From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from mail-vs1-xe36.google.com (mail-vs1-xe36.google.com [IPv6:2607:f8b0:4864:20::e36]) (using TLSv1.2 with cipher ECDHE-RSA-AES128-GCM-SHA256 (128/128 bits)) (No client certificate requested) by lists.bufferbloat.net (Postfix) with ESMTPS id 5F5CC3B2A4; Thu, 12 Jan 2023 11:03:13 -0500 (EST) Received: by mail-vs1-xe36.google.com with SMTP id 186so14203454vsz.13; Thu, 12 Jan 2023 08:03:13 -0800 (PST) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20210112; h=cc:to:subject:message-id:date:from:in-reply-to:references :mime-version:from:to:cc:subject:date:message-id:reply-to; bh=kWxWwQ81mrWZnJjo4Cy6X9HA27CCtZr1Lo9JdDB9qds=; b=QLLGgQcVO9b+6oWYGkrVs9AWmFtnrWPtf9YnWbPkbAFD5zoQB0KT+ieMK3UZC3T8yg RN422wnEl+oI7fLGpw3AWpgT7L0oUzVUM6Xg8F7mwpb7eTsDCDL0lSGk6w2ykSkNTv8J KkWOoKa3rynuVaKGGq5QRy2SIk/U62SswME6Z5LwjcJtJaw2qr26RhGUMm28XsuQxrCY 2r+7SCAOdQS1zURo3rzF/gqH8XSSEW4PWL70nVGURCAf0DnTWu18AMXLVFCUp1lKU73j IuCiYDgnJSGI1yq2y9L1akdY8AU9/6wBVnM3WD42tXz8Z67P5zdlJPizGoh2EYdDPHll v85g== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20210112; h=cc:to:subject:message-id:date:from:in-reply-to:references :mime-version:x-gm-message-state:from:to:cc:subject:date:message-id :reply-to; bh=kWxWwQ81mrWZnJjo4Cy6X9HA27CCtZr1Lo9JdDB9qds=; b=rmSd1NkFUiHuUxxLg0Z0xHbxTIZlj3fHwidxEWXCxZlr+w0WdV42dbVi+qWdszDVsM QSIkRY8qavbvA31r99+yMsKFyNmB8H3SwWmEDCmfaMbxhJsmX76xxtZtywkOFYKSGcGD cRkOXcbdLrxhvibDeIYqZuk0uwCVqCWICAEZfCRQJ96OiaP+7wZeIQwNTJTgl/bkA3d/ KCxa67toEMa8ErIqaxeOdFh5wuJDMO6Kxj7usxaxpuQk7iMLfwklFK7QLyNVCXqOz0c0 tboEKq5AfOzkBNNo1b4/D9OEDAHFUMnXNtgJv/HW4hQp1q3Y/1kTwr7S/FrDazBi6SqK P0iw== X-Gm-Message-State: AFqh2kpn5OnVGjFPi2IoKWP402+nDk6ppgtpIM6i+IiR2nwC9yQS7dgc KFg1C+WNLimFFsnIDWCnxi86DJVmPxrPOM2BbhU= X-Google-Smtp-Source: AMrXdXttjFJojO/AaSZbLJoaFuo95vdT1GnnS/SVYNGd4EwprgNIwJ54bbkuYwFUqKUjzfi1YBvTWQrywO9veR2Aw8g= X-Received: by 2002:a67:f44a:0:b0:3ce:c752:6432 with SMTP id r10-20020a67f44a000000b003cec7526432mr4617081vsn.23.1673539391608; Thu, 12 Jan 2023 08:03:11 -0800 (PST) MIME-Version: 1.0 References: <89D796E75967416B9723211C183A8396@SRA6> <3696AEA5409D4303ABCBC439727A5E40@SRA6> In-Reply-To: From: "Luis A. Cornejo" Date: Thu, 12 Jan 2023 10:01:47 -0600 Message-ID: To: Jay Moran Cc: Dave Taht , Cake List , IETF IPPM WG , "MORTON JR., AL" , Rpm , bloat , dickroy@alum.mit.edu, libreqos Content-Type: multipart/mixed; boundary="000000000000f491e805f213409b" Subject: Re: [LibreQoS] [Bloat] [Rpm] [Starlink] the grinch meets cloudflare'schristmas present X-BeenThere: libreqos@lists.bufferbloat.net X-Mailman-Version: 2.1.20 Precedence: list List-Id: Many ISPs need the kinds of quality shaping cake can do List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Thu, 12 Jan 2023 16:03:13 -0000 --000000000000f491e805f213409b Content-Type: multipart/alternative; boundary="000000000000f491e605f2134099" --000000000000f491e605f2134099 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Here is on Starlink: On Wed, Jan 11, 2023 at 5:05 AM Jay Moran wrote: > Quick note from reading your blog entry. > > Last night, I played with the Cloudflare Speedtest a little. It downloads > 25MB and a 50MB (or 100MB, can=E2=80=99t remember) as well on a =E2=80=9C= speedier=E2=80=9D network > after it does the 10MB file. > > I was getting 1.2Gbs down and 760Mbs up, 4ms of LUL, and seeing those > larger file sizes. I was trying to screenshot and noticed I had those ext= ra > file sizes I had to scroll down for. I ended up getting distracted and no= t > taking the shot to send. But, it will do a longer/bigger test under right > conditions. > > Network here at the house is AT&T Fiber, 5Gbs up/down - limited to 3.6Gbs > down from Ubiquity UDM SE router/firewall with all IPS/Geo-blocking turne= d > on. 4.7Gbs non-blocking up. I am building a pfSense box to eliminate the > bottleneck. Couldn=E2=80=99t be happier, good job AS7018. > > The machine I was testing from was Win10 wired 10Gbs and gets ~2.2Gbs > up/down for fast.com/speedtest.net. I haven=E2=80=99t take time to test > internally or try and tune that system, or might be CAT5e cabling issue= =E2=80=A6 is > fast enough for me for that system. > > Jay > > On Wed, Jan 11, 2023 at 12:07 AM Dave Taht via Bloat < > bloat@lists.bufferbloat.net> wrote: > >> Dear Luis: >> >> You hit 17 seconds of delay on your test. >> >> I got you beat, today, on my LTE connection, I cracked 182 seconds. >> >> I'd like to thank Verizon for making it possible for me to spew 4000 >> words on my kvetches about the current speedtest regimes of speedtest, >> cloudflare, and so on, by making my network connection so lousy today >> that I sat in front of emacs to rant - and y'all for helping tone >> down, a little, this blog entry: >> >> https://blog.cerowrt.org/post/speedtests/ >> >> On Tue, Jan 10, 2023 at 9:25 AM Luis A. Cornejo via Rpm >> wrote: >> > >> > Here is my VZ HSI >> > >> > >> > No SQMm on >> > >> > On Sat, Jan 7, 2023 at 6:38 PM Dick Roy via Bloat < >> bloat@lists.bufferbloat.net> wrote: >> >> >> >> >> >> >> >> >> >> >> >> -----Original Message----- >> >> From: rjmcmahon [mailto:rjmcmahon@rjmcmahon.com] >> >> Sent: Friday, January 6, 2023 3:45 PM >> >> To: dickroy@alum.mit.edu >> >> Cc: 'MORTON JR., AL'; 'IETF IPPM WG'; 'libreqos'; 'Cake List'; 'Rpm'; >> 'bloat' >> >> Subject: Re: [Starlink] [Rpm] [LibreQoS] the grinch meets >> cloudflare'schristmas present >> >> >> >> >> >> >> >> yeah, I'd prefer not to output CLT sample groups at all but the >> >> >> >> histograms aren't really human readable and users constantly ask for >> >> >> >> them. I thought about providing a distance from the gaussian as outpu= t >> >> >> >> too but so far few would understand it and nobody I found would act >> upon >> >> >> >> it. >> >> >> >> [RR] Understandable until such metrics are =E2=80=9Cactionable=E2=80= =9D, and that=E2=80=99s >> =E2=80=9Cup to us to find/define/figure out=E2=80=9D it seems to me. Met= rics that are not >> actionable are write-only memory and good for little but historical reco= rdJ >> >> >> >> The tool produces the full histograms so no information is really >> >> >> >> missing except for maybe better time series analysis. >> >> >> >> [RR] Isn=E2=80=99t that in fact what we are trying to extract from th= e e2e >> stats we collect? i.e., infer the time evolution of the system from its >> I/O behavior? As you point out, it=E2=80=99s really hard to do without p= robes in >> the guts of the system, nd yes, synchronization is important J >> >> >> >> >> >> >> >> The open source flows python code also released with iperf 2 does use >> >> >> >> the komogorov-smirnov distances & distance matrices to cluster when t= he >> >> >> >> number of histograms are just too much. We've analyzed 1M runs to fau= lt >> >> >> >> isolate the "unexpected interruptions" or "bugs" and without >> statistical >> >> >> >> support it is just not doable. This does require instrumentation of t= he >> >> >> >> full path with mapping to a common clock domain (e.g. GPS) and not ju= st >> >> >> >> e2e stats. I find an e2e complaint by an end user about "poor speed" = as >> >> >> >> useful as telling a pharmacist I have a fever. Not much diagnosticall= y >> >> >> >> is going on. Take an aspirin. >> >> >> >> [RR] That=E2=80=99s AWESOME!!!!!!!!!!!!!!!!!! I love that analogy! >> >> >> >> >> >> >> >> RR >> >> >> >> >> >> >> >> https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test >> >> >> >> https://sourceforge.net/p/iperf2/code/ci/master/tree/flows/flows.py >> >> >> >> >> >> >> >> Bob >> >> >> >> > See below =E2=80=A6 >> >> >> >> > >> >> >> >> > -----Original Message----- >> >> >> >> > From: Starlink [mailto:starlink-bounces@lists.bufferbloat.net] On >> >> >> >> > Behalf Of rjmcmahon via Starlink >> >> >> >> > Sent: Friday, January 6, 2023 12:39 PM >> >> >> >> > To: MORTON JR., AL >> >> >> >> > Cc: Dave Taht via Starlink; IETF IPPM WG; libreqos; Cake List; Rpm; >> >> >> >> > bloat >> >> >> >> > Subject: Re: [Starlink] [Rpm] [LibreQoS] the grinch meets >> >> >> >> > cloudflare'schristmas present >> >> >> >> > >> >> >> >> > Some thoughts are not to use UDP for testing here. Also, these spee= d >> >> >> >> > >> >> >> >> > tests have little to no information for network engineers about >> what's >> >> >> >> > >> >> >> >> > >> >> >> >> > going on. Iperf 2 may better assist network engineers but then I'm >> >> >> >> > >> >> >> >> > biased ;) >> >> >> >> > >> >> >> >> > Running iperf 2 https://sourceforge.net/projects/iperf2/ with >> >> >> >> > >> >> >> >> > --trip-times. Though the sampling and central limit theorem averagi= ng >> >> >> >> > is >> >> >> >> > >> >> >> >> > hiding the real distributions (use --histograms to get those) >> >> >> >> > >> >> >> >> > _[RR] FWIW (IMNBWM __J)=E2=80=A6 If the output/final histograms ind= icate the >> >> >> >> > PDF is NOT Gaussian, then any application of the CLT is >> >> >> >> > inappropriate/contra-indicated! The CLT is a "proof under certain >> >> >> >> > regularity conditions/assumptions of underlying/constituent PDFs, >> that >> >> >> >> > the resulting PDF (after all the necessary convolutions are perform= ed >> >> >> >> > to get to the PDF of the output) will asymptotically approach a >> >> >> >> > Gaussian with only a mean and a std. dev. left to specify. _ >> >> >> >> > >> >> >> >> > Below are 4 parallel TCP streams from my home to one of my servers = in >> >> >> >> > >> >> >> >> > the cloud. First where TCP is limited per CCA. Second is source sid= e >> >> >> >> > >> >> >> >> > write rate limiting. Things to note: >> >> >> >> > >> >> >> >> > o) connect times for both at 10-15 ms >> >> >> >> > >> >> >> >> > o) multiple TCP retries on a few rites - one case is 4 with 5 write= s. >> >> >> >> > >> >> >> >> > Source side pacing eliminates retries >> >> >> >> > >> >> >> >> > o) Fairness with CCA isn't great but quite good with source side >> write >> >> >> >> > >> >> >> >> > >> >> >> >> > pacing >> >> >> >> > >> >> >> >> > o) Queue depth with CCA is about 150 Kbytes about 100K byte with >> >> >> >> > source >> >> >> >> > >> >> >> >> > side pacing >> >> >> >> > >> >> >> >> > o) min write to read is about 80 ms for both >> >> >> >> > >> >> >> >> > o) max is 220 ms vs 97 ms >> >> >> >> > >> >> >> >> > o) stdev for CCA write/read is 30 ms vs 3 ms >> >> >> >> > >> >> >> >> > o) TCP RTT is 20ms w/CCA and 90 ms with ssp - seems odd here as >> >> >> >> > >> >> >> >> > TCP_QUICACK and TCP_NODELAY are both enabled. >> >> >> >> > >> >> >> >> > [ CT] final connect times (min/avg/max/stdev) =3D >> >> >> >> > >> >> >> >> > 10.326/13.522/14.986/2150.329 ms (tot/err) =3D 4/0 >> >> >> >> > >> >> >> >> > [rjmcmahon@ryzen3950 iperf2-code]$ iperf -c *** --hide-ips -e >> >> >> >> > >> >> >> >> > --trip-times -i 1 -P 4 -t 10 -w 4m --tcp-quickack -N >> >> >> >> > >> >> >> >> > ------------------------------------------------------------ >> >> >> >> > >> >> >> >> > Client connecting to (**hidden**), TCP port 5001 with pid 107678 (4 >> >> >> >> > >> >> >> >> > flows) >> >> >> >> > >> >> >> >> > Write buffer size: 131072 Byte >> >> >> >> > >> >> >> >> > TOS set to 0x0 and nodelay (Nagle off) >> >> >> >> > >> >> >> >> > TCP window size: 7.63 MByte (WARNING: requested 3.81 MByte) >> >> >> >> > >> >> >> >> > Event based writes (pending queue watermark at 16384 bytes) >> >> >> >> > >> >> >> >> > ------------------------------------------------------------ >> >> >> >> > >> >> >> >> > [ 1] local *.*.*.85%enp4s0 port 42480 connected with *.*.*.123 por= t >> >> >> >> > >> >> >> >> > 5001 (prefetch=3D16384) (trip-times) (sock=3D3) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/10534) (ct=3D10.63 ms) on 2023-01-06 12:1= 7:56 >> >> >> >> > >> >> >> >> > (PST) >> >> >> >> > >> >> >> >> > [ 4] local *.*.*.85%enp4s0 port 42488 connected with *.*.*.123 por= t >> >> >> >> > >> >> >> >> > 5001 (prefetch=3D16384) (trip-times) (sock=3D5) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/14023) (ct=3D14.08 ms) on 2023-01-06 12:1= 7:56 >> >> >> >> > >> >> >> >> > (PST) >> >> >> >> > >> >> >> >> > [ 3] local *.*.*.85%enp4s0 port 42502 connected with *.*.*.123 por= t >> >> >> >> > >> >> >> >> > 5001 (prefetch=3D16384) (trip-times) (sock=3D6) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/14642) (ct=3D14.70 ms) on 2023-01-06 12:1= 7:56 >> >> >> >> > >> >> >> >> > (PST) >> >> >> >> > >> >> >> >> > [ 2] local *.*.*.85%enp4s0 port 42484 connected with *.*.*.123 por= t >> >> >> >> > >> >> >> >> > 5001 (prefetch=3D16384) (trip-times) (sock=3D4) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/14728) (ct=3D14.79 ms) on 2023-01-06 12:1= 7:56 >> >> >> >> > >> >> >> >> > (PST) >> >> >> >> > >> >> >> >> > [ ID] Interval Transfer Bandwidth Write/Err Rtry >> >> >> >> > >> >> >> >> > Cwnd/RTT(var) NetPwr >> >> >> >> > >> >> >> >> > ... >> >> >> >> > >> >> >> >> > [ 4] 4.00-5.00 sec 1.38 MBytes 11.5 Mbits/sec 11/0 3 >> >> >> >> > >> >> >> >> > >> >> >> >> > 29K/21088(1142) us 68.37 >> >> >> >> > >> >> >> >> > [ 2] 4.00-5.00 sec 1.62 MBytes 13.6 Mbits/sec 13/0 2 >> >> >> >> > >> >> >> >> > >> >> >> >> > 31K/19284(612) us 88.36 >> >> >> >> > >> >> >> >> > [ 1] 4.00-5.00 sec 896 KBytes 7.34 Mbits/sec 7/0 5 >> >> >> >> > >> >> >> >> > 16K/18996(658) us 48.30 >> >> >> >> > >> >> >> >> > [ 3] 4.00-5.00 sec 1.00 MBytes 8.39 Mbits/sec 8/0 5 >> >> >> >> > >> >> >> >> > 18K/18133(208) us 57.83 >> >> >> >> > >> >> >> >> > [SUM] 4.00-5.00 sec 4.88 MBytes 40.9 Mbits/sec 39/0 15 >> >> >> >> > >> >> >> >> > [ 4] 5.00-6.00 sec 1.25 MBytes 10.5 Mbits/sec 10/0 4 >> >> >> >> > >> >> >> >> > >> >> >> >> > 29K/14717(489) us 89.06 >> >> >> >> > >> >> >> >> > [ 1] 5.00-6.00 sec 1.00 MBytes 8.39 Mbits/sec 8/0 4 >> >> >> >> > >> >> >> >> > 16K/15874(408) us 66.06 >> >> >> >> > >> >> >> >> > [ 3] 5.00-6.00 sec 1.12 MBytes 9.44 Mbits/sec 9/0 4 >> >> >> >> > >> >> >> >> > 16K/15826(382) us 74.54 >> >> >> >> > >> >> >> >> > [ 2] 5.00-6.00 sec 1.50 MBytes 12.6 Mbits/sec 12/0 6 >> >> >> >> > >> >> >> >> > >> >> >> >> > 9K/14878(557) us 106 >> >> >> >> > >> >> >> >> > [SUM] 5.00-6.00 sec 4.88 MBytes 40.9 Mbits/sec 39/0 18 >> >> >> >> > >> >> >> >> > [ 4] 6.00-7.00 sec 1.75 MBytes 14.7 Mbits/sec 14/0 4 >> >> >> >> > >> >> >> >> > >> >> >> >> > 25K/15472(496) us 119 >> >> >> >> > >> >> >> >> > [ 2] 6.00-7.00 sec 1.00 MBytes 8.39 Mbits/sec 8/0 2 >> >> >> >> > >> >> >> >> > 26K/16417(427) us 63.87 >> >> >> >> > >> >> >> >> > [ 1] 6.00-7.00 sec 1.25 MBytes 10.5 Mbits/sec 10/0 5 >> >> >> >> > >> >> >> >> > >> >> >> >> > 16K/16268(679) us 80.57 >> >> >> >> > >> >> >> >> > [ 3] 6.00-7.00 sec 1.00 MBytes 8.39 Mbits/sec 8/0 6 >> >> >> >> > >> >> >> >> > 15K/16629(799) us 63.06 >> >> >> >> > >> >> >> >> > [SUM] 6.00-7.00 sec 5.00 MBytes 41.9 Mbits/sec 40/0 17 >> >> >> >> > >> >> >> >> > [ 4] 7.00-8.00 sec 1.75 MBytes 14.7 Mbits/sec 14/0 4 >> >> >> >> > >> >> >> >> > >> >> >> >> > 22K/13986(519) us 131 >> >> >> >> > >> >> >> >> > [ 1] 7.00-8.00 sec 1.12 MBytes 9.44 Mbits/sec 9/0 4 >> >> >> >> > >> >> >> >> > 16K/12679(377) us 93.04 >> >> >> >> > >> >> >> >> > [ 3] 7.00-8.00 sec 896 KBytes 7.34 Mbits/sec 7/0 5 >> >> >> >> > >> >> >> >> > 14K/12971(367) us 70.74 >> >> >> >> > >> >> >> >> > [ 2] 7.00-8.00 sec 1.12 MBytes 9.44 Mbits/sec 9/0 6 >> >> >> >> > >> >> >> >> > 15K/14740(779) us 80.03 >> >> >> >> > >> >> >> >> > [SUM] 7.00-8.00 sec 4.88 MBytes 40.9 Mbits/sec 39/0 19 >> >> >> >> > >> >> >> >> > [root@bobcat iperf2-code]# iperf -s -i 1 -e --hide-ips -w 4m >> >> >> >> > >> >> >> >> > ------------------------------------------------------------ >> >> >> >> > >> >> >> >> > Server listening on TCP port 5001 with pid 233615 >> >> >> >> > >> >> >> >> > Read buffer size: 128 KByte (Dist bin width=3D16.0 KByte) >> >> >> >> > >> >> >> >> > TCP window size: 7.63 MByte (WARNING: requested 3.81 MByte) >> >> >> >> > >> >> >> >> > ------------------------------------------------------------ >> >> >> >> > >> >> >> >> > [ 1] local *.