa7U5IMEg8zauM4UE4ORXZSko0IX 6qX5nz2Y0pVszxCj9mdFv8T9i5v+PeX/AHD/ACrwb9nnj4a6wP8Ap7g/9I4K93uCfsM57+W38q8K /Z94+Hmsjt9ptv8A0it65aH+61fke3mf/I/wP+Gp+UT36mt1p1N/irz2fWnjHx1Ab4HTA/8APf8A 9pSV6doZ/wCKD0k9c2MX/oArzP45jPwYKD+K4Yf+QZa+Qv29/wBqLxh+zV+wb4LPw900XPjbxs39 i6VqIlAfSnNsW+0RxlGEsgO0KhAGTntg901/ssPVnyuD/wCR7iv8EP1Ppv4K/wDI6eN/eRD/AOR7 qvocdfwr+ffT/iH/AMFFvhx+zZ8RtLtNN8Pw3vhixbXtf+Kd/Lby+bZQ+dKtolvtw0zyeYhbZwqk HGd9ftn8C/G+pfEn9jb4XfEDWEtk1fxB4XstQvVt0Kx+dLCrPtB6DcTgdqjGz56rdjq4Ywrw+XQh zJ2vqttz1eiiiuU+hCiiigAooooAa3WuI+JBx8A/GJ/6hE4/8cNdwetcF8TnCfs+eMSzhQdKmAJP coa1w/8AGi/NHm5xrgK6/uy/JnkXwCTyvHHxMXGM6oG/OSevpodMV4/4H02x0n46+PLSwtktYHtb Gd0UnBkcTMzfiea7rxHrx0FNFYQrN9u1SGzOWxtEhPzfhiuvMJ+2xDlHrb8jweFKKy7J4wqv4HJN +sn/AJnw9+yV/wApMv8AgoD/ANj7pX/pvNe+fFb/AJPb/Zd/7Dutf+me5rwH9kwn/h5f/wAFAGHA /wCE90r/ANN5r1Xx1ouu6Z+3j+zXc6n4x1fxJbTa3rYhtLuytIktydJuCCphiRjgZX5mPHvzXnn2 B1HxW/5Pb/Zd/wCw7rX/AKZ7mvoxlDDmvnP4rf8AJ7X7Lv8A2Hda/wDTPc16r40u/iFa6TaN8PtG 8K61fNMRdR67qktlGkeDhkaOGQs2cDBAGM89jrRpOpNQTSv3dl97BnahAB3o2DOa8F/tn9pf/oRP g5/4V97/APIVdd4Nv/i9deI7hfH3hzwFo2lCDMEuh67cXkzS5HysklvGAuM8hic9q7a2WTpQc3Ug 7dpJv7kyVNMvfED4W+Avil4dsdL8e+HLbxHZWNwbi0SWaSIwyFGQsrRsrDKMykZwQSDW94c8PeH/ AAf4D0rw14W0nTNA8OaZAttYafp8KxQW8a8BEVeBz+Z966I9K/OSPWdPT4HR/Bp7xP8Ahaf/AAva O+Phnn7b9kHiddSNz5fXyPsn73zfuY4zn5a80o/Q9ZoDM0aTRmReqhwSKUyxG4MfmRmX+4GG4fh1 96/KvWh8NH+AXxMTwcnhw/tUf8LM1Y+FBogT/hIxef2wxtzIYv3otvLwX87915O7d8tepeH/AISa x43/AG2PiZ4l0zQfA3h46J8YrfUJvGizSf2/JBBp9i0ljGiwBfIlBMbF5yu12/dk4IAP0ClmhhwZ ZYo89NzgZpPtNvGQWngG8ZUmQc/SvhP9qODwxP8AtxfA4+LNV+C2jaYPCHiXbcfE7Rk1DTTJ5+j4 VEe4gAlxnB3k43YFLpPw9sPGv7fupahpGm/A3X/D2leAfCrx3F54N/tC3Mf2nVCTpbLchbVSEO0/ vQMR9dnzAHtv7UxJ/Y+uM9f+Es8O/wDp8sK+i6+cv2o8/wDDHlzn/obPDvA7f8Tywr6NoAKKKKAC iiigAooooAKKKKACiiigAooooAKKj81enOcZxRHLHMgeJ1kQ9GU5FAHI+PPiD4M+GPw4u/F/j3xD Y+GfDltJHHNfXe7aHkYIigKCSzMQAACTWPc/GH4Z2f7PGn/Fi68Y6VD8Pb+2guLHWW3+XcpOQIfL XbvdnLAKoUsSeBXReMdU0nR/hzrF9rWo6dpdglpIGuL64SGJGZSFyzkAEkgDnvX5zfD/AMReHv8A hi3/AIJ+a/c67pEvhHQtdtY9eu1vYzb6dcy6LfQ2puGzti/fSog3kfPJGOpFAH3pB8Zfhdc/s/T/ ABUi8b6Gfh/AG8/WXlKRRMsnlNG6kBlkEnyeWVD7uMZ4qfQviD4N+JXwX1nxB4H1+08QaUsNxbyy wqyPDKiHdHJG4V43GR8rKDgg4wRXwNf6jpcvjzx74+e+0+f4Mp+0vpN5ean5yvpzxRaTbWsk4cHa Y01QRbnztWSNmPQmve/hde2utftd/tb+IfDV1a6j4Luf7JtY7yyYPbXGpQ6awu2R1+V2CNaozDPz JtJypAAPTf2Xf+UcPwL/AOxG0z/0ljr3evl79k7W/EFz+wv8FtNvfBmpaXpkXgfT/K1WS/tZI5sW 0e3CJIZBu6jKjHfFfUPUZoAKKKKAMbxDJ5XgjWJP7llKf/HDXkfwOXb4b10e+n/+m22rvfH+vaNo /gG/tNS1bTNPv9Rs7iHTLa5ukjlvZVgeQxwqxBkcKrNtXJwCegri/g2nl2HiSMDG17Af+U63rupf 7tP1X6Hy2P8A+R3hvSX5M9p/hNfmz+3n8T/H3w48T/C+H4W6ho2k+PfE/iHSvD2jX2qWguILaW5v Th2Qggr+754JxnAziv0lPKkV+U/7c8X9tf8ABTf9irwiQH+1eObXUgnqbQ3D5/DeKxwsnGUmuzO3 PaanSp32U4v7nc1/2C/iP8VNd/ai/aJ+F3xp1fRtf8eeBdSET6jpVqILa5guLieYMihV+USGTGQC FIB6V+nV1d2tnp0t1e3EFnaxLmWeeQIiD1LHgCvyj/Z3u7Pw3/wcK/G6wuLq3sl8XfDS11aJJZFT 7RNHqBjIXJ5IDPwOwNe3/wDBTPWJdI/4IsfGFonZXvo7GxwvVvOvoEx+OaMSm6rj20+5mmSxisFC olZTXNb1V2fnWfgh4L/ae/4KiftAfEPx+uo6x4d0H4lQeHNDt4bnZCTZPbi6hkA4eNzKARx1ODk1 61/wTxlaHTb3wymY7Pwl8S9T022gH3YFea6k2j0HINe3fB/4I+GvgH+zp8MvBvhuXUb43Hiu+udR v7+QST3lx9rgjMjEAAfLEAMDoB1PNfBP7LX7Qvh34P8A/BVLxh8FNe0sj/hL/jE8yau90I4tPJiZ IV2bTvMssip95duQec17MbUqcakt2mvvuj82xEquY42phaN5RhKnKK7KLg2/xuftn+zwNngzxYDw X1ppP++kBr6Hr53+ALFdB1+HGNzW0n/fUP8A9avocdBXmZn/ALzI+14H0yLDrsv1POPihIB8L1jB /wBbq9gh/G7ho8Dkjxd8RYx/D4iP628Jr5h/bX/ah8G/s5eEfhla+JNL1XXrvxJ4mib7Jpg3T29l aMk11d7cZZYwYxtGM7uvBr234KePvBvxEXxl4p8E+ItN8Q6Dqt/b6hY3NrMDvgltIdrlfvLyrKQQ CGUg8ilFr2DX9bo3xFGp/atKpbTb7oT/AFZR/aX+Ien/AAm/ZnvPiVqtnLqGneHJxqE1pFIEafy0 crGGPC5bAyc4z0NfnR+zZ+0x8SPGn7fnwJ8KfEf4TWfw38OeLPCT6l4IuU1YXlxdwwx3TF5SuAqy eaxVdqkBRnOTj6A/4Km61Hp3/BJDxTpUU6f2trmq2Om6faKczXckk65SNRy7YB4GeK+aNZ0n/hC/ 2+v+CcmpTHyLbQ4j4ZupM/xTWlzFGh/GFq1pSmqF0/6d0edjsPh55qoVYXcmmn25eR/nY/bI5Joz hRQDzj0NHavMex9sj568FAf8Nu+Pjnl7aX9Gtv8AGuz+NaiT9l7xfH3kto1x65ljFch4NXH7ZvjB /wC/bXX6SWoruPiynmfAXWosE+ZJbJj1zcxD+tezWl/tlJ+UP0PzjLYXyDHx7yr/AIuR4lfHOq/s ySdkgU/+QYV/rX1upr5Bnffbfs7yf88rVOv+/bL/AFr6+WozNWUPn+bOngd3eIff2b/8pwX6Dq8V +Id35H7Q3wah3cy6xdAj2+zP/jXtVfPXxWyv7SvwYuc4W21KeQ/8CEcX/tSufL0nV+T/ACZ6/F1V 08Aml9un/wCnIn0Cep+tfP3wyGP2vPjkx6PeWR/KJx/SvfhIpk2FhvxnHfHrXhHw3A/4al+Lsn/P WeA/Xa0y/wBKeET9jV9P1Rln0k8dl/8A18f/AKbmv1PDv+Cid+dN/wCCavjG8DbDFZ3Jz9bWVf8A 2avhfw58AviJdfsy/sv/ABg+Ceq6fY/G74e+GNJg0bTNWjVtP1mC9shLLbSsSDGcFtrA4/eHoSGX 7J/4KdXMVr/wSk8btKwUvC8SE92ZCAP513nwm04aP8Ifh9p+0obC28K2rKeoKaXCprooyUqMYvs/ zPOzCEqOOq147ucF8lD/AIJ337Nfx5j/AGif2QY/Hs/hy48H+Ire8u9I8RaFNOJvsF/auY5o1cfe TIyp64IB5rZ+AI2+B9cB4P2i0OPrYWxr8DvE/wAVf2hPh5+2f8Zf2cf2f7i8s/Etj8Ydf8f3Npbt 8+pWi20NylgFA+eNl89jHnLnavBxn9AvgZ/wUa/Zx0KzTQviTqPiz4W65qNvYSCHxD4euYolf7JD E58xUYbAy5DHAKkGuWlOKw9SPXQ9nH4SpPN8JXS92Knr6pH61U3oxpkE8VzaxzwSJLDIoZHU5DAj IIPcEVIa4mfRs8a+N+D8JYR2Ny4/8l5q+OP2lY4NV/bw/wCCcuiXEUU8U3inUL0xyKCM2+mo4OD6 Eg/UCvrD4t+IdC1fwNdabpWtaTqWoaZqTQalbWt5HLLZyG1mYJMqkmNiCDhsHBr5A+Ocj3f/AAV8 /wCCbFgn3YLbxJeSD2/sy2UH8813zbWFg/NnyuDinnmKv/LE7H4kWpvP+Cf37V8B5LeAr8gdjgX5 /pXtP7Fd0bz/AIJNfs93BOd3gixH5Rgf0rwPxjqtz/wpv9oDw2Nhs7/4Ua9cSqV+YvHHebMHt95q 9j/YMlM3/BHb9np85x4PgXP+6zD+lPNKbhXu+qRzcB4qFfKly7xlJP1vf9T67ooorgPtAooooAKK KKAGMcV+PX/BY3xhqfhn9kX4NQaJe3ttqrfEFNRSO3kYeYlraTP8wH3grsjc5AIB7V+wxGWr8k/2 17O0+Ln/AAVU+BvwlWIXum+EfA3iHxP4qjIyiwXdt9jhQn+F8qxH++tXSg5TUV3OXG1oUcPUqTV0 k216H3j8H/Fth491q48b6YU/s/xB4T0TU4Ajbgomhlfbn/Zzg+4rpPipcGCHwHjq/iu0X9Wr4e/Y JPiP4ZfHX45fsqeNNWTWdR+GSaenhfUSmx7/AESc3EsDMMY3R+aqEj+8BzjJ+x/jXceQfhnhseZ4 ztB/6FXdQtPER9P0Pms2jPD5RWctPev980fNX7JRz/wUx/b+44/4T7Sv/Tea97+K3/J7X7Lv/Yd1 r/0z3NeB/sknH/BSv9v7oT/wn2lcA/8AUPNeqeONa8Qan+3l+zXBqvgzUvDlrDretmG7uL+2mW4P 9k3AAVYpGYZGW+YDgetecfXK71Z1HxW/5Pb/AGXf+w7rX/pnua+is4r51+K//J7X7Lv/AGHda/8A TPc1674p1nxFoumW03h7whe+L55JdssEF/BbGJcE7yZWUHkAYHPNRNpK7FKairs67vmjtx0rxr/h PPibjn4Ia6fp4i0//wCOV0nhfxP4v1nWp7bX/h1qfhG2SLel3cara3KyNkDZticsDjnJGOKxjXpy aWv3Mwjiqcpcqv8Acz0Om/Lu3YGcdcUv8NfASeL9UT9kqPRG8VamPHA+PUenmzOpuNQ8j/hKlkMB Xd5nlfYsnZjb5HbZXSdJ9+YXduwAfXFKCMZHT6V+ZviG6TQP2UPiZ8VND8aeJ7X402fxE1W18MQ/ 8JTdzDUZ01hoLfTxYvK0Mkbx4i8sRfKrFhgjcOp0nQPiH4r/AG2viDf+E7XxdZzaL8XLcXnii58Y yHTIdLjsLJ7jT100zkO0iu6j9yqq0vmbsryAfoQdrDkBseozQCo4HH4V8Q/tJW2vaz+2H8JNB0eO 1v7eTwb4kvJdPv8Ax7f+G7R5IptKWOZpLRWMjp5jBQ4wod+Rk188WnxV+I9zo3wM1PT/ABd4vn8J XvwmnPj7xNA3n6hpttDqkEE2o29spdJ3BUx/aQHZIXaYB+lAH27+1Oc/sf3P/Y2eHf8A0+WFfRVf KHx1ttBs/wDgnXpFt4Xv31Xw6mveGf7OvH1KS+NxCdbsCkhuJHdpdwOd7MSc5zX1fQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQB+eH7X+p3Phj4t2Vy/xH8E+CdJ8aeDZPCl9PqutzW9/pNubxZ7m9s7 eKKRp2eEvEcbNrCMl8DFem/shRfD+HQfi5H8I9R0KX4Ujxgn/CMabpDTeRp0X9n2glQJKq+WzzCW UquR+8znLEVk/Fy48fW3/BSrwW3wun+G3hvxRcfD+5S/1Xx0ZpLTUrVbxStnbRQsknnxSEyuwkA2 SAMrfKV+jfhjL8TZfC+ot8UdT+G+qauLzFnJ4MtrmG2WDYvEguJJGMm/fyCBt28ZySAdh4g8NeHv FnhqbRfFOhaN4k0aZlaWw1WyjureQqwZS0cgKkggEZHBFYGnfDT4c6P4L1PwzpPw/wDBWmeHdSbf qGlWmhW0VpdtgDMsSoEc4AGWB6D0ruq+Pv2p73V5/F3wZ8K6OfF3iE6xr129/wCCfDGtPpF/rtvD aMzSC+V4/Jit3aKR1aSMSZVdxJCsAfUEPhnw5b+Bx4Wt/D2iQeGBbm3Gjx2Ea2flHOY/JC7NnJ+X GOapDQdC8NfCjUNF8OaLpXh/SLexm8iw020S2giyrE7Y0AUZJJ4Hevzu+Gt34j+IWsfCL4M+K/FH j/TNCl1Dxfe6/o8niO5h1iz/ALPureOy0i41CNlnm+zrd72kSQiULGd7ry31J8BdY1y//ZR8Z6Vr +s3viGbw34o8QeH7TUr2Qy3M9pZ3k8Vv5r9ZJFiCIznlihJ5NAHRfsuqD/wTi+BZP/QjaZ/6Sx17 yOBXzD+yj4y8I6l+wf8ABXQNN8V+G9R1228D6cLjTbXU4ZbmIrbRht0asWGDwcjivp0Z289aAFPS mFj7U4nC5rh/HnixvCHgeLVkjhkLaja2uJc7QJZ0jJ45yAxI96qFOU5KMepz4rE08PSlVqO0Vufj x/wV48Q+J9O+MX7L8ngi0u77xL4d/tvxG0VsTvFvAtmZGIHJXYkm7HO3d71+nH7PXizRfG/w4u/G Hhy6jvND1q00y9splOQUfT4ODjuDlT6EEdq+A/jp428J/ED/AILbfChtJ1Ow17Rrb4J675Tg7opZ bySa029O44rO0i38ef8ABPL42KdD1+48Z/seX/iu10rWtJ1KMNqPg6S+VWgnim6yWyvJsIJJwBkb iGPTTT+ryl0f6NHhVa2GxGaUuR+9FJ+qlGdl+F/Q/Ye/vbTTNDvNSvp0tbG1gee4mc/LHGilmY+w AJr8ZtP8Y67+11/wVl+Gf7QXhnwZrWhfAb4dxNZ6FrmsSLE+v3M9zJAtzBD95YyQ2Ceyc4J2j9OP 2kPEEPhr/gnz8a9fd9qWvgfU2Rv9prWRVP5sK+Jf2VbL/hG/+CaXwejvWjtIrfwl4buZnc4CCa6u bglj2GJc5owUFKpqVxNiHSwei3f3aMx/jv8Asu/Dr46/BvW/FGqaG/8AwsvSPhfe3nhnW7e8lhkt bmG8uZomwjAMcjALA4zXnvxn+I138Yv+Dcr9mm41aaS81rxv4m8L6JfNK5d7q4hvVjkZieWZzbFy e+TX6G/DzTkvL/QdMvI2WK8+HzxyIy4JSS6fPB9m/WvxS+EvinTtZ/Zh/YM+CdxdR6rqPhn4p+If EWsafAS0tpHpU1wbRpAPuq8kxUHuQfStsbC+JtHr/mcXDOJSyjnqvSK+5KKP1w1VS/hL4GuRzc63 cyN2zuud/wDga/Ln4u/sRXl2vx/+O/g7UJtc+Kkmp6VqfgbTbePyjp06XgacAkkSzMLYhOg+Y8Ek Y/WvxZok2j6t+zt4fmINzHqJjnKnjesPmP8AqprmtEPkaV4pmDZS08VWEJOem27k/wDiq9acI1qC 9br/AMCdj87weJrYDMpt6NRUX8qdOT/IX9i/4laL8V/gDbeNNClzBe6RYC6gJ+e2uo43jnhb/aV0 I+mK+zwa/KD/AIJq203hP4w/tY/DC4O06F4ws9Ttoh0it9Rge4jUfk1fq8OTXg4tuVVuW5+scPUo 08DBQVo9PTdfgflP8YI7f4hf8HMHwd8OTQRX2neCPh9JdX8E6B4y19O8fKkYOVZAQewrzDxF8IfA X7Gv/BWf4NfEf4R6feeC/A3ifxz/AMIR4r0iC+lmtpxqVostoFjdjsVZ0c4HAwuMYr0X4U3Mfjf/ AIOGv2k/GcEiXNlomo6D4YtLiM5V9lhczzoPdZIUz71rf8FDra4tP2O/it4z0+3afVfBPi3wv4ls SvBjaGdEZs+ys1aKmvZfL9TljXk8wdpac6XqvZ3/AD1OZuNGsPjd/wAHIPjO78YRSeI/DvwhTRdP 8OabduTa2F/dW09486x9GkzDu3HOCF/urjhv2vrg+H/gV8MPiRJL5cXgb4x+HdQuZs42xJPeK4Ps fN5r0n9jbVLPx/8Ata/tDfFO3k+0rrnx0u7K3uMHEtvYaS8cZHt+9OK91g8BeFPiZ4D1bwL4/wBB tvEPhjUviBNp2paddIQsiLbzEcggqQ2GDAgggEGuzDQUsK7dv8z5rOMZOlntGT1Sk0vK6pn3Nb3E V1aRXMDpLBMoeORGDKykZBBHBB9amJIAIxmvzz/YLn1LwXr37Rv7N95q9/q+jfCrx4bXwub6Yyz2 +l3kX2i3gZySWCfOAT2OOMAV7Z+1/wDHPxJ+z5+x7L428F6HoniPxld69p+j6Lp2rtILaae6uFi+ fYytwpY8EcivGsr2P0l6I8Z+Jv7UHwx/Zo+I8XjD4lXGsyLrtzqtpptjpNi11c3Bju4TI4UdEjRS zMSBgYHPFe0/F/4s+HNQ/wCCYWu/GjwfqMOr+GpPD8Ov6Vd7SFmjVkmTKtyD8uCp5ByDzXyV+zZ+ zPquq/tBXfxl/aPv4PGnxW8T6Rrqw6XFdNJpHhu1luRbPbWaE4O+OWQMx5+fHJLMfz7/AGcZf2jP j7+xt4q/ZItvE3hnwR8EfAXiCHQ/FuqrZvLreoQ3eoTkWsBYtGoUxODwuBtyWyQfQqTk8RGVu1j5 LL8Ph45VWhz6Ny5n/i1frvc9A+Gvxe/a38O3/wCxN41+LPjfwp4i+FHjrXrbStMsLXTUW/ijuZ18 s3DiNcEMsQVgegxzk1/QqGIkIr8YtU/Z/wBI+Jnwr8LfDltc1zwrpei2ekQ+F9a08qbyxexvorcT AHA8zIc5465FfQX7Kvxk+JWiftvfF79k/wCM3xG0n4nav4Rt7W+8K+LPsotr/VLWcMzw3CL8jSRA oMjng5LcY1zLCVKMlFu+hx8GcRYPM6FWvTiqfvWs9LpaRfz6eVj9Hi2OeMV88/FiRJfi14OlR0Zr TY5KnO3df2af417eur6bM2opDqNnLJp//H4qzqTB8u75+fl4557V+Wvwk/ad+E/xd+N/iXwr4a8c 22u+IILmW+t7QQyLvj/ta1kfY7DDhQCQQeVGajL4JTcnJK366FcY4uUqFOjTg5KTu5LaPJrq/Nqx 9/XWqC3/AG5tJ01nOLnwdIUXPBIuc5+uAaxvhyWX9o74gkjmX5un925nWvM/j74/0v4R/Fy7+Ler vGLDwx4MnkdZH2rIzRXjxxk9t8kcaD/er8xf2fPgr8cvid8PdI8a/GX9qL4s+FPBvimyk8QXWh+E JJLfWGubq7lZIROAzCDG6XaoOA+Aqjkb8j9naKveH6nmwrUni5VMRVUFSru1+qcFp+J9X/8ABVzx Jol3+xZ4U+GMWu6WnivxP4z0+zh0pbtPtbQyOwaTys79nbdjGSK+r/FdxF4X0vxrqVuq29to+u6a UVRkRrHZxBfwHAr4V0X9nL4CeGNLfxbbW3iDx78XYrq8vH8RePdXk1TV/KgRvsk2ZMKg27GX5M8D 0r73k8BeNfEf7LHjG119rC78YeIfJnCQfIgKJCikk4wxWMkjoCcVdHDOgoyrOybtb5o4c0zqGazr 0cvi5NQc1JWavytJd73SVvU/Hr4CPd69/wAHWPjDxHfFprm68I3OoPI3BZjpEETNx0JbNfWP7X/h 3TNa/wCCO3x6u7vTNPvNS0zwpoV5ZXU1sjzW3/HuGMbkZTIXBwRkCvL/AILeGI7T/g53+MbQxiNd I+Gtydq9E3tEgH5EV9E/tIWZuv8Agkx+0lbquS3wm025x/uIzf8AtOueduWrZaXPfwrqurlzqSvL ks33dlf8Ufffwxvv7S/Zs+H2p7t32vw1YT59d9tG39a7ctyPTNeKfs96tDe/8E9/gpqrzKIn8AaT JLIxAAIsotxJ9AQa+eNJ/bb+B+m/tL+IfCXiH43+AHS48QPp9vZz34ik0qVPkVTIR5bxSMudwb5G bB4PHnwpOcW09j6rF5hGhUpwcW+bsr2835X0+Z+WfhbwR+0RJ+2b+0j+0V8EF8N+IxP8XfEPhDW/ DHiC6a3hnjt4jJDchw67ypMigAggheoZse+fCz4/aZ+0f/wV2/YvkfTZfDfjrwd4P8Q2fjHw5Mjr JpV8kIjI+cAlHWMOp54ODyDXpX7H11a6p+w58RvENtMk0mtfHHxLfTOhzkus+DnuCoU8V+hnhL4R fDD/AITDwp8Xh4G8OR/E2Lw9HaL4kitAl40TwqrKzjG/K8ZbJA4BxXROLVCDb6s8zC14SzTERUVd KOvV6Lc+PvEgM2t/Ei0zkXXwq8QR49cx3lezf8E+5fN/4Ix/s/MDnHhrb/3zPMP6V5BfRG4+MutW /wDDP8PddjI9cpditP8AYe8d2ng//ghZ8ANWuozcl4f7PSMNtOXv5ULd+FUlj7Cu/NqUpV6cVu0v 1PjvDrHUsNlOJq1ZcsYVZXv6Rf6n6Jh8gdKcDzWJe6zpunappdpe3iW9xqU/kWSN1mkCM5Ue+1WP 4VRsPFui3vxN1XwjBcOda062jnuImQgFH6FT3xkZ9Nw9a8f2cmrpH6S8ZRjJRc1du1r9WrpettTq qTvS596zdQ1Oy0y3jmv7qG1iknSFGkfAZ3YKqj3JIA96lJs6ZzjFXbNAk5/pRk4PTNM/h9fSsCXx LocHji28Ny6taJrdxEZYrIt+9ZR3x26E8+lOMW9EZ1a0KaTnJJPTV21ey9X0OgLc4PX1r8h/HGu2 +nf8F4f2mLy4gNw8Xwe0XSIArYKNc3ULZ/AEnFfqb4r8WWHhLSNMu9QV3jvdTt7BArAYaZwgb6DO TX4+aPFdfF7/AILZ/tbvokEss8EWi6dbRFgC7WkErEZyBy0XHI6V3YCgnWhKekb6s+V4vzOUcsxV DDO9bk0ju/e029Hoe2+Kb9fh/wD8HRXwy1COV7Sw+I/wyuNFvP7txc2u+eMH3Cxp+VfX/wAfGbzv hRt/6Hi0J+nzV8Wft0xPoX7Tv7PXxCsGNtrXh/4qeF4PtS/eS1u5LuC4j+jqRn6Cvtb45APqHw5U 4Ai8RR3BH+4V5/WqwkUsVH0/Q5eIq0quRV091K33TR88/slKP+Hlf7f3Xjx/pf8A6bzXvnxVH/Gb X7L3X/kOa1/6Z7mvAv2Sjj/gpR+36c4z8QNL5/7h5r1nx54x8I+I/wBu/wDZpsNA8V+G9dv7XW9b a6ttP1OG4lhA0m4Ul1RiVAJAOR1Neb1PukdJ8Vv+T2/2Xf8AsO61/wCme5r6K7V86/Fb/k9r9l7/ ALDutf8Apnua9i8S+JJPDmnQXCeH/EHiAyybPK0m2Ezx8ZywLDA4xn3qZSUdWaUqU6s1CG7/AK6n T8bsUhUE+9eTH4pXW4f8Wz+JeP8AsFJ/8croPDnjSbxFrE1m/hLxfoGyIyedqtksUbYIG0EMfm5z iso4mnJ2T/M7a2U4ulBznHRea/RnekZQjJFc1/whfg//AIWD/wAJb/wivhz/AISvZs/tr+zIft23 G3b5+3fjHGN3Tiul7V8UxfEjxt/wxlFrjeJr4+Iz8bI9C+0skfmfYz4rW0Ntjbjb9lzH03bec55r c84+o7P4b/DzTvHs3ivT/Ang2x8USytLLrFvolvHeO7ZDMZlQOWOTk5ycmumtdM0+xuLyWysrSzl u5/PunghVGnlKhTI5A+ZsKoyecADtXwP4h8XfEHw9+yF8T/jfY/EfxVJ4k8NeONThstEu5IZdM1G 3g1VraKwMPlZXzI8Rq6EOHKtk9K1rXxH8Xdd/a48ZWvhDU/iJfy6N8V7awuY547ceHLbQxZ2kl1G 5YBzLiSVk2ZfzGTPyZoA+wvE/gDwL41ayPjLwZ4T8WtZ7vsZ1rSILw2+7G7Z5qNtztXOMZ2j0rYg 0LRbW+trm20nTLe5t7P7FBNFaojxW+QfJUgZWPKqdg+XIHHFfKvx91/4hQ/tX/C/wr4MXx/qdjf+ E/EF9eaV4V1ey0+Waa3l0xYJXkuiAVTz5AFB5MnIOBXj/hv4jfFLx5rXwWtrfUviB43a/wDhddah rkHhPUrLRnfUYNRhtZJZTcGMEofNiKodpOWC4IIAPoX9pHSNJ0H9h/8AsnQ9M0/RtKt/FXh0W9nY 2yQQxA67YkhUQBVGSTwOpr6br5k/aPWZP2FLWO4W8S4TxD4YWVbuVZZlYa1p+RI68M+erDgnJFfT dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHknxB+BPwe+K3iKy1f4k/DXwh431Oztvs1pc6vp6Tv DFuLbFJ6LuJP1Nbnw9+Fvw8+FPhq90b4b+DfD/gnSby6+1XNppNqsEcs2xU8xgOrbUUZ9FFd/RQA V5B8T/hJp3xH1nwnrcXiXxN4H8Y+GbqabQ/EWgSQi6tFnjEdxEUnjkikjkQKGV425VSMEA16/XzR +0X8eYfg1b+BtFsrnw5Z+KvGOozWul3OvLO9lax28JmnmeK3BmnbHlokEWHd5V5ADMACGP8AZi8N Wfgnw9Bovjbx/o3jnRtZv9Xi8dQ3dvLq891f/wDH80wlheB0mG0GPygiiOPYE2Lj03wl8P8AQvhj +zpd+EvDzX1xaRQ3t1c3l9N5t1fXVw8k9xczPgBpJJZHdiABluABgDwSy+OnjvxR4e+E3hr4e6x8 JvGPjrxmdVuX8RQWt6mh2NnpzIk7NbGQXHn+ZLFD5LSrsYuWPybT638MPiFqXxJ/Zh1nWNe0m00P xPp15qmh67Z2kzS26XllPNbSvCzAMYnMe9cjIVwDkjNAFf8AZdA/4dxfAs4Gf+EG0z/0ljr3ivBv 2Xjj/gnF8Cx/1I2mf+ksde8g5GaAEP3TXyv+11rU+ifsu20lrt+0T65bJHu6bgS4P4Fc/hX1Qelf C/7ft6ll+xtpTPcvZ7/Edsv2hTgw7g6789sbs/hXflcebGU433dvvPkeO6M62Q4qlTdpSjyp9rtL 9T4E/ZI+Ct94x/4KifGd7qS3EfgDw14e06KVnZk82eSO9cJ/vRxygjsXGa+zf25PC9v4r/4Jrfte