*.*.123%eth0 port 5001 connected with *.*.*.171 port >> >> >> >> > 42480 >> >> >> >> > >> >> >> >> > (trip-times) (sock=3D4) (peer 2.1.9-master) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/11636) on 2023-01-06 12:17:56 (PST) >> >> >> >> > >> >> >> >> > [ 2] local *.*.*.123%eth0 port 5001 connected with *.*.*.171 port >> >> >> >> > 42502 >> >> >> >> > >> >> >> >> > (trip-times) (sock=3D5) (peer 2.1.9-master) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/11898) on 2023-01-06 12:17:56 (PST) >> >> >> >> > >> >> >> >> > [ 3] local *.*.*.123%eth0 port 5001 connected with *.*.*.171 port >> >> >> >> > 42484 >> >> >> >> > >> >> >> >> > (trip-times) (sock=3D6) (peer 2.1.9-master) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/11938) on 2023-01-06 12:17:56 (PST) >> >> >> >> > >> >> >> >> > [ 4] local *.*.*.123%eth0 port 5001 connected with *.*.*.171 port >> >> >> >> > 42488 >> >> >> >> > >> >> >> >> > (trip-times) (sock=3D7) (peer 2.1.9-master) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/11919) on 2023-01-06 12:17:56 (PST) >> >> >> >> > >> >> >> >> > [ ID] Interval Transfer Bandwidth Burst Latency >> >> >> >> > >> >> >> >> > avg/min/max/stdev (cnt/size) inP NetPwr Reads=3DDist >> >> >> >> > >> >> >> >> > ... >> >> >> >> > >> >> >> >> > [ 2] 4.00-5.00 sec 1.06 MBytes 8.86 Mbits/sec >> >> >> >> > >> >> >> >> > 129.819/90.391/186.075/31.346 ms (9/123080) 154 KByte 8.532803 >> >> >> >> > >> >> >> >> > 467=3D461:6:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 3] 4.00-5.00 sec 1.52 MBytes 12.8 Mbits/sec >> >> >> >> > >> >> >> >> > 103.552/82.653/169.274/28.382 ms (12/132854) 149 KByte 15.40 >> >> >> >> > >> >> >> >> > 646=3D643:1:2:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 4] 4.00-5.00 sec 1.39 MBytes 11.6 Mbits/sec >> >> >> >> > >> >> >> >> > 107.503/66.843/143.038/24.269 ms (11/132294) 149 KByte 13.54 >> >> >> >> > >> >> >> >> > 619=3D617:1:1:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 1] 4.00-5.00 sec 988 KBytes 8.10 Mbits/sec >> >> >> >> > >> >> >> >> > 141.389/119.961/178.785/18.812 ms (7/144593) 170 KByte 7.158641 >> >> >> >> > >> >> >> >> > 409=3D404:5:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [SUM] 4.00-5.00 sec 4.93 MBytes 41.4 Mbits/sec >> >> >> >> > >> >> >> >> > 2141=3D2125:13:3:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 4] 5.00-6.00 sec 1.29 MBytes 10.8 Mbits/sec >> >> >> >> > >> >> >> >> > 118.943/86.253/176.128/31.248 ms (10/135098) 164 KByte 11.36 >> >> >> >> > >> >> >> >> > 511=3D506:2:3:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 2] 5.00-6.00 sec 1.09 MBytes 9.17 Mbits/sec >> >> >> >> > >> >> >> >> > 139.821/102.418/218.875/40.422 ms (9/127424) 148 KByte 8.202049 >> >> >> >> > >> >> >> >> > 487=3D484:2:1:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 3] 5.00-6.00 sec 1.51 MBytes 12.6 Mbits/sec >> >> >> >> > >> >> >> >> > 102.146/77.085/140.893/18.441 ms (13/121520) 151 KByte 15.47 >> >> >> >> > >> >> >> >> > 640=3D636:1:3:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 1] 5.00-6.00 sec 981 KBytes 8.04 Mbits/sec >> >> >> >> > >> >> >> >> > 161.901/105.582/219.931/36.260 ms (8/125614) 134 KByte 6.206944 >> >> >> >> > >> >> >> >> > 415=3D413:2:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [SUM] 5.00-6.00 sec 4.85 MBytes 40.7 Mbits/sec >> >> >> >> > >> >> >> >> > 2053=3D2039:7:7:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 4] 6.00-7.00 sec 1.74 MBytes 14.6 Mbits/sec >> >> >> >> > >> >> >> >> > 88.846/74.297/101.859/7.118 ms (14/130526) 156 KByte 20.57 >> >> >> >> > >> >> >> >> > 711=3D707:3:1:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 1] 6.00-7.00 sec 1.22 MBytes 10.2 Mbits/sec >> >> >> >> > >> >> >> >> > 120.639/100.257/157.567/21.770 ms (10/127568) 157 KByte 10.57 >> >> >> >> > >> >> >> >> > 494=3D488:5:1:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 2] 6.00-7.00 sec 1015 KBytes 8.32 Mbits/sec >> >> >> >> > >> >> >> >> > 144.632/124.368/171.349/16.597 ms (8/129958) 143 KByte 7.188321 >> >> >> >> > >> >> >> >> > 408=3D403:5:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 3] 6.00-7.00 sec 1.02 MBytes 8.60 Mbits/sec >> >> >> >> > >> >> >> >> > 143.516/102.322/173.001/24.089 ms (8/134302) 146 KByte 7.486359 >> >> >> >> > >> >> >> >> > 484=3D480:4:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [SUM] 6.00-7.00 sec 4.98 MBytes 41.7 Mbits/sec >> >> >> >> > >> >> >> >> > 2097=3D2078:17:2:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 4] 7.00-8.00 sec 1.77 MBytes 14.9 Mbits/sec >> >> >> >> > >> >> >> >> > 85.406/65.797/103.418/12.609 ms (14/132595) 153 KByte 21.74 >> >> >> >> > >> >> >> >> > 692=3D687:2:3:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 2] 7.00-8.00 sec 957 KBytes 7.84 Mbits/sec >> >> >> >> > >> >> >> >> > 153.936/131.452/191.464/19.361 ms (7/140042) 160 KByte 6.368199 >> >> >> >> > >> >> >> >> > 429=3D425:4:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 1] 7.00-8.00 sec 1.13 MBytes 9.44 Mbits/sec >> >> >> >> > >> >> >> >> > 131.146/109.737/166.774/22.035 ms (9/131124) 146 KByte 8.998528 >> >> >> >> > >> >> >> >> > 520=3D516:4:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 3] 7.00-8.00 sec 1.13 MBytes 9.51 Mbits/sec >> >> >> >> > >> >> >> >> > 126.512/88.404/220.175/42.237 ms (9/132089) 172 KByte 9.396784 >> >> >> >> > >> >> >> >> > 527=3D524:1:2:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [SUM] 7.00-8.00 sec 4.96 MBytes 41.6 Mbits/sec >> >> >> >> > >> >> >> >> > 2168=3D2152:11:5:0:0:0:0:0 >> >> >> >> > >> >> >> >> > With source side rate limiting to 9 mb/s per stream. >> >> >> >> > >> >> >> >> > [rjmcmahon@ryzen3950 iperf2-code]$ iperf -c *** --hide-ips -e >> >> >> >> > >> >> >> >> > --trip-times -i 1 -P 4 -t 10 -w 4m --tcp-quickack -N -b 9m >> >> >> >> > >> >> >> >> > ------------------------------------------------------------ >> >> >> >> > >> >> >> >> > Client connecting to (**hidden**), TCP port 5001 with pid 108884 (4 >> >> >> >> > >> >> >> >> > flows) >> >> >> >> > >> >> >> >> > Write buffer size: 131072 Byte >> >> >> >> > >> >> >> >> > TOS set to 0x0 and nodelay (Nagle off) >> >> >> >> > >> >> >> >> > TCP window size: 7.63 MByte (WARNING: requested 3.81 MByte) >> >> >> >> > >> >> >> >> > Event based writes (pending queue watermark at 16384 bytes) >> >> >> >> > >> >> >> >> > ------------------------------------------------------------ >> >> >> >> > >> >> >> >> > [ 1] local *.*.*.85%enp4s0 port 46448 connected with *.*.*.123 por= t >> >> >> >> > >> >> >> >> > 5001 (prefetch=3D16384) (trip-times) (sock=3D3) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/10666) (ct=3D10.70 ms) on 2023-01-06 12:2= 7:45 >> >> >> >> > >> >> >> >> > (PST) >> >> >> >> > >> >> >> >> > [ 3] local *.*.*.85%enp4s0 port 46460 connected with *.*.*.123 por= t >> >> >> >> > >> >> >> >> > 5001 (prefetch=3D16384) (trip-times) (sock=3D6) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/16499) (ct=3D16.54 ms) on 2023-01-06 12:2= 7:45 >> >> >> >> > >> >> >> >> > (PST) >> >> >> >> > >> >> >> >> > [ 2] local *.*.*.85%enp4s0 port 46454 connected with *.*.*.123 por= t >> >> >> >> > >> >> >> >> > 5001 (prefetch=3D16384) (trip-times) (sock=3D4) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/16580) (ct=3D16.86 ms) on 2023-01-06 12:2= 7:45 >> >> >> >> > >> >> >> >> > (PST) >> >> >> >> > >> >> >> >> > [ 4] local *.*.*.85%enp4s0 port 46458 connected with *.*.*.123 por= t >> >> >> >> > >> >> >> >> > 5001 (prefetch=3D16384) (trip-times) (sock=3D5) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/16802) (ct=3D16.83 ms) on 2023-01-06 12:2= 7:45 >> >> >> >> > >> >> >> >> > (PST) >> >> >> >> > >> >> >> >> > [ ID] Interval Transfer Bandwidth Write/Err Rtry >> >> >> >> > >> >> >> >> > Cwnd/RTT(var) NetPwr >> >> >> >> > >> >> >> >> > ... >> >> >> >> > >> >> >> >> > [ 2] 4.00-5.00 sec 1.00 MBytes 8.39 Mbits/sec 8/0 0 >> >> >> >> > >> >> >> >> > 134K/88055(12329) us 11.91 >> >> >> >> > >> >> >> >> > [ 4] 4.00-5.00 sec 1.00 MBytes 8.39 Mbits/sec 8/0 0 >> >> >> >> > >> >> >> >> > 132K/74867(11755) us 14.01 >> >> >> >> > >> >> >> >> > [ 1] 4.00-5.00 sec 1.00 MBytes 8.39 Mbits/sec 8/0 0 >> >> >> >> > >> >> >> >> > 134K/89101(13134) us 11.77 >> >> >> >> > >> >> >> >> > [ 3] 4.00-5.00 sec 1.00 MBytes 8.39 Mbits/sec 8/0 0 >> >> >> >> > >> >> >> >> > 131K/91451(11938) us 11.47 >> >> >> >> > >> >> >> >> > [SUM] 4.00-5.00 sec 4.00 MBytes 33.6 Mbits/sec 32/0 0 >> >> >> >> > >> >> >> >> > [ 2] 5.00-6.00 sec 1.12 MBytes 9.44 Mbits/sec 9/0 0 >> >> >> >> > >> >> >> >> > 134K/85135(14580) us 13.86 >> >> >> >> > >> >> >> >> > [ 4] 5.00-6.00 sec 1.12 MBytes 9.44 Mbits/sec 9/0 0 >> >> >> >> > >> >> >> >> > 132K/85124(15654) us 13.86 >> >> >> >> > >> >> >> >> > [ 1] 5.00-6.00 sec 1.12 MBytes 9.44 Mbits/sec 9/0 0 >> >> >> >> > >> >> >> >> > 134K/91336(11335) us 12.92 >> >> >> >> > >> >> >> >> > [ 3] 5.00-6.00 sec 1.12 MBytes 9.44 Mbits/sec 9/0 0 >> >> >> >> > >> >> >> >> > 131K/89185(13499) us 13.23 >> >> >> >> > >> >> >> >> > [SUM] 5.00-6.00 sec 4.50 MBytes 37.7 Mbits/sec 36/0 0 >> >> >> >> > >> >> >> >> > [ 2] 6.00-7.00 sec 1.12 MBytes 9.44 Mbits/sec 9/0 0 >> >> >> >> > >> >> >> >> > 134K/85687(13489) us 13.77 >> >> >> >> > >> >> >> >> > [ 4] 6.00-7.00 sec 1.12 MBytes 9.44 Mbits/sec 9/0 0 >> >> >> >> > >> >> >> >> > 132K/82803(13001) us 14.25 >> >> >> >> > >> >> >> >> > [ 1] 6.00-7.00 sec 1.12 MBytes 9.44 Mbits/sec 9/0 0 >> >> >> >> > >> >> >> >> > 134K/86869(15186) us 13.58 >> >> >> >> > >> >> >> >> > [ 3] 6.00-7.00 sec 1.12 MBytes 9.44 Mbits/sec 9/0 0 >> >> >> >> > >> >> >> >> > 131K/91447(12515) us 12.90 >> >> >> >> > >> >> >> >> > [SUM] 6.00-7.00 sec 4.50 MBytes 37.7 Mbits/sec 36/0 0 >> >> >> >> > >> >> >> >> > [ 2] 7.00-8.00 sec 1.00 MBytes 8.39 Mbits/sec 8/0 0 >> >> >> >> > >> >> >> >> > 134K/81814(13168) us 12.82 >> >> >> >> > >> >> >> >> > [ 4] 7.00-8.00 sec 1.00 MBytes 8.39 Mbits/sec 8/0 0 >> >> >> >> > >> >> >> >> > 132K/89008(13283) us 11.78 >> >> >> >> > >> >> >> >> > [ 1] 7.00-8.00 sec 1.00 MBytes 8.39 Mbits/sec 8/0 0 >> >> >> >> > >> >> >> >> > 134K/89494(12151) us 11.72 >> >> >> >> > >> >> >> >> > [ 3] 7.00-8.00 sec 1.00 MBytes 8.39 Mbits/sec 8/0 0 >> >> >> >> > >> >> >> >> > 131K/91083(12797) us 11.51 >> >> >> >> > >> >> >> >> > [SUM] 7.00-8.00 sec 4.00 MBytes 33.6 Mbits/sec 32/0 0 >> >> >> >> > >> >> >> >> > [root@bobcat iperf2-code]# iperf -s -i 1 -e --hide-ips -w 4m >> >> >> >> > >> >> >> >> > ------------------------------------------------------------ >> >> >> >> > >> >> >> >> > Server listening on TCP port 5001 with pid 233981 >> >> >> >> > >> >> >> >> > Read buffer size: 128 KByte (Dist bin width=3D16.0 KByte) >> >> >> >> > >> >> >> >> > TCP window size: 7.63 MByte (WARNING: requested 3.81 MByte) >> >> >> >> > >> >> >> >> > ------------------------------------------------------------ >> >> >> >> > >> >> >> >> > [ 1] local *.*.*.123%eth0 port 5001 connected with *.*.*.171 port >> >> >> >> > 46448 >> >> >> >> > >> >> >> >> > (trip-times) (sock=3D4) (peer 2.1.9-master) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/11987) on 2023-01-06 12:27:45 (PST) >> >> >> >> > >> >> >> >> > [ 2] local *.*.*.123%eth0 port 5001 connected with *.*.*.171 port >> >> >> >> > 46454 >> >> >> >> > >> >> >> >> > (trip-times) (sock=3D5) (peer 2.1.9-master) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/11132) on 2023-01-06 12:27:45 (PST) >> >> >> >> > >> >> >> >> > [ 3] local *.*.*.123%eth0 port 5001 connected with *.*.*.171 port >> >> >> >> > 46460 >> >> >> >> > >> >> >> >> > (trip-times) (sock=3D6) (peer 2.1.9-master) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/11097) on 2023-01-06 12:27:45 (PST) >> >> >> >> > >> >> >> >> > [ 4] local *.*.*.123%eth0 port 5001 connected with *.*.*.171 port >> >> >> >> > 46458 >> >> >> >> > >> >> >> >> > (trip-times) (sock=3D7) (peer 2.1.9-master) (qack) >> >> >> >> > >> >> >> >> > (icwnd/mss/irtt=3D14/1448/17823) on 2023-01-06 12:27:45 (PST) >> >> >> >> > >> >> >> >> > [ ID] Interval Transfer Bandwidth Burst Latency >> >> >> >> > >> >> >> >> > avg/min/max/stdev (cnt/size) inP NetPwr Reads=3DDist >> >> >> >> > >> >> >> >> > [ 4] 0.00-1.00 sec 1.09 MBytes 9.15 Mbits/sec >> >> >> >> > >> >> >> >> > 93.383/90.103/95.661/2.232 ms (8/143028) 128 KByte 12.25 >> >> >> >> > >> >> >> >> > 451=3D451:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 3] 0.00-1.00 sec 1.08 MBytes 9.06 Mbits/sec >> >> >> >> > >> >> >> >> > 96.834/95.229/102.645/2.442 ms (8/141580) 131 KByte 11.70 >> >> >> >> > >> >> >> >> > 472=3D472:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 1] 0.00-1.00 sec 1.10 MBytes 9.19 Mbits/sec >> >> >> >> > >> >> >> >> > 95.183/92.623/97.579/1.431 ms (8/143571) 131 KByte 12.07 >> >> >> >> > >> >> >> >> > 495=3D495:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 2] 0.00-1.00 sec 1.09 MBytes 9.15 Mbits/sec >> >> >> >> > >> >> >> >> > 89.317/84.865/94.906/3.674 ms (8/143028) 122 KByte 12.81 >> >> >> >> > >> >> >> >> > 489=3D489:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ ID] Interval Transfer Bandwidth Reads=3DDist >> >> >> >> > >> >> >> >> > [SUM] 0.00-1.00 sec 4.36 MBytes 36.6 Mbits/sec >> >> >> >> > >> >> >> >> > 1907=3D1907:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 4] 1.00-2.00 sec 1.07 MBytes 8.95 Mbits/sec >> >> >> >> > >> >> >> >> > 92.649/89.987/95.036/1.828 ms (9/124314) 96.5 KByte 12.08 >> >> >> >> > >> >> >> >> > 492=3D492:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 3] 1.00-2.00 sec 1.06 MBytes 8.93 Mbits/sec >> >> >> >> > >> >> >> >> > 96.305/95.647/96.794/0.432 ms (9/123992) 100 KByte 11.59 >> >> >> >> > >> >> >> >> > 480=3D480:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 1] 1.00-2.00 sec 1.06 MBytes 8.89 Mbits/sec >> >> >> >> > >> >> >> >> > 92.578/90.866/94.145/1.371 ms (9/123510) 95.8 KByte 12.01 >> >> >> >> > >> >> >> >> > 513=3D513:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 