afPCZms9MstSgA6iS2SCZT/5DNV/+CbWjPrP7MPxH+PF9bvFqvxX8fajrUQkTDRWMUzW9rCD3RFR tv8AvV6x+0Hbx3n7Jv7W9lMuVm8JMuO2TYkD9cUKo5KVPZLZdrtGVDKMNlSoTiveVlJ91CEkv1Pi v9rj9qVdf/4JG/Cz4b+G4ZvEfxN+NngSyis9Ogt5JJpzMIIpiuz7p8wy4LcHYRg9vuL9mTwp4g8H 6LrPgTxZPZahfeF9H0jRUkgixE0VvaKqYGOeO/UnPtXwB/wSO+GWveKfAup/tEfED/T7qw0yLwV8 PxL0sNOtcm5aMZ43yMEJ4OUk7NX7L6f4cstN8Ya7rluZftmrNE1yC3ygxoEXAx6Dms4V4xhKKW6/ U9HE5TWr4nD1nNvkk21fSzi47dbOzXzOC8X+HPGF38XNK1Lwxcwada3WmNp2oX/ytLYoJPN3ojcM WxtH90kGvmD4J/8ABPf4OfA79p7X/iXoF1r+u6hqks0+3WJ1drV5J/O8uMoqjyhxwwLEgEscV99b Tmm7cLgms/rMrLpbQ6o5LQUqknd87Tab00tsuz3fc8V+I1stz+0B8GPly0WsXMmR2xavXi1olxb/ AAU+K+pzRMka+Px5LMPvCO5QE/TJIr6X8RaLe6h8XPAWpQW5e0064uZLqTI/d7rdkX35JxxXFfGn TLHRP2SPGR0y1itY/NF5IqdGladXdj7knNergsUk6dPvZf8Ak1z4biLJJuONxj0UVN+v7qMfwsfA vwW8W+FfhD/wXh+JmieKte0jwlZ/Ej4W+Gr/AEx9Vult01LUIUS2WKJnIDSHfIAoOTiv088e+LNM 8CfBTxZ4y1e9tdP03RNKnvrm4uHCpGsaFsk/hj3r8tv25/2avB3xb/Zt1vx9qFjqlx488A/B9L7w 69rdGJSUkZ28xQPnChGIGRgk9a5n4rfGBv2qfgx+yL+y3oFzqof4m22l6r4+1GNv9ZpVnapcXiBl bcpeZCm8jGUI5ya86tTkqkpb9fxPssuxlKeEp078rfur1S1t8tTW/wCCdvhvxGz2vxW1m3uEtPir 4p1fxNbNcJtkEUAltof+Askm4E9cmvqz9qXwjd+O/wBmb9p/wRp9sbzVdd8IWNvptsHVDNdM7iFA W4BMiqMmvsTR/D+j+HfDGk6JoemWOlaRpdqlrp1rbxBEtoUUKsaAfdUAD8q8M8ceGfGmoftPaTc6 Xaxv4OvDYDWXwN+beWWVCpzkAHaDxzvHoa3oVFWlaTtp+tzx8xwk8rpe0opz5qisl0TioL5Ld+Vz 4L/4Jt/Dvx58JPhB4T8DfEfw9qnhbxVd69quuTafqKbZ1QobXcwyeCYdwPfcD0Nfp54q8CpqukSS +Hrv/hHNdj1H+07e7hjVlluhGUBlBBypBwcc4rVu/Cdtd/GLQ/GPm7LvT7GezMYTPmLIVIOc8bdp 7c7q64Jlf0rGpiLODhpZHo4XJnVjiIYtcylNtdGk0rWe6a8mfiC/jH4m/sNf8FCvjx8RfEfgO78c fCbxtLpFvrniezv18zSrqGAsbuS2VWlkhAnk3EAYAHOcLXqX7VnxO0j4w/Dj9juw0fXPD+utrnxu sL+WTRZTLbX1hYJLcySxAkts2tCTnlS2Dggiv1JvPCHhvUNV1DUdR0LSb68vbI2V5JcW6yefbkEG JwwIZSCQQRyOK/M3S/2Wv2fvgB+1j4+8S+GPB/ii31WPT5h4RM+oy3Gl6DJfW7I8dvGx+RpG8wAn O0DAIGK0gvrM7Rjrv/wxw4mr/YuEjKvV9yN4x3atZuPN/eWzZ9Vah4K8U6v8KfhqdDM0f2nTZBqN 1DJse18x0vEkHqPMjCEf7VfKv7MXwauvhT4z8UatqOrWmoD4yePH8T2tvDA0X2JYrqRxbHJO5l81 2yOMYHav1F0yySy8NWFjCFWGC2SJF9AFArgfEvggX3xI+G2qaZaWsFv4f1KaSVEwipFJC4O0epfZ wPUmuinj4ybjNLS9n9/62PMxfC2IowjUw1R+97NSj3ScE/8AyXmv3b8jy3xJ8PtP8BfDnQdXa981 9Nlgtp3EW0SB9RjnMnUkEYIx3z7V+fX7SH7GfxK8WeNR+0r8PPifdfDm7bwEJNYTSJZYNTvr4TPN CqSKQEjIkiDNuBwhGCDX7EeJvDGk+LvBt1oOuW7XOm3OPNjWRkJwQRhhgjkUureG9O1j4eXnhi5i 2aXc2ZtXjj4KoRjjPoOlY/XuZR57vXX0/q56MeGHhq1WWFjGMfZ2gv7/AHfTS0fxPwri+Nf7TniD 9maD4D+EPgp4x8DfFLW/BqaT488ZeK9MaDTY0UyRyXtrIN32ma4SZEBAJ3vwDwR7Z8av2DNQ8Ffs m/ArxR+zrfeH/h18Y/h9aW9jrniBbdY/7WtpkjjuZpvlPmukv7xQwJ2l164x9/fEa0gs/jd8MNLh XEc2LeFevyxXFq+PyUn8K9D+K4P/AAzp4swOUsS//fLKf6UTp3lSd9ZW/B2ROFxUqdHHU4xSVJPT dOTjzP5arQ/AH9oj4gfGrxd+0J4N/Y//AGgW0LxD8RB8QPDiNrWjwmO08UaMftr+ZNGMBHJlgyoA 53cArk/sd4G+HOs+Hf2kfCul6i0E9npGk3V2HgjCREG4ljtwFAwpCSD5RwMe1c94i/Zo+H3xO/4K peGfjdrjalb+Lfh7ZWpsIrYoLe/EkU4VbgMpJ8tm3qVIOeuRX2oI8HIAzjFL63OjFw7q34f8Oa1O H8LmVWGI1XJK9ujkpXbfq0rdkrHhPib4XaXqX7TWgeIk0RJ7LULO8g8QyZOJAYY1iDDPH3SOPWvd kG2ELjoAKdtPc80u04rkqYidRRUnsfQYDKcNg51J0o2c3d27/wBXfzZ8QadoXgbwn+298Y/iJH4I itvEt1bLous+LRcvuWCYCWGNoidmzcqAyDkfIDwKxvi/bQXX/BP34y6VOymXVPgrDFbRfxTzGC6V EUd2ZsAAcmvs2bwb4emg8Txz2CTxa+27VFckib92sf4fKo6d+a8V8R6BHp37Vvwm0OzhD6ONKkh8 uX58pZqSgOepHmDn1r0qdalVTilbT8kfDY3CZjlvJWnJT9+0V/Kp1LL5JNfifkd8J/j78Wf2mf2L fhh+x38ALiXRNZ/4Rq2tfHPjmWMpb6BpcdsI5IAQd73DuGXK9iAOpZP0guP2Cv2cdJ/YV1H4UaZ8 LfDmpTLok8EWt3dokmqzXTqGa4+1NmRZGkVSMNheigDis39kz4NeHvhd8VfGFx4W8NWWgabeRXDS i2j2pJKb2WMnPqBDjGeB0AzX3rjMeBj6VzY6nGjWUYu6sj6DhjHSzPLpVnGUHJyS5n71r6P/ACts vM/LT9nT4PwfAv8AZr0H4WWd/qeo2l1qE+qwPqFqIJz5hv4yGQdCFSMe+M19ifDbxlqV18Urbwvc Ox0c+ErKSy3Y4nWJHlAwOpWZDz/d4ro/FXg+81X9pjwZ4gjtmfTLLS72K8kBAVXKgRZ+u+TH415L 8LnGzwZ4lb/ltrjacZP4Qg01Yv8A0OED616V6dWhotl+Ov8AkfDU447L81jGpNvmm9f5opQT++Uj ziztfP8AjrASpZpvD2oWwA6nzE1D/wCJr4//AGa/jl8IvDP/AAQH+FVx4v8AHejaTF4Z1HVbDVIp HLTw3nl3c0ECxgbndxJEyhQchuvBx9w+GEgPxm8O387bbEIollPACS/2jhvoQetfJP7OX7AHwT+F v7ZXw01m/s9X8dX9x4cbW4YPELRS2dvOTKFkWFUClgvlEby2CM9emuOjU9rCpBfDH8rnHwrVwcsv xGCxDdq1VLb+ZU+vTXT7ymPix+3P+1F8YbLxL8E/hx4W+H3w4j8iTwhq3jQCHUNOifCSak8IdvNV zHMqoUPynIBzmum8T6J/wUa+E3xItNbHjX9nz4ma54kiuLXyRYTacYJX+zxh1cCPc3yxkAnA2tx6 /q/pHhLQdB1vUr/RtMtdOudQkD3jQ5AlIzjjOByzHgdSfWuO+IXhW58QePvhpeQ2puLbS9ea4vWB xsj8iTBPPPziOvIo1U6ii3pb/g/mfoWPy6rTwkqqpRdVyT6vtG/R3Ueuh+dtt41/4Kn+MbyDRNN+ G3wq+G+o+EIWXVtU1a9+02XjCd8hBbgEmNFQhjyMsPvfwDivG9z+3Z+zx4F0jxJ8bJPDvx/+Elrr dvrfiC+8KI8ereHpPNDMoiIBntYzg4CnGRyoFfswBkds54rC8SaBbeJfAmr6Bdu8VtqFs8Ejpyyh hjIz3HWsKVZwkne2p7GOy2FbDTg48101Ztr016bI/NT4if8ABT/4Can8LL3QvgveePPHvxT1ZUtv Duiab4Yu4bi4uHIG1WljChgM5wGI9DivP9Su/wDgo74R07SPjd4n0b4DzST6mtxdeAJJXiuoC1m0 KGS7GQGC8eWJCN7HjnFfe3w38F6Zpv7RvinT49FsYNO8LRLDoDtbKzQfa8yyvGxHysQqqSOSODmv