2] 1.00-2.00 sec 1.07 MBytes 8.96 Mbits/sec >> >> >> >> > >> >> >> >> > 90.767/87.984/94.352/1.944 ms (9/124475) 94.7 KByte 12.34 >> >> >> >> > >> >> >> >> > 489=3D489:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [SUM] 1.00-2.00 sec 4.26 MBytes 35.7 Mbits/sec >> >> >> >> > >> >> >> >> > 1974=3D1974:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 4] 2.00-3.00 sec 1.09 MBytes 9.13 Mbits/sec >> >> >> >> > >> >> >> >> > 93.977/91.795/96.561/1.693 ms (8/142656) 112 KByte 12.14 >> >> >> >> > >> >> >> >> > 497=3D497:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 3] 2.00-3.00 sec 1.08 MBytes 9.04 Mbits/sec >> >> >> >> > >> >> >> >> > 96.544/95.815/97.798/0.693 ms (8/141208) 114 KByte 11.70 >> >> >> >> > >> >> >> >> > 503=3D503:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 1] 2.00-3.00 sec 1.07 MBytes 9.01 Mbits/sec >> >> >> >> > >> >> >> >> > 93.970/91.193/96.325/1.796 ms (8/140846) 111 KByte 11.99 >> >> >> >> > >> >> >> >> > 509=3D509:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 2] 2.00-3.00 sec 1.08 MBytes 9.10 Mbits/sec >> >> >> >> > >> >> >> >> > 92.843/90.216/96.355/2.040 ms (8/142113) 111 KByte 12.25 >> >> >> >> > >> >> >> >> > 509=3D509:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [SUM] 2.00-3.00 sec 4.32 MBytes 36.3 Mbits/sec >> >> >> >> > >> >> >> >> > 2018=3D2018:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 4] 3.00-4.00 sec 1.06 MBytes 8.86 Mbits/sec >> >> >> >> > >> >> >> >> > 93.222/89.063/96.104/2.346 ms (9/123027) 96.1 KByte 11.88 >> >> >> >> > >> >> >> >> > 487=3D487:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 3] 3.00-4.00 sec 1.07 MBytes 8.97 Mbits/sec >> >> >> >> > >> >> >> >> > 96.277/95.051/97.230/0.767 ms (9/124636) 101 KByte 11.65 >> >> >> >> > >> >> >> >> > 489=3D489:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 1] 3.00-4.00 sec 1.08 MBytes 9.02 Mbits/sec >> >> >> >> > >> >> >> >> > 93.899/88.732/96.972/2.737 ms (9/125280) 98.6 KByte 12.01 >> >> >> >> > >> >> >> >> > 493=3D493:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 2] 3.00-4.00 sec 1.07 MBytes 8.97 Mbits/sec >> >> >> >> > >> >> >> >> > 92.490/89.862/95.265/1.796 ms (9/124636) 96.6 KByte 12.13 >> >> >> >> > >> >> >> >> > 493=3D493:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [SUM] 3.00-4.00 sec 4.27 MBytes 35.8 Mbits/sec >> >> >> >> > >> >> >> >> > 1962=3D1962:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 4] 4.00-5.00 sec 1.07 MBytes 9.00 Mbits/sec >> >> >> >> > >> >> >> >> > 92.431/81.888/96.221/4.524 ms (9/124958) 96.8 KByte 12.17 >> >> >> >> > >> >> >> >> > 498=3D498:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 1] 4.00-5.00 sec 1.07 MBytes 8.97 Mbits/sec >> >> >> >> > >> >> >> >> > 95.018/93.445/96.200/0.957 ms (9/124636) 99.3 KByte 11.81 >> >> >> >> > >> >> >> >> > 490=3D490:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 2] 4.00-5.00 sec 1.06 MBytes 8.90 Mbits/sec >> >> >> >> > >> >> >> >> > 93.874/86.485/95.672/2.810 ms (9/123671) 97.3 KByte 11.86 >> >> >> >> > >> >> >> >> > 481=3D481:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 3] 4.00-5.00 sec 1.08 MBytes 9.09 Mbits/sec >> >> >> >> > >> >> >> >> > 95.737/93.881/97.197/0.972 ms (9/126245) 101 KByte 11.87 >> >> >> >> > >> >> >> >> > 484=3D484:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [SUM] 4.00-5.00 sec 4.29 MBytes 36.0 Mbits/sec >> >> >> >> > >> >> >> >> > 1953=3D1953:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 4] 5.00-6.00 sec 1.09 MBytes 9.13 Mbits/sec >> >> >> >> > >> >> >> >> > 92.908/86.844/95.994/3.012 ms (8/142656) 111 KByte 12.28 >> >> >> >> > >> >> >> >> > 467=3D467:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 3] 5.00-6.00 sec 1.07 MBytes 8.94 Mbits/sec >> >> >> >> > >> >> >> >> > 96.593/95.343/97.660/0.876 ms (8/139760) 113 KByte 11.58 >> >> >> >> > >> >> >> >> > 478=3D478:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 1] 5.00-6.00 sec 1.08 MBytes 9.03 Mbits/sec >> >> >> >> > >> >> >> >> > 95.021/91.421/97.167/1.893 ms (8/141027) 112 KByte 11.87 >> >> >> >> > >> >> >> >> > 491=3D491:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 2] 5.00-6.00 sec 1.08 MBytes 9.06 Mbits/sec >> >> >> >> > >> >> >> >> > 92.162/82.720/97.692/5.060 ms (8/141570) 109 KByte 12.29 >> >> >> >> > >> >> >> >> > 488=3D488:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [SUM] 5.00-6.00 sec 4.31 MBytes 36.2 Mbits/sec >> >> >> >> > >> >> >> >> > 1924=3D1924:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 4] 6.00-7.00 sec 1.04 MBytes 8.70 Mbits/sec >> >> >> >> > >> >> >> >> > 92.793/85.343/96.967/3.552 ms (9/120775) 93.9 KByte 11.71 >> >> >> >> > >> >> >> >> > 485=3D485:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 2] 6.00-7.00 sec 1.05 MBytes 8.79 Mbits/sec >> >> >> >> > >> >> >> >> > 91.679/84.479/96.760/3.975 ms (9/122062) 93.8 KByte 11.98 >> >> >> >> > >> >> >> >> > 472=3D472:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 3] 6.00-7.00 sec 1.06 MBytes 8.88 Mbits/sec >> >> >> >> > >> >> >> >> > 96.982/95.933/98.371/0.680 ms (9/123349) 100 KByte 11.45 >> >> >> >> > >> >> >> >> > 477=3D477:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 1] 6.00-7.00 sec 1.05 MBytes 8.80 Mbits/sec >> >> >> >> > >> >> >> >> > 94.342/91.660/96.025/1.660 ms (9/122223) 96.7 KByte 11.66 >> >> >> >> > >> >> >> >> > 494=3D494:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [SUM] 6.00-7.00 sec 4.19 MBytes 35.2 Mbits/sec >> >> >> >> > >> >> >> >> > 1928=3D1928:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 4] 7.00-8.00 sec 1.10 MBytes 9.25 Mbits/sec >> >> >> >> > >> >> >> >> > 92.515/88.182/96.351/2.538 ms (8/144466) 112 KByte 12.49 >> >> >> >> > >> >> >> >> > 510=3D510:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 3] 7.00-8.00 sec 1.09 MBytes 9.13 Mbits/sec >> >> >> >> > >> >> >> >> > 96.580/95.737/98.977/1.098 ms (8/142656) 115 KByte 11.82 >> >> >> >> > >> >> >> >> > 480=3D480:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 1] 7.00-8.00 sec 1.10 MBytes 9.21 Mbits/sec >> >> >> >> > >> >> >> >> > 95.269/91.719/97.514/2.126 ms (8/143923) 115 KByte 12.09 >> >> >> >> > >> >> >> >> > 515=3D515:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [ 2] 7.00-8.00 sec 1.11 MBytes 9.29 Mbits/sec >> >> >> >> > >> >> >> >> > 90.073/84.700/96.176/4.324 ms (8/145190) 110 KByte 12.90 >> >> >> >> > >> >> >> >> > 508=3D508:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > [SUM] 7.00-8.00 sec 4.40 MBytes 36.9 Mbits/sec >> >> >> >> > >> >> >> >> > 2013=3D2013:0:0:0:0:0:0:0 >> >> >> >> > >> >> >> >> > Bob >> >> >> >> > >> >> >> >> >>> -----Original Message----- >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> From: LibreQoS On Behalf >> >> >> >> > Of >> >> >> >> > >> >> >> >> >> Dave Taht >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> via LibreQoS >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> Sent: Wednesday, January 4, 2023 12:26 PM >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> Subject: [LibreQoS] the grinch meets cloudflare's christmas prese= nt >> >> >> >> > >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> Please try the new, the shiny, the really wonderful test here: >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> https://urldefense.com/v3/__https://speed.cloudflare.com/__;!!BhdT!iZcFJ= 8WVU9S >> >> >> >> > >> >> >> >> > >> >> >> >> >> [1] >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> 9zz5t456oxkfObrC5Xb9j5AG8UO3DqD5x4GAJkawZr0iGwEUtF0_09U8mCDnAkrJ9QEMHGbC= MKVw$ >> >> >> >> > >> >> >> >> > >> >> >> >> >> [1] >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> I would really appreciate some independent verification of >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> measurements using this tool. In my brief experiments it appears = - >> >> >> >> > >> >> >> >> >> as >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> all the commercial tools to date - to dramatically understate the >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> bufferbloat, on my LTE, (and my starlink terminal is out being >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >>> hacked^H^H^H^H^H^Hworked on, so I can't measure that) >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >> [acm] >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >> Hi Dave, I made some time to test "cloudflare's christmas present" >> >> >> >> > >> >> >> >> >> yesterday. >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >> I'm on DOCSIS 3.1 service with 1Gbps Down. The Upstream has a >> >> >> >> > "turbo" >> >> >> >> > >> >> >> >> >> mode with 40-50Mbps for the first ~3 sec, then steady-state about >> >> >> >> > >> >> >> >> >> 23Mbps. >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >> When I saw the ~620Mbps Downstream measurement, I was ready to >> >> >> >> > >> >> >> >> >> complain that even the IP-Layer Capacity was grossly underestimate= d. >> >> >> >> > >> >> >> >> > >> >> >> >> >> In addition, the Latency measurements seem very low (as you >> >> >> >> > asserted), >> >> >> >> > >> >> >> >> >> although the cloud server was "nearby". >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >> However, I found that Ookla and the ISP-provided measurement were >> >> >> >> > also >> >> >> >> > >> >> >> >> >> reporting ~600Mbps! So the cloudflare Downstream capacity (or >> >> >> >> > >> >> >> >> >> throughput?) measurement was consistent with others. Our UDPST >> >> >> >> > server >> >> >> >> > >> >> >> >> >> was unreachable, otherwise I would have added that measurement, to= o. >> >> >> >> > >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >> The Upstream measurement graph seems to illustrate the "turbo" >> >> >> >> > >> >> >> >> >> mode, with the dip after attaining 44.5Mbps. >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >> UDPST saturates the uplink and we measure the full 250ms of the >> >> >> >> > >> >> >> >> >> Upstream buffer. Cloudflare's latency measurements don't even come >> >> >> >> > >> >> >> >> >> close. >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >> Al >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> >> >> >> >> Links: >> >> >> >> > >> >> >> >> >> ------ >> >> >> >> > >> >> >> >> >> [1] >> >> >> >> > >> >> >> >> >> >> >> >> >> > >> https://urldefense.com/v3/__https:/speed.cloudflare.com/__;!!BhdT!iZcFJ8= WVU9S9zz5t456oxkfObrC5Xb9j5AG8UO3DqD5x4GAJkawZr0iGwEUtF0_09U8mCDnAkrJ9QEMHG= bCMKVw$ >> >> >> >> > >> >> >> >> > >> >> >> >> >> _______________________________________________ >> >> >> >> > >> >> >> >> >> Rpm mailing list >> >> >> >> > >> >> >> >> >> Rpm@lists.bufferbloat.net >> >> >> >> > >> >> >> >> >> https://lists.bufferbloat.net/listinfo/rpm >> >> >> >> > >> >> >> >> > _______________________________________________ >> >> >> >> > >> >> >> >> > Starlink mailing list >> >> >> >> > >> >> >> >> > Starlink@lists.bufferbloat.net >> >> >> >> > >> >> >> >> > https://lists.bufferbloat.net/listinfo/starlink >> >> >> >> _______________________________________________ >> >> Bloat mailing list >> >> Bloat@lists.bufferbloat.net >> >> https://lists.bufferbloat.net/listinfo/bloat >> > >> > _______________________________________________ >> > Rpm mailing list >> > Rpm@lists.bufferbloat.net >> > https://lists.bufferbloat.net/listinfo/rpm >> >> >> >> -- >> This song goes out to all the folk that thought Stadia would work: >> >> https://www.linkedin.com/posts/dtaht_the-mushroom-song-activity-69813666= 65607352320-FXtz >> Dave T=C3=A4ht CEO, TekLibre, LLC >> _______________________________________________ >> Bloat mailing list >> Bloat@lists.bufferbloat.net >> https://lists.bufferbloat.net/listinfo/bloat >> > -- > -- > Jay Moran > http://linkedin.com/in/jaycmoran > --000000000000f491e605f2134099 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Here is on Starlink:



On Wed, Jan 11, 2023 at 5:05 AM Jay Moran <jay@tp.org> wrote:
Quick note from reading your blog entry.

Last night, I played with = the Cloudflare Speedtest a little. It downloads 25MB and a 50MB (or 100MB, = can=E2=80=99t remember) as well on a =E2=80=9Cspeedier=E2=80=9D network aft= er it does the 10MB file.

I was getting 1.2Gbs down and 760Mbs up, 4ms of LUL, and seeing those lar= ger file sizes. I was trying to screenshot and noticed I had those extra fi= le sizes I had to scroll down for. I ended up getting distracted and not ta= king the shot to send. But, it will do a longer/bigger test under right con= ditions.

Network here at= the house is AT&T Fiber, 5Gbs up/down - limited to 3.6Gbs down from Ub= iquity UDM SE router/firewall with all IPS/Geo-blocking turned on. 4.7Gbs n= on-blocking up. I am building a pfSense box to eliminate the bottleneck. Co= uldn=E2=80=99t be happier, good job AS7018.

The machine I was testing from was Win10 wired 10Gbs an= d gets ~2.2Gbs up/down for fast.com/speedtest.net. I haven=E2=80=99t take time to test= internally or try and tune that system, or might be CAT5e cabling issue=E2= =80=A6 is fast enough for me for that system.

Jay

On Wed, Jan 11, 2023 at 12:07 AM Dave Taht vi= a Bloat <bloat@lists.bufferbloat.net> wrote:
Dear Luis:

You hit 17 seconds of delay on your test.

I got you beat, today, on my LTE connection, I cracked 182 seconds.

I'd like to thank Verizon for making it possible for me to spew 4000 words on my kvetches about the current speedtest regimes of speedtest,
cloudflare, and so on, by making my network connection so lousy today
that I sat in front of emacs to rant - and y'all for helping tone
down, a little, this blog entry:

https://blog.cerowrt.org/post/speedtests/

On Tue, Jan 10, 2023 at 9:25 AM Luis A. Cornejo via Rpm
<rpm@list= s.bufferbloat.net> wrote:
>
> Here is my VZ HSI
>
>
> No SQMm on
>
> On Sat, Jan 7, 2023 at 6:38 PM Dick Roy via Bloat <bloat@lists.bufferbloat.ne= t> wrote:
>>
>>
>>
>>
>>
>> -----Original Message-----
>> From: rjmcmahon [mailto:rjmcmahon@rjmcmahon.com]
>> Sent: Friday, January 6, 2023 3:45 PM
>> To: dick= roy@alum.mit.edu
>> Cc: 'MORTON JR., AL'; 'IETF IPPM WG'; 'libreqo= s'; 'Cake List'; 'Rpm'; 'bloat'
>> Subject: Re: [Starlink] [Rpm] [LibreQoS] the grinch meets cloudfla= re'schristmas present
>>
>>
>>
>> yeah, I'd prefer not to output CLT sample groups at all but th= e
>>
>> histograms aren't really human readable and users constantly a= sk for
>>
>> them. I thought about providing a distance from the gaussian as ou= tput
>>
>> too but so far few would understand it and nobody I found would ac= t upon
>>
>> it.
>>
>> [RR] Understandable until such metrics are =E2=80=9Cactionable=E2= =80=9D, and that=E2=80=99s =E2=80=9Cup to us to find/define/figure out=E2= =80=9D it seems to me. Metrics that are not actionable are write-only memor= y and good for little but historical recordJ
>>
>> The tool produces the full histograms so no information is really<= br> >>
>> missing except for maybe better time series analysis.