dfEfhfS/FWiwadrMLXNnFdxXSxh8ZeJw659RkDI710Nxo1FG91/mjx6cauZ4OWIjTtVTaipNuKcG 1fpo3fW17H4r+OPj1+3ne/Day1Dxn+z34P8AEvhLwgRfeJLjwtqT3N/LvJt40VAzEXMLHzmVUIwo JCjmvY/2DvhT458NfF3Xfit8VkudL+KXxEv7rUdd0F7dYl0hLeNVt4zgk72S7LMDyPlBAIbP6h6F 4X0jw1Bfx6Nai2F5eSXlydxJklkOWYn9PYcV454WCn9t3xjaucyW8U86j0EqWA/9lNaU6ilGoot2 SuvnoedjMH9Wr4SpVhH21SShKSvqopyS11+yj4//AOCjMfkfA2614D59G8W+D71T6Y1OZP8A2avr z45yY1PwgRyEaWX6YeD/ABr4/wD+CnSSr/wT5+MlzDlZbW38M3QYdgmrPz+tfWfxjuEvl8M3ceCj 6JcXKnPYvakH/wAep4T/AHmn6IrPXbJsV/il+Z4f+yNx/wAFJf2/P+ygaX/6bzXvnxWAH7bn7L2A B/xPda/9M9zXgX7I5A/4KQft9n1+IGl/+m+vffiqwP7bP7Lxzj/ie61/6Z7ivLe595B6IPit/wAn t/su/wDYd1r/ANM9zX0bXzl8Vv8Ak9v9l3/sO61/6Z7mvcNb8R6Z4es4bjU2vFjlfYn2ezlnOcE8 iNWIHHU8UJNuyJq1oUoOc3ZLqzdowPSvP/8AhZ3hLGfO1v8A8EV5/wDGq1tG8ZaJr+oSWumvqLTx x72Fxp08AxnHBkRQT7da0dColdxZx0c2wVWahTqxbfZo6luEJ4/GvLz8H/hqfjH/AMLA/wCES0z/ AISz7ULs3u6TYbjZ5f2jyt3ledt+Xzdm/H8VemTMVs5XBwwQkflXwd8CviX8ZPj/AOH7gx+P7HwK vh7R7H+0Lmz8P29zcatfXUbzmR1mGyK2RPKUKihnbzDvXbisj0D6Rt/gN8I7T4i/8JTH4LsX1n+1 X1VWuLmeaCO9d97XKQO5hSXeS29UBDHIwea9F0jw9omg3+t3WkadBYXOsagb/VJIs5ubgxpGZWyT zsjQcdlFfFPiD9oP4gfDb9sX4laD4vu9M17wVaaLYaZ4bhtdNW3kl8STWSTxW4YMzbbx2dERi2xl UBjuzXA2Xxy+Lw8C/BnS/GPxMvdD8R6nY+L49c1Lwx4EXVW1G+0nUIbW3WO1SGUrEQ0hKrtLcDeD zQB9z+N/hL8PviRr+j6p4w8PnVdT0qCe2sLuK/uLWWGKcxmaPdDIhKOYYtynIOwcVj6l8A/hLqdr 4dhk8GW9hHoOlnS9IXSb650/7JZsyuYFNvJHlCyKxBzyM9a6T4Wav4x1/wDZz8Da38QNEj8N+N77 RbefXNLQ8Wty0YMiYycYPbJx0zxXoNAHzT+0vY2+mfsRpp1ojx2lr4l8NQwI8jSMqJrenqoLMSzH AHJJJ7mvpavnb9qf/kz+4/7Gzw7/AOnywr6JoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC vmf47/DjxZrvxf8Agz8WfAmh6P4r8VfDvVr2ZNC1K+Fot/a31qbecRTlWWKZCI5FLDBCsuRuBH0x VK9u7aw0y6vr24htLK2iaW4nmcKkSKCzMxPAAAJJ9BQB8I6J8HPjF4N8Z+HPjVpvhjwzq3xBfxDr 97rvge31wW9tFZar9n2xQXbpsM0L2kEjkqFkaSYjHy599+EfgbxF4G/ZZ8QW3jKTTn8Xa5qer+Id YhsJDJbWk19PLcfZo3IBkWJXWPeQN2wnAzUGkftNfCbxB+zhYfFTRtS1zUvDGo60+i6VDBolw1/q N6szReTBahPNcko7D5cbFLkhQTXbeGviF4Z+JPwY17XPDM1+IrcXVlfWeoWMlnd2NxGCHhnglUPG 44OCOQwIyCDQB5p+yl4cW0/YM+CmrDW/EdyZvA+nH7Jc35ktk3W0ZwqEYAHb0r6ZAwK8J/Zd/wCU cPwL/wCxG0z/ANJo693oARvumvy9/wCCsWotYf8ABNCZIi5uLjVIYLdU5ZndggwO5+av1CP3TX5a ft3XVn44/wCCg/7EHwHebemq+OW8Ravbhchrey2NErdijssoI/2a1oycZpp2f69Dz8zwaxVH2ctr xf3NM+4/2d/hynwk/YW+FHw3WMQz6D4YtLa7XdkfaPLDznPvK0h/GuR8bWtvqmsfE7w9eW0V9bax qGj2M1rIm5Z45PLEiEdwUDZ9s19J7flIHAxxXzmCdR/b1vNIXa6Wgi1W4XP3Qlr5KE+vzTH/AL5r fBLWXkr/AJHj8UTtSow6zmo/+BJp/hqeqfDX4ZeB/hD8HdJ8A/Drw/Z+F/CWm7zaafbFiqGR2kdi WJLFmZiSTnJrvKO1FcZ9OlZBTfXinUmKGMYF5715F8el3/sg+Oh3+wA/+REr2AjAzXlvxpgNx+y1 41twOX0/A/77WujCStiIPzX5ni8R0/aZViYb3hP/ANJZz+saBpepeN9I8N6xF52l+IvAt7o17D0E keIdy/8AfEkg/Gvhf/gnz+xhr/wQ8Y+JviV8SfEWn+K9fto7jwx4LW3JdNN0yG6k3uCQAHmZRwM7 VBBJLED9AviRFqNj4H0jxXomn3GpazoMomitIFy9xG6GKSPA5PDhvqorrvBuhnw/8LtB0eT557az UTvnO6Q/M5z7sWNaV2nTU767f1+Bw5bGdLGyocvupc1/8SSVvulf/gnUEcc96ZtGQf6VLgYowK4z 6fUYAcdKeOlGAO1LQMQ9K4zxl4OsPGPhJdLvm8pReW9ysiqC2YZVkA+h24/Gu0pMAnpVQm4u6Zz4 rC0sTSlSqxvGWjTGx/6senagrycd6fjFFSbhSE4paa2cUDZ4L8S7dpv2n/glKv3V1W6DfTyM/wDs tewa/pFrrvgzVtGvdxtb20eCXaedrAg49+a47xjo9zffF74Z6hBbySx2OqTvcSKuREptpACx7DOB 9SK9Hb/UkHuOa7KtX3KVt0v1Z83gMFavjvaR0nJfNOEUeE/BzVLrXfEniHV75xJeTadpyzuBjc6x MGOPr/OvfK+d/gIg8rxoQc/ZdW+wN/vQ5yP/AB4V9EU8xSVeSRPB9SVTKaU5O7d7+t9fxCiiiuI+ mGkDPtXP3vhvT7/x3oviK4Eh1DS4po7UhsACYKHyPoorosc0mBmnGTWxnUpQqK0lfVP7tinbWdtZ w+VawRW8W4sUjQKCWJJP1JJP41bGQuKXAowKRUYJKyIJFzA/X7pr50+Gfgsav+yBJoUtzNYTS6pd zWl5EMvbypdOY5AO+Co47jIr6RKggjFUrLT7PTdNWzsbaK1tVZmEcYwAWYsx/Ekn8a6KeIcKbiur T+6/+Z5OOyinisVCrU1UYyjb/Fy//InzePhtBq/ifxT4JTUZbNbTQ9HiS8iXD/uzOGIGeNyhh/wK vTX8IvD+0V4Z16ztFj0rT/Dk1juBH7s749ievTd+Vdpb6FZ2vjPUtcj837bfQQwzktldsW/bgdj8 7ZraCjOcZx0rWpjqkuulrffuefg+GMJSTbhZ8yen91txXyuSU1hkDrTqMZriPqCNVwKXtTsCjAxi gWpDHDHHcSSKiB3OXYAAt6Z9anpMCloBJLYjbO44HbrXDWvgu0s/j9qvjmCXbNqGlx2dxBjqyNkS Zz/dCjGO1d5gE9KTauc459auM3G9upzYjB0q7g6kb8rTXk11/FnwL+3N4JvPiB+xV+0h4d05DLfJ 8N7bU4EGPmNndT3JH4rGw/KtDwz42tPip+xL8KPHdhuMeo/CeW7dSMbZFFokg59JEcfhX0jqumW2 tfHHxZod9H5tlqXgmO1uIx/Gkk10jD8Q1fhr8BNd/bZ/Z/8AgCmk+OvhBrnjb4SaJpesaCPD1rpi w+INJsxOv/ExiThp4DcEgA7sopZflIY99KfJVhLskfK46h7fAV6Sau5y+Z+jP7IuH/4KO/t8kf8A Q/6WQf8AuH1694+8Opo37d37NNyuteI9T+0a3rQMOoag08cedIuGyikcHt9OK+df+Cf/AIg1Dxz+ 0D+178SpPCHjHwhpXifxjptxp9t4j0t7O5KpY7WBVhjIOOhPDCvqv4q/8ns/su9/+J7rX/pnua86 Wkmj6+j8EW+y/IPit/ye3+y7/wBh3Wv/AEz3NfRJGeoz9a+dvit/ye3+y7/2Hda/9M9zXSfFn9oX 4MfAptCHxd+IOieBP7a87+yv7QEn+leTs83bsVvu+amc/wB4UjRq57JtGM7fypNoznHNfHX/AA8H /Yx/6OC8Fflcf/Gq7z4bftbfs5fGD4nw+C/hn8WfDXjDxVNbyXEWnWIm8xo4xl2+ZAMAc9aASsfR rKHiZG5Vhg14LZfs2fDHR7bTV8OReKvClxaaOukPd6L4ju7Se8s0eR44rh0cGbYZZNjPl1DsAwBr 3pjhD1r5B8TftLax4U/aK8X2t74Xt9W+F2lW95Y2N5prbtUvdXsrRL66hVXcIYvs5nVQBuMttIuf mUUDPfNK+FXgbSfEeq6rFokd9eahLp807alI15iWwiENrKvmltskaqMOPmLfMTnmqnh/4PeBPDHi