>>
>> [RR] Isn=E2=80=99t that in fact what we are trying to extract from= the e2e stats we collect?=C2=A0 i.e., infer the time evolution of the syst= em from its I/O behavior? As you point out, it=E2=80=99s really hard to do = without probes in the guts of the system, nd yes, synchronization is import= ant J
>>
>>
>>
>> The open source flows python code also released with iperf 2 does = use
>>
>> the komogorov-smirnov distances & distance matrices to cluster= when the
>>
>> number of histograms are just too much. We've analyzed 1M runs= to fault
>>
>> isolate the "unexpected interruptions" or "bugs&quo= t; and without statistical
>>
>> support it is just not doable. This does require instrumentation o= f the
>>
>> full path with mapping to a common clock domain (e.g. GPS) and not= just
>>
>> e2e stats. I find an e2e complaint by an end user about "poor= speed" as
>>
>> useful as telling a pharmacist I have a fever. Not much diagnostic= ally
>>
>> is going on. Take an aspirin.
>>
>> [RR] That=E2=80=99s AWESOME!!!!!!!!!!!!!!!!!! I love that analogy!=
>>
>>
>>
>> RR
>>
>>
>>
>> https://en.wikipedia.org/wiki/= Kolmogorov%E2%80%93Smirnov_test
>>
>> https://sourceforge.net/= p/iperf2/code/ci/master/tree/flows/flows.py
>>
>>
>>
>> Bob
>>
>> > See below =E2=80=A6
>>
>> >
>>
>> > -----Original Message-----
>>
>> > From: Starlink [mailto:starlink-bounces@lists.bufferbloat.ne= t] On
>>
>> > Behalf Of rjmcmahon via Starlink
>>
>> > Sent: Friday, January 6, 2023 12:39 PM
>>
>> > To: MORTON JR., AL
>>
>> > Cc: Dave Taht via Starlink; IETF IPPM WG; libreqos; Cake List= ; Rpm;
>>
>> > bloat
>>
>> > Subject: Re: [Starlink] [Rpm] [LibreQoS] the grinch meets
>>
>> > cloudflare'schristmas present
>>
>> >
>>
>> > Some thoughts are not to use UDP for testing here. Also, thes= e speed
>>
>> >
>>
>> > tests have little to no information for network engineers abo= ut what's
>>
>> >
>>
>> >
>>
>> > going on. Iperf 2 may better assist network engineers but the= n I'm
>>
>> >
>>
>> > biased ;)
>>
>> >
>>
>> > Running iperf 2 https://sourceforge.net/projec= ts/iperf2/ with
>>
>> >
>>
>> > --trip-times. Though the sampling and central limit theorem a= veraging
>>
>> > is
>>
>> >
>>
>> > hiding the real distributions (use --histograms to get those)=
>>
>> >
>>
>> > _[RR] FWIW (IMNBWM __J)=E2=80=A6 If the output/final histogra= ms indicate the
>>
>> > PDF is NOT Gaussian, then any application of the CLT is
>>
>> > inappropriate/contra-indicated! The CLT is a "proof unde= r certain
>>
>> > regularity conditions/assumptions of underlying/constituent P= DFs, that
>>
>> > the resulting PDF (after all the necessary convolutions are p= erformed
>>
>> > to get to the PDF of the output) will asymptotically approach= a
>>
>> > Gaussian with only a mean and a std. dev. left to specify. _<= br> >>
>> >
>>
>> > Below are 4 parallel TCP streams from my home to one of my se= rvers in
>>
>> >
>>
>> > the cloud. First where TCP is limited per CCA. Second is sour= ce side
>>
>> >
>>
>> > write rate limiting. Things to note:
>>
>> >
>>
>> > o) connect times for both at 10-15 ms
>>
>> >
>>
>> > o) multiple TCP retries on a few rites - one case is 4 with 5= writes.
>>
>> >
>>
>> > Source side pacing eliminates retries
>>
>> >
>>
>> > o) Fairness with CCA isn't great but quite good with sour= ce side write
>>
>> >
>>
>> >
>>
>> > pacing
>>
>> >
>>
>> > o) Queue depth with CCA is about 150 Kbytes about 100K byte w= ith
>>
>> > source
>>
>> >
>>
>> > side pacing
>>
>> >
>>
>> > o) min write to read is about 80 ms for both
>>
>> >
>>
>> > o) max is 220 ms vs 97 ms
>>
>> >
>>
>> > o) stdev for CCA write/read is 30 ms vs 3 ms
>>
>> >
>>
>> > o) TCP RTT is 20ms w/CCA and 90 ms with ssp - seems odd here = as
>>
>> >
>>
>> > TCP_QUICACK and TCP_NODELAY are both enabled.
>>
>> >
>>
>> > [ CT] final connect times (min/avg/max/stdev) =3D
>>
>> >
>>
>> > 10.326/13.522/14.986/2150.329 ms (tot/err) =3D 4/0
>>
>> >
>>
>> > [rjmcmahon@ryzen3950 iperf2-code]$ iperf -c *** --hide-ips -e=
>>
>> >
>>
>> > --trip-times -i 1 -P 4 -t 10 -w 4m --tcp-quickack -N
>>
>> >
>>
>> > ------------------------------------------------------------<= br> >>
>> >
>>
>> > Client connecting to (**hidden**), TCP port 5001 with pid 107= 678 (4
>>
>> >
>>
>> > flows)
>>
>> >
>>
>> > Write buffer size: 131072 Byte
>>
>> >
>>
>> > TOS set to 0x0 and nodelay (Nagle off)
>>
>> >
>>
>> > TCP window size: 7.63 MByte (WARNING: requested 3.81 MByte) >>
>> >
>>
>> > Event based writes (pending queue watermark at 16384 bytes) >>
>> >
>>
>> > ------------------------------------------------------------<= br> >>
>> >
>>
>> > [=C2=A0 1] local *.*.*.85%enp4s0 port 42480 connected with *.= *.*.123 port
>>
>> >
>>
>> > 5001 (prefetch=3D16384) (trip-times) (sock=3D3) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/10534) (ct=3D10.63 ms) on 2023-01-0= 6 12:17:56
>>
>> >
>>
>> > (PST)
>>
>> >
>>
>> > [=C2=A0 4] local *.*.*.85%enp4s0 port 42488 connected with *.= *.*.123 port
>>
>> >
>>
>> > 5001 (prefetch=3D16384) (trip-times) (sock=3D5) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/14023) (ct=3D14.08 ms) on 2023-01-0= 6 12:17:56
>>
>> >
>>
>> > (PST)
>>
>> >
>>
>> > [=C2=A0 3] local *.*.*.85%enp4s0 port 42502 connected with *.= *.*.123 port
>>
>> >
>>
>> > 5001 (prefetch=3D16384) (trip-times) (sock=3D6) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/14642) (ct=3D14.70 ms) on 2023-01-0= 6 12:17:56
>>
>> >
>>
>> > (PST)
>>
>> >
>>
>> > [=C2=A0 2] local *.*.*.85%enp4s0 port 42484 connected with *.= *.*.123 port
>>
>> >
>>
>> > 5001 (prefetch=3D16384) (trip-times) (sock=3D4) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/14728) (ct=3D14.79 ms) on 2023-01-0= 6 12:17:56
>>
>> >
>>
>> > (PST)
>>
>> >
>>
>> > [ ID] Interval=C2=A0 =C2=A0 =C2=A0 =C2=A0 Transfer=C2=A0 =C2= =A0 Bandwidth=C2=A0 =C2=A0 =C2=A0 =C2=A0Write/Err=C2=A0 Rtry
>>
>> >
>>
>> > Cwnd/RTT(var)=C2=A0 =C2=A0 =C2=A0 =C2=A0 NetPwr
>>
>> >
>>
>> > ...