zQdb0fTryDUNG/tb7A730sgT+1LpLu9yGYht8qKwz9wDC4HFcfrv7QPhzTtb1bT9C0XX/Gd1aJpM dmNJ8nbqN3qe97a1iaR1AcQoJ3diEWORCWycV13wz+JkfxIsfFhHhrXvCepeHNek0bU9P1byTIs6 QxSkq0TujIVmXDA880AenhQDTqKKAPnb9qf/AJM/uP8AsbPDv/p8sK+ia+dv2p/+TP7j/sbPDv8A 6fLCvomgAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+cf2k9L8e+IfhVoPhnwl4Kv8Axz4d 1PXIk8Z6dp+q29ldTaYivI0MbzuiFZpFiikG7PlPIB1r6OooA/JH4eeINX03wX4H+IXjTwLq3gXw J4L/AGivE95rdzdzwXMWnxXf9rWwmcW7MUjt5544WfG0eZvyUBYfWPwKlTxBd/tN/EbSN03grxf4 xa88OXxiZE1C3t9Is7KW4jVwCUaa3lVW6OEDDIINfXOxieq/lWbrSkeDdXAySbKUAZ/2DQB86/so zeMn/YT+CsepaT4Yt9AHgfT/ALPc2urzS3T/AOjR7N8TW6IMjriQ4PTNfT44Hf8AGvyG+CH/AAU2 /ZR8CfscfDHwZr3iHxmuuaD4YstO1BLfwtcyxrNDCsbhXC4YblPI616ZL/wVe/ZT+zebZt8UNQXs YvB9wAfxOBTswP0tP3TX4rahq918TP8Ag6PXxMm+78O+Abuy8J6ZKTmNblrOa5uthHdS5BHqwr26 9/4KyfsxW/h+7nGnfFY36QO9taSeFZYzcSBSVjDE7QWIAyeBnmvJP2DoNP1S38HeM/EyJYeMtV8U 6/438ZzagwhijutQylsis5ALLH5ZKjpu+tb0KMpXk1okePnM5+zp04OzlKK+Skm/wR+yY6V4p4c0 9D+298RdWYYZNF0+3Vj/ALW9j/6CK9LHizwqF58TeHz/ANxGL/4qqyeIfBkWpT3ceveGUuJgBLKL +EM+OBk5ycdqilU5FLzVjbHYGOJnRk/+Xcub8Gv1Ot7UgIPeuf8A+Et8K9B4l8P/APgxi/8Aiq5b wd8SPD/iLwUNVvNa8O2M39oXtr5Q1KPG2C7mgVuW/iEQb8ayPSPSqK57/hLvCv8A0M3h/wD8GMX/ AMVR/wAJd4V/6Gbw/wD+DGL/AOKoA6E9KrXFtFdWclvcRRzwuMOjqGVh6EHrWP8A8Jd4V/6Gbw// AODGL/4qj/hLvCv/AEM3h/8A8GMX/wAVQKUU00+puBf3W3GPbFOwc9DWD/wl3hX/AKGbw/8A+DGL /wCKo/4S7wr/ANDN4f8A/BjF/wDFUDOgBHTNLXnXh74h+HtXk137Rrfh61Fjq81lFjUo/wB6iBcP y3UljXSf8Jd4V/6Gbw//AODGL/4qgDoaK57/AIS7wr/0M3h//wAGMX/xVH/CXeFf+hm8P/8Agxi/ +KoA6Giue/4S7wr/ANDN4f8A/BjF/wDFUf8ACXeFf+hm8P8A/gxi/wDiqAOhpCQK5/8A4S7wr/0M 3h//AMGMX/xVcpovxI0DVPiB4z0mbWfDsEGj3tvBbyjUo8zrJaxTFj83ZpCvHpQB6ZSHpXP/APCX eFf+hm8P/wDgxi/+Ko/4S7wr/wBDN4f/APBjF/8AFUAbuOQcdKCMrisL/hLvCv8A0M3h/wD8GMX/ AMVTT4s8K5/5Gbw9/wCDGL/4qncTRwnwh0aTR9D8XmaCSCS88V39xh1IJBlIDD2IHWvXScDmubHi rwqHyPE3h8c/9BGL/wCKp58W+FivHibw/n/sIxf/ABVaVqrqTcn1OLLMDHB4aNGOyv8Ai7/qdFnN FebaJ8SvD2peOvGWkz614dt4NGvoILeUalHmdZLWGcscnHBkK8eldR/wl3hX/oZvD/8A4MYv/iqy O46Giue/4S7wr/0M3h//AMGMX/xVH/CXeFf+hm8P/wDgxi/+KoA6Giue/wCEu8K/9DN4f/8ABjF/ 8VR/wl3hX/oZvD//AIMYv/iqAOgJwKAciuf/AOEt8Knp4l8P5/7CMX/xVcvafEfw9L8Y9a8OPrfh 1LOz0Wyvo7n+0o8yPPNeRsmN2MKLZD/wM0Aej4pRwOlc/wD8Jd4V/wChm8P/APgxi/8AiqP+Eu8K /wDQzeH/APwYxf8AxVAHQ0Vz3/CXeFf+hm8P/wDgxi/+Ko/4S7wr/wBDN4f/APBjF/8AFUAdDRXP f8Jd4V/6Gbw//wCDGL/4qj/hLvCv/QzeH/8AwYxf/FUAdBketLXms/xH8Pw/GTR/Di634dezu9Gv L6S6/tKPMbwTWkap1x8wuGP/AAAe9dT/AMJd4V/6Gbw//wCDGL/4qgDoaD0rnv8AhLvCv/QzeH// AAYxf/FUf8Jb4V/6Gbw//wCDGL/4qgDxL4jeLNX8K/HC6m0KCzutXufDsEdtHdBip2zXUr8LznbG QPcitHxFcxa1401y9tWLW118NpZIj6rLIxH6CtrVdN8E6v8AGvSfGk/jHRvNsdPe1Wy+3wmOTd5g Dk7s5Akb865HwlpsGn2uqx614p8KDZoh0TS1i1WN2eBZJWSRzkYO11XaM/dzmvWjVo+zjbdI/Oq+ X5osZVU03TnPmjrpFJfnJt/cj2nwlKZfhV4bl4LPpkDcn1jU185+OrjxlN+3f+zWviPSPC9hYLre tfZJNN1ae6lkP9k3GN6PbxhRt5yGbnAwetdfoHxR0vw/8PNJ0DUbG6k12wsEtkitJoZobh40VQVm D7AGwOWxjn0NeceIviFo/i79uL9mjTYz9k8QWWsay99YbxKIh/ZFwuVlTKOpyCCp6HtzXDVozTb6 H1mW5ph5wp0rvmsuj0fZ3W/lud/8Vuf22v2Xu/8AxPdaz/4J7mvYfEXgfwd4xNp/wl/hDwv4pFru +y/2xpcN35G7G7Z5ittztXOMZwM9K4n4n/Cm5+IWueB9b0jx34i+H/iPwtqM95puo6Va2twW8+2k t5I3S5ikQqUkPIAIIHNcz/wqT4wf9HRfEL/wltD/APkOuc9k7f8A4Uh8Gf8AokXwv/8ACVs//jVa uifDH4c+F/ES6v4Z+H3gfw9qqoUW90zQra2mVW4ZQ8aBsEdRmvM/+FSfGD/o6L4hf+Etof8A8h0f 8Kk+MH/R0XxC/wDCW0P/AOQ6APoZwTGwU4JHB9K+bLP9lb4UWPhvTBDpC/8ACZWmtrrEnjY2Vr/b d3cm5M8pluBF8yyh3idAoBidlAHGLv8AwqT4wf8AR0XxC/8ACW0P/wCQ6P8AhUnxg/6Oi+IX/hLa H/8AIdAHMN+zppXgH9kvUvCPgGTxpretweIote0u+/te2h1OG4ieNIFimmiMOyC3RIESVGUxRhGJ JLV2H7PvgLxb4J+H3i698cS3D+JvE/im51u7iuL2O6mgV0jhjSSWJEjZ9kKE+WoRd21chcmt/wAK k+MH/R0XxC/8JbQ//kOj/hUnxg/6Oi+IX/hLaH/8h0AfRFFfO/8AwqT4wf8AR0XxC/8ACW0P/wCQ 6P8AhUnxg/6Oi+IX/hLaH/8AIdADf2p/+TQLj/sbPDn/AKfLCvoqvl7W/wBn7xz4s02x0rxh+0T8 QPEPh+LVrLULnTToOj263RtLqK6jjZ4rUOql4UztIOM819QDoKAFooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACuI+IPj7wz8N/hzJ4k8V3F1Hp5uYrSCCzspLu5vJ5nEcUEMMYZ5JHYgBVB 7k4AJrt6+Yf2mJP7FHwT+IF+biPwl4O+I1vqniW4iheX7LZvY3toJ3RAWMaS3MLM2MKoLHAUmgCr 4D+HP7K/xR0PVdW0L4L/AA9F3YalJY6xY6t4Hhs7+xulAdo54ZYg6MVdHBIwyurAkMDXdf8ADNf7 PRUZ+B/wp/8ACWtP/jdcB+z7fWvi/wDaD/aF+J/h1muPAPiTXtOi0HUFiKQ6q1pp0UFxdxZALIZP 3QfGG8k4JGDX1YPu0AeKf8M1/s9Z/wCSIfCn/wAJe0/+N0H9mz9nw9fgl8Kzznnwvaf/ABFe2UU7 sTSZ4j/wzV+zyBgfA/4Uf+Etaf8Axul/4Zq/Z5/6If8ACj/wlrT/AON17bRSGfGGqeGv2RtG/ak0 D4Q6j8BvC0HinWiy6ddH4ZY0udxA9wYlvjB5BkEcbsUDlhjkVl+Jbb9ivwn8V9Q8I6t8H/Af2jTL u0stb1S2+HiTaZo9xdBPs8V3dLCYoXcPGcMflEiFtoYE1/2j/jL8LfB37b/7N2meKPHWgaHqGheK Ly/1iC6mKtZW82jX0UcsnHyqzuignuwryH4sa7p9r8Hf2u/gjcW93J8UviF4l83wVpi2crTeIIr6 1so7e5gKrho4WR1dsjyhbsW2gAkA+2l/Zs/Z5YZ/4Uf8KP8AwlrT/wCN07/hmr9nn/oh/wAKP/CW tP8A43Xslojx6bBHId0iRqrn1IHNWaAPEv8Ahmr9nn/oh/wo/wDCWtP/AI3R/wAM1fs8/wDRD/hR /wCEtaf/ABuvbaKAPEv+Gav2ef8Aoh/wo/8ACWtP/jdeHeLdN/Y88D+N7/SfE/wF8PaZp9jdwWl/ 4hk+FjHR7WSbYIw94Lfy9u6RFLglFLYZgc4+3q/Pj9ob43fDHxx8e779mrxJ488NeCvBtgba5+JW patdi3luoyUnh0i0DffeYBWmmHEcR2rl3ygB0niO1/Yr8LfFe/8ACWrfB/wF9p027tLLWtVtfh4s +l6PcXW37NDd3aQmKF38yI4ZhtEiFtoYE+5J+zb+zy4z/wAKP+E+MdvC1p/8br4p+LOrWNj8IP2v PgVcWtyPir4/8TmXwVpX2WRpdejvbWyjt7iBlUho4WjdJHz+6EBLbRtz+ntqjR2cMchLSLGoY+pA wf5UAeOf8M1fs8/9EP8AhR/4S1p/8bo/4Zq/Z5/6If8ACj/wlrT/AON17bRQB4l/wzV+zz/0Q/4U f+Etaf8Axukb9mv9nkD/AJIf8KP/AAlrT/43Xt1Mf7vXHvQB8bfELwn+yr8NNQuE8Q/s46Td2NrY /br7U9H+Fn2+zs4ATueSWKAgbQpZgMlVGSMVz3iqb9iHwldWyXfwm8AavaHQ4Ndvb7Qvh6uoW2ma bcH9zeXUkMLCGFwGZS3JVGbG1Sa3P2rfG3wtu/hj4m+HXiX4v+KPh/4u/saZ7TSNC80XOrmaMiKD yRE32tXI2GOM5wzAlc5HhGneMLf4XeHvjTZfFnw4fCPijx98LdBPhvQrXTJGTUrhNFayl0m0SNWz JFcfJ5OSVEwPK5agD7Ttv2dP2c7yxt7q1+CnwjuLWeMSQyx+GLRlkQjIYEJyCCCDVj/hmr9nn/oh /wAKP/CWtP8A43XS/B/QdV8Lfsn/AAu8M68nl65pPhLTbHUULbts8NpFHIM9DhlPPevSKAPEv+Ga v2ef+iH/AAo/8Ja0/wDjdJ/wzV+zz/0Q/wCFH/hLWn/xuvbqKAPEf+Gav2ef+iH/AAo/8Ja0/wDj dc/4s+Cf7L3gn4ca14s8S/B34Sab4f0mzku7+5fwtakRxopJwBHlmPQKMkkgAEkV9Gnp718u/tBW nxI1bx78M7LQfhtffEf4c2V/Jq3iWwsdVs7SW4urco1hC4uZEDQiXdO2053QRDBBagDzaI/sW3nw N+H3jzTPgr4N1mw8brI3hbTNP+HCXGp34jDtKVtVhMiqiozMWACjGTkgH1HwP8I/2VfiN8L9K8Y+ Efg98KdS0HUFYwSv4Pt4ZEZHZJI5I3iDxyI6sjIwDKykEV8S/s+eK5PBXwu/ZA+KHxN0O/8ABHgP TPCfiPw/LrGosk1vZ3NzcW00E0jRbvJWcW88QL7fmRVPLqD9vfsrW1yf2aNY12XTbvStO8ReOdf1 3R4bqBoZHsbvU7ia3mMbAMnmowlAYAgSDNAHVf8ADNX7PP8A0Q/4Uf8AhLWn/wAbo/4Zq/Z5/wCi H/Cj/wAJa0/+N17bRQB4l/wzV+zz/wBEP+FH/hLWn/xuj/hmr9nn/oh/wo/8Ja0/+N17bRQB8g/E XwL+yr8MtT8JafrfwB8H6tqviW/lstFsNB+H8N/PcSxQvO/yxx/KBHGxycDisvxB4c/ZN8L+DfCe pa1+z34eg1PxHLLFo3huP4apPrNwYlLyn7IkTOqoi7mY4ABXnLAHuf2hh+z/ACJ4If476/L4Z+y3 lxceHbxNZvdNZJvJ8uXbPashDeXJgKzDOTgEivlT4f8Ai288G+MvgF8W/inqnij/AIVlax+MtA0X xT4ogm860sp7+3k0iW7d18xfPtbUos0oDOFj3ne4yAfVXgb4Q/sq/Eb4XaX4x8JfB/4UaloV+reT K3hC3ikRkdo5I5I3iDxyI6sjIwDKykEZFdb/AMM1fs8/9EP+FH/hLWn/AMbrl/2U7e6/4Zj1bW5t NvdKsPEXjfX9d0iC7t2glayu9TuJreUxuAyeZGyy7WAYCTkA19K0AeJf8M1fs8/9EP8AhR/4S1p/ 8bo/4Zq/Z5/6If8ACj/wlrT/AON17bRQB4l/wzV+zz/0Q/4Uf+Etaf8AxuuO8c/CX9lb4dfD658T eKfg38LbTTIpordEt/BsFzcXM8riOKCGGOJnlld2VVRQSSa+nq+Lf20NBn1DwN8GvEN7qniHRfA3 hr4lWeoeM77RJJUubbTXtrm2aUNEDIkayTxb5EwY03OCNuQAQ3ugfslaV8LY/FWtfs86HoiXGrpp Njo998MBHquoXbjKR29r5PmTZXc25QVCq5JAViOz8AfC39lT4leB317wx8FvhqYIbuWzvbS/8EwW l3ZXMTFZIZ4JYg8bg9iOQQRkEE/Jei65b6P8VPC/xFstd8S+Iv2YfBvxcdtD8Q6zcXN+thbXWgTW 81ws826aWyjv5jGJmLBTNJ8wjQY+tf2aZY9e8TfHz4i6SJZfBnjL4hHUPDV40LRrf20OmWFk9wis A3ltNbTbWxhgoYZDAkA7f/hmr9nn/oh/wo/8Ja0/+N0f8M1fs8/9EP8AhR/4S1p/8br22igDxI/s 1fs9f9EQ+FH/AIS1p/8AG6T/AIZq/Z6/6Ih8Kf8Awl7T/wCN17dRRYD5w8UfA79nbwp4NutZl/Z7 8E61FAy5tNG8EW93cvuYLlYlTLYzk+grzjwZ48/ZX8I3/j/xRoPwug+Gut+CPsdprMr/AA+On36y agMW1tbhIt80suUURR5Yl0BHzV9iavqdjonhjUta1O4Sz02wtZLq7nc4WOKNS7sT6BQTX5y2ek6t H+wH4c+OPiXQ9QF/4k+LOnfEbxbbLZtJPbaY15Gls0ka5Y/ZbFLNm2jpAzYzmgVkfcvw9+KHhf4l Wmtf2AdYstR0a9FnrGk6zpstjfWErRrIglhlAYB0ZXVhlWB4Jwcej18k/AzV9O8d/trftAfFPwlM NU+H2r2egaVpWtRRMtvqdzZQ3huXhLAeYqfaYYy4ypZWAJ2GvragYUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJuHrWN4h0iTXvBeoaRFrGsaBJdR7F1DSpljuoOQd0 bMrAHjHIPBNfDPg/T/FB8S/tT3PiT4s/F3xNonw61yWz03SZNcit1u7X+wLO8aKSWKASBjJcy4kU hl+XH3RQB9/7h60bh618OWv7Qvji0sPB/g/4a/B0eL5Y/g9pnjN5dX8bNF9nglVk+yvPJBJJPPiI YkbmQ7i+zqej8BftQ6l4q8XfDi9174az+Dfhx8QNAutV8K67c60k93/o1uLmWO8tVjAgzF5jIyyy btnIUnFAH2BketLXwt8Mf21tF+Inxt8BaKNI8G23hzxzcSweGptM8cW2o6xCywSXEZv9OjQNarJH C/Id9jFFfaTgfdNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAYniPX9P8ACvgLXPEurvJHpOk6fNfXrxxl3WKGNpHIUcsQqk4HJqhqHjbwpo+laPe654k0LQLf VmRdNOqX0dqbpnUFUQSMNz/MPlHPtR438Ojxf8IPFfhJrw6eNb0W6043Qj8wwefC8XmBcjdt35xk Zx1FeE+IfgZ4v8W+Ho7PxD8QfDDXn/CM3nha4lsvBrxxvpd2LfzQkct9JsugbcFZtxTnmFtqkAHu F18QPA9hrmr6bfeM/CVlqGlW32nVLWfWII5rKL5f3kyF8xp86/MwA+Yc8ise9+LHgSzzINftL2z/ AOEavPEQvrE/aLZrG0eNJ5FlTKsVaVflByecdDXAXHwb8QR/Dzxh4Q0H4gR6R4e1jUW1G2YaRK1/ BM9xHNNHLdJdIZYH2vGQixyBXAEvyiuK0n9mOXRdC0yxTxgmoWwmvk1KM2EkSy217q1rqU0UZaaV 8D7N5IDsxZZCWbI5APfP+Fp/DpdPu7i48c+ELD7H5Y1CK71m3iksXf7sc6s+YnJBG1sHIIqW9+J3 w503VnsNR8f+CLC/SBZ3t7nXbaORY2QSByrODtKEODjG056c15H4h/Z3sNa0KzS219bfUbPxjqXi K2eWzn+zu96ksckUqW9zBI+1JcK6yqcqMgglTb0P9n7RtE1K3ntr7TYooNf0jVYba30nZFANO06O ySCPdK7Kh2F1JYlA235vvEA9cPj/AMEi/wBEtP8AhMfCf2rWYPP0eH+14N+oRYz5kA3ZlXHO5Mj3 rntC+NPwq8SfDvS/FelfEHwfJoGo3LW1ndy6tDEssynBiG5h+8HHydcEccivI9O/ZpGm+XaQ+Mo2 0W4ubKbWIX0MG4m+w6lcahbJbS+bi3UNMEfKSblXK+WzE1mah+y0moeHPDunah4p0rVotH07UNIh hv8ARrr7NPp13Ok5jmihvoi8wKbS+4Rupw0XAwAfXqOsgJUg4ODg9KfWVpWnrp0F3GkenxJLcGRR a2vlHG1R+8O47345fjIwMcZOrQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1jhCeT9K8O0/4OR2C /tBKPEEsv/C0NRe8f/QQP7L3aVbadtHz/veLbzM/L97b2yfciARg80bVx0oA+dvB3wIi8JeMbPVk 8Uy3pt/hXp3gXyzp4QEWbSkXed5wW8z/AFeMDH3jXm3iH4aeHPhN8Kv2dh4j1DxH4j0D4a2UujTN p+giUan9stV0tRKomzCHadcY3g85IA3V9g6pYjUdGuLA3N9YrMm0z2Uximj91ccqa5Dxr4ITxf8A B1fB7ardWii6sJxezL9olP2S6guBuyRuZ/JClierZwehAPmH4X6DZ/CMaBZat8cvDWgfDfw5LJYa doHivQNNsdXiiSENHazX5uCW8qN4zkRJIVC7mOSx+rD8RPAY8N6nrJ8b+DxpOnXX2XUL06zB5FpN x+6lk37UfkfKxB5HFeUat8A7XVfi3rHiqXxCN1/ealci2fTFcRfbdLh08ruL87ViL5wN24rwOTy2 o/su2N3BpT2/iow3emW+jxWKtYSpbb9Psriy3Spb3EMjh47gkBZUKMicsBigD6ls9RtNQ023vLC6 tb22njWWGa3lWRJEYZVlYHBBHII4NeYXXxp8J6dLrFvq1p4j0jUtPhtZv7Pu9MZbm6jurhra3aFA Tv3zKUA4IPLADmtvwJ4KtfA3hCz0TT7Xw7a2lrYRW0Y03TJLf7jSM2S80jmPdISqMxK5bLNu48si +CPie607xbN4k8e6LrPijVtXs9Ttdeh8MyQTWz2V159pC6G8dJLaNR5floIs7pHLb3LUAeg23xe8 MXaeFmjtPESrrmsT6PGZNMdfsV7CWV4Ln/nk25GAzkNjIJBBrYPxC0aL402vgO8tdY0/W7yKaTTn uLT9xerCqNL5bqT90OD8wXPbNebT/CPxavhfw1bab450CHVbPxfN4n1i8vPDEs8d9dSO7BIokvIz BEBIygFpDgId3B3bN58J7rV/2kI/H2pa5pNlLb2dzaWz6BorafqM8MyBBHdXvnuZ0jxvRRGgVwrd qAOju/ip4Wsvi3/whsram2oLdwWVxdx2LtZ211PEZobeSbosjx4YDp86AkFgDH4D+LPhP4j3l1B4 bbUy8NhBqC/bLNoRNazvKkUyZ/hYwSjDYYbeVGRXIzfBab/ha8mqReLrlvDN3rFjrOpaZdWRmvLm 9s7dbeFxd+YNqERQMymNiWj4dQxFY3wz/Z8h+HwvwviqcLPptnY+ZoVh/ZMt39mklk+13rrLIbm9 k83Es/ybwPuigDutR+M/g/SNO+JF1qcevWSeB1ibWxLpjhikq7o3hH/LVWHQrXW/8Jjplv8ACq/8 Za1DfeHNFsbOa8vTqUQSSCGJWZ5GVS3G1S3BJI/KvNR8LvEz/E34qa9deJPBeq6b4vtLaCLSb/wh JPFbfZlKR+dm9xcIVLBl2x5JBBGCps6P8HLGz/Zk8YfDPUdQgbTvEiXyXP8AY+n/AGC1sFukKGO0 ty8nkxoDuC72G7J74ABq23xg0K98N6nfWeg+NLq6027FvqWlpozC9sy1uLhXkjJGEaJkYHJzuC/e 4ravviV4XtPhhoHi2C4utX0zXVtTokWn2zS3F/8AaVDwiOPg5ZDv+bGFBJxg15PqvwT8Zar4O8SW 8nxJ0tdb8UarbT+KLoeGJUttQsbe1W3WxSJL1ZIVfarSSCYlsuoChgF7bX/hvd6toujPpuoeF9A8 Q6Nc2N3pd9beHD5KS20bxMksQuAZICksipGJFMYbh260ARD48fD510eSC71a4t76K3lmuE02Xy9N E929lCLokZhLXMcsOCMho3zgKTXU+NPiHo3gLR4tU1611dtG3hbjUbO186G1y6oDJg7vvN0VWPB4 rxqP9nL7PZQWFv40f+zdQhtF8Wxy6QGl1Z7fU7jUw8DiUC13T3U6sCso8tlUYZd9df8AEP4T3fxB 8FR+G7jUfB2laN9te7eWLwqXvbWUyl0uLOb7SBbXQBb99scljuAXlaAO3T4haMPi9a+Cryz1vTNW vVnOmS3liyW+oeQqtL5MmTkqHB5xkA4zis1viz4UT4rN4QJ1Q3y6n/ZRuxZN9k+3fZvtQtPN6eaY fnAxjtnPFYWn/DvxZbftJ+IfiBqXi/QNcFxaSWeg2tz4clEuh25VMRRyC82MrSIJJW8pXk+Vd6qi gZet/BC2139pbRviLdX2hWtxpd0moW8Vpo8yTzXy2klss80huTG6qshwFhWTaFQylRggHQr8a/CI tdaW5tvEVjqumX1tZT6RPpx+2PNcgmBI1UlWLBWPDfKFJbaBmtbVvibo+gw+Hp9a0nxLptnq89vb w3UtgDHBNPMIYopdrEhmdlHAIG4EkDmvIrr9nC31NPEN9q2p+Dpta1LXrLWhbWnhEw6J9ptllUyT WBumM8swmfzXMwLbYumznS/4UNdN4I+H3hmbxNos+leF76G/hvJPDedUhmS9+1MtndG4xZwMAsHl iNyIBs3nOaAO8l+Mvg+Hw94j1txrP/CP6NM1vNqq2DNb3FwtwLUwQEHdJJ558oALgsDgnGa6zwr4 w0rxhpN9c6Yt3bzWF69lqFleReVcWk6BSY5FycHayMOSCGBB5rwTSP2Z9K0PW/Ek9jqHh99M1G11 WKKwn8PMftDaheC8kbUXW4Vr3ypd3khfJMau2Gz81eh/Dn4Taf4A+GOv6Db6ncPf65qc2o6pqGnm W2JnkVF/db5JZECpHGoLSOxxksSaAO/1rxTpWga54b07UpJo7nXdRNhp4SEsHmEUk2GI+6NkT8nj iobvxx4OsPE11ot94s8MWWsW1q13c2E+qQx3EMCLveV4ywZUC/MWIwByeK5Pxt4B1jxDYeBpPD3i e30fWPC+rLf213rOnPqaXOLeWArKqzwsSVlJ3BxyOhryLUv2ZxrHivxhq2r+I9Dvr3xDBeSz3B0W 7EtleXWnmxea2BvzCiBSSEeJ3wzL5uCCAD3pfib8On8Hz+IU8feCm0CG6FrPqQ1y3NtHOcYiaTft Eh3DCk55HFcjqH7Qfwe07UNWtJPHvh25utNSwlu4rS9SYrFezLDBMNp+aLc4LSDKovLEDmvNvFnw V17Q9Ui8ZeApYdZ8T2N7Yzabpcmnwi1UQ6ZJpj+YslxEGBikLDDqUKgDeBg5Pgz9mjVdG+CWjeGt T8VaYkU2keHYtcs10bzg1zpF2t0vlSCVFET4MbKYj/eBA+WgD6Iuvid4Et9G0DU18UaLeaPrM00d hqdpeJNZt5EUssztOrFFREhkLMTgYx1rPtPjL8LtQ+IVl4XsPH/hC91q80t9Us4oNVidbi2R2jeR HDFXCsjZweArE9DXA3/wOOpeJ/FH23UdFv8ARL+31JrCzvtOeSKG41G4jkuDJGkkZYKkESoySI2Z JT8vBOHc/s66rqnhy90zXfiPe6rDqnhW+8OaxK1hIJmtp5zNCLeRrlni8onb+9M5deCR1oA9qn+K nw0tvDVtrVz8RfAdto9xcPBBfS6/bLBLIg3OiyF9rMo5IByByRXZG9g+xvcieA2qR+Y0ocFQuN27 PpjnPpXx/P8As8eLNL8deCL/AMM6r4Itb221TUrzWdXbQbmaMifSxZRlre4vpZZZMKF3CdQFCjYQ MH6G8K+ANP8ADHwhi8ExtDd6LDo9vpSS/Z/Lup4YbRLbdPKGPmyEJ94BcDC44yQDNtvjF4YvPhxB 4qtdP8Tz6ReXMEGjsumN5mrtPnyjbITuYMBuywXC/McDmtjQvil4C8Q2+gix8UaPBqGso507S725 S3vpjG7xyKLdyJCyPFKrADgo3pXiHhT9mpvBfhe3ttA8V6Tp+paYdJ/sOWDw35VrEdPWeNZrqBbg fabmaO5dJpleIsEjwF2c2IvgF4k8PnTtT8F+OLDTfEVrYTi7vpNKlSXVriWW7uQkxW4MQtftF5Iw QwSOilgsmTmgD0O3+O3gG68QQWNvcatNG13Haz3q6e/2a0lluprSBZX/AIfNmgkRDzn5ScBlJ6rx Z8QNI8F3Vkddstcj06eWCKXU4LIyWlq886wRLK4OQWkdRwDjcCcDmvJl/Z9gs7/SrPSfE/2PwqsG iDW9Ol03zbi+l0iXzbaWOfzQId7qhlBjk3hOChLMep8Y/D/xl4u8f+DtSuPGfhtPDejXX2y58P3H hmaWG+uVm3wTM63iENEgG1WDp5n7wrwqoAa1t8ZPA1x4zu9Hm1GXTEgF4U1O/i8iwuPsTql2I52I U+UzANnHRiMhSR3+ja5o/iLQINW0DVtL1zSpwfJvdPukuIJMHadroSpwQRweor54v/2eE1C6vba7 8R6ZqfhyF9Um0LSL7RZHW2m1KZZrhriRLlGnCneIwnklA+SzlVI9m+H3hnVfCPw1tND1rxNdeLtQ hklZtQnhaM7WkZljUPJI+1FIQF5HYhRljQB21FFFABRRRQAUUUUAFFFFABRRRQB//9k= --Apple-Mail=_F9151A9D-F370-44ED-B4F6-E2B929A9037F-- --Apple-Mail=_E0F440D7-677C-40EF-9ABA-0C90AD8CD27C--