>>
>> >
>>
>> > [=C2=A0 4] 4.00-5.00 sec=C2=A0 1.38 MBytes=C2=A0 11.5 Mbits/s= ec=C2=A0 11/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A03
>>
>> >
>>
>> >
>>
>> > 29K/21088(1142) us=C2=A0 68.37
>>
>> >
>>
>> > [=C2=A0 2] 4.00-5.00 sec=C2=A0 1.62 MBytes=C2=A0 13.6 Mbits/s= ec=C2=A0 13/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A02
>>
>> >
>>
>> >
>>
>> > 31K/19284(612) us=C2=A0 88.36
>>
>> >
>>
>> > [=C2=A0 1] 4.00-5.00 sec=C2=A0 =C2=A0896 KBytes=C2=A0 7.34 Mb= its/sec=C2=A0 7/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A05
>>
>> >
>>
>> > 16K/18996(658) us=C2=A0 48.30
>>
>> >
>>
>> > [=C2=A0 3] 4.00-5.00 sec=C2=A0 1.00 MBytes=C2=A0 8.39 Mbits/s= ec=C2=A0 8/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A05
>>
>> >
>>
>> > 18K/18133(208) us=C2=A0 57.83
>>
>> >
>>
>> > [SUM] 4.00-5.00 sec=C2=A0 4.88 MBytes=C2=A0 40.9 Mbits/sec=C2= =A0 39/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 15
>>
>> >
>>
>> > [=C2=A0 4] 5.00-6.00 sec=C2=A0 1.25 MBytes=C2=A0 10.5 Mbits/s= ec=C2=A0 10/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A04
>>
>> >
>>
>> >
>>
>> > 29K/14717(489) us=C2=A0 89.06
>>
>> >
>>
>> > [=C2=A0 1] 5.00-6.00 sec=C2=A0 1.00 MBytes=C2=A0 8.39 Mbits/s= ec=C2=A0 8/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A04
>>
>> >
>>
>> > 16K/15874(408) us=C2=A0 66.06
>>
>> >
>>
>> > [=C2=A0 3] 5.00-6.00 sec=C2=A0 1.12 MBytes=C2=A0 9.44 Mbits/s= ec=C2=A0 9/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A04
>>
>> >
>>
>> > 16K/15826(382) us=C2=A0 74.54
>>
>> >
>>
>> > [=C2=A0 2] 5.00-6.00 sec=C2=A0 1.50 MBytes=C2=A0 12.6 Mbits/s= ec=C2=A0 12/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A06
>>
>> >
>>
>> >
>>
>> > 9K/14878(557) us=C2=A0 106
>>
>> >
>>
>> > [SUM] 5.00-6.00 sec=C2=A0 4.88 MBytes=C2=A0 40.9 Mbits/sec=C2= =A0 39/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 18
>>
>> >
>>
>> > [=C2=A0 4] 6.00-7.00 sec=C2=A0 1.75 MBytes=C2=A0 14.7 Mbits/s= ec=C2=A0 14/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A04
>>
>> >
>>
>> >
>>
>> > 25K/15472(496) us=C2=A0 119
>>
>> >
>>
>> > [=C2=A0 2] 6.00-7.00 sec=C2=A0 1.00 MBytes=C2=A0 8.39 Mbits/s= ec=C2=A0 8/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A02
>>
>> >
>>
>> > 26K/16417(427) us=C2=A0 63.87
>>
>> >
>>
>> > [=C2=A0 1] 6.00-7.00 sec=C2=A0 1.25 MBytes=C2=A0 10.5 Mbits/s= ec=C2=A0 10/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A05
>>
>> >
>>
>> >
>>
>> > 16K/16268(679) us=C2=A0 80.57
>>
>> >
>>
>> > [=C2=A0 3] 6.00-7.00 sec=C2=A0 1.00 MBytes=C2=A0 8.39 Mbits/s= ec=C2=A0 8/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A06
>>
>> >
>>
>> > 15K/16629(799) us=C2=A0 63.06
>>
>> >
>>
>> > [SUM] 6.00-7.00 sec=C2=A0 5.00 MBytes=C2=A0 41.9 Mbits/sec=C2= =A0 40/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 17
>>
>> >
>>
>> > [=C2=A0 4] 7.00-8.00 sec=C2=A0 1.75 MBytes=C2=A0 14.7 Mbits/s= ec=C2=A0 14/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A04
>>
>> >
>>
>> >
>>
>> > 22K/13986(519) us=C2=A0 131
>>
>> >
>>
>> > [=C2=A0 1] 7.00-8.00 sec=C2=A0 1.12 MBytes=C2=A0 9.44 Mbits/s= ec=C2=A0 9/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A04
>>
>> >
>>
>> > 16K/12679(377) us=C2=A0 93.04
>>
>> >
>>
>> > [=C2=A0 3] 7.00-8.00 sec=C2=A0 =C2=A0896 KBytes=C2=A0 7.34 Mb= its/sec=C2=A0 7/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A05
>>
>> >
>>
>> > 14K/12971(367) us=C2=A0 70.74
>>
>> >
>>
>> > [=C2=A0 2] 7.00-8.00 sec=C2=A0 1.12 MBytes=C2=A0 9.44 Mbits/s= ec=C2=A0 9/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A06
>>
>> >
>>
>> > 15K/14740(779) us=C2=A0 80.03
>>
>> >
>>
>> > [SUM] 7.00-8.00 sec=C2=A0 4.88 MBytes=C2=A0 40.9 Mbits/sec=C2= =A0 39/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 19
>>
>> >
>>
>> > [root@bobcat iperf2-code]# iperf -s -i 1 -e --hide-ips -w 4m<= br> >>
>> >
>>
>> > ------------------------------------------------------------<= br> >>
>> >
>>
>> > Server listening on TCP port 5001 with pid 233615
>>
>> >
>>
>> > Read buffer size:=C2=A0 128 KByte (Dist bin width=3D16.0 KByt= e)
>>
>> >
>>
>> > TCP window size: 7.63 MByte (WARNING: requested 3.81 MByte) >>
>> >
>>
>> > ------------------------------------------------------------<= br> >>
>> >
>>
>> > [=C2=A0 1] local *.*.*.123%eth0 port 5001 connected with *.*.= *.171 port
>>
>> > 42480
>>
>> >
>>
>> > (trip-times) (sock=3D4) (peer 2.1.9-master) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/11636) on 2023-01-06 12:17:56 (PST)=
>>
>> >
>>
>> > [=C2=A0 2] local *.*.*.123%eth0 port 5001 connected with *.*.= *.171 port
>>
>> > 42502
>>
>> >
>>
>> > (trip-times) (sock=3D5) (peer 2.1.9-master) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/11898) on 2023-01-06 12:17:56 (PST)=
>>
>> >
>>
>> > [=C2=A0 3] local *.*.*.123%eth0 port 5001 connected with *.*.= *.171 port
>>
>> > 42484
>>
>> >
>>
>> > (trip-times) (sock=3D6) (peer 2.1.9-master) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/11938) on 2023-01-06 12:17:56 (PST)=
>>
>> >
>>
>> > [=C2=A0 4] local *.*.*.123%eth0 port 5001 connected with *.*.= *.171 port
>>
>> > 42488
>>
>> >
>>
>> > (trip-times) (sock=3D7) (peer 2.1.9-master) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/11919) on 2023-01-06 12:17:56 (PST)=
>>
>> >
>>
>> > [ ID] Interval=C2=A0 =C2=A0 =C2=A0 =C2=A0 Transfer=C2=A0 =C2= =A0 Bandwidth=C2=A0 =C2=A0 Burst Latency
>>
>> >
>>
>> > avg/min/max/stdev (cnt/size) inP NetPwr=C2=A0 Reads=3DDist >>
>> >
>>
>> > ...
>>
>> >
>>
>> > [=C2=A0 2] 4.00-5.00 sec=C2=A0 1.06 MBytes=C2=A0 8.86 Mbits/s= ec
>>
>> >
>>
>> > 129.819/90.391/186.075/31.346 ms (9/123080)=C2=A0 154 KByte 8= .532803
>>
>> >
>>
>> > 467=3D461:6:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 3] 4.00-5.00 sec=C2=A0 1.52 MBytes=C2=A0 12.8 Mbits/s= ec
>>
>> >
>>
>> > 103.552/82.653/169.274/28.382 ms (12/132854)=C2=A0 149 KByte = 15.40
>>
>> >
>>
>> > 646=3D643:1:2:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 4] 4.00-5.00 sec=C2=A0 1.39 MBytes=C2=A0 11.6 Mbits/s= ec
>>
>> >
>>
>> > 107.503/66.843/143.038/24.269 ms (11/132294)=C2=A0 149 KByte = 13.54
>>
>> >
>>
>> > 619=3D617:1:1:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 1] 4.00-5.00 sec=C2=A0 =C2=A0988 KBytes=C2=A0 8.10 Mb= its/sec
>>
>> >
>>
>> > 141.389/119.961/178.785/18.812 ms (7/144593)=C2=A0 170 KByte = 7.158641
>>
>> >
>>
>> > 409=3D404:5:0:0:0:0:0:0
>>
>> >
>>
>> > [SUM] 4.00-5.00 sec=C2=A0 4.93 MBytes=C2=A0 41.4 Mbits/sec >>
>> >
>>
>> > 2141=3D2125:13:3:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 4] 5.00-6.00 sec=C2=A0 1.29 MBytes=C2=A0 10.8 Mbits/s= ec
>>
>> >
>>
>> > 118.943/86.253/176.128/31.248 ms (10/135098)=C2=A0 164 KByte = 11.36
>>
>> >
>>
>> > 511=3D506:2:3:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 2] 5.00-6.00 sec=C2=A0 1.09 MBytes=C2=A0 9.17 Mbits/s= ec
>>
>> >
>>
>> > 139.821/102.418/218.875/40.422 ms (9/127424)=C2=A0 148 KByte = 8.202049
>>
>> >
>>
>> > 487=3D484:2:1:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 3] 5.00-6.00 sec=C2=A0 1.51 MBytes=C2=A0 12.6 Mbits/s= ec
>>
>> >
>>
>> > 102.146/77.085/140.893/18.441 ms (13/121520)=C2=A0 151 KByte = 15.47
>>
>> >
>>
>> > 640=3D636:1:3:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 1] 5.00-6.00 sec=C2=A0 =C2=A0981 KBytes=C2=A0 8.04 Mb= its/sec
>>
>> >
>>
>> > 161.901/105.582/219.931/36.260 ms (8/125614)=C2=A0 134 KByte = 6.206944
>>
>> >
>>
>> > 415=3D413:2:0:0:0:0:0:0
>>
>> >
>>
>> > [SUM] 5.00-6.00 sec=C2=A0 4.85 MBytes=C2=A0 40.7 Mbits/sec >>
>> >
>>
>> > 2053=3D2039:7:7:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 4] 6.00-7.00 sec=C2=A0 1.74 MBytes=C2=A0 14.6 Mbits/s= ec
>>
>> >
>>
>> > 88.846/74.297/101.859/7.118 ms (14/130526)=C2=A0 156 KByte 20= .57
>>
>> >
>>
>> > 711=3D707:3:1:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 1] 6.00-7.00 sec=C2=A0 1.22 MBytes=C2=A0 10.2 Mbits/s= ec
>>
>> >
>>
>> > 120.639/100.257/157.567/21.770 ms (10/127568)=C2=A0 157 KByte= 10.57
>>
>> >
>>
>> > 494=3D488:5:1:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 2] 6.00-7.00 sec=C2=A0 1015 KBytes=C2=A0 8.32 Mbits/s= ec
>>
>> >
>>
>> > 144.632/124.368/171.349/16.597 ms (8/129958)=C2=A0 143 KByte = 7.188321
>>
>> >
>>
>> > 408=3D403:5:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 3] 6.00-7.00 sec=C2=A0 1.02 MBytes=C2=A0 8.60 Mbits/s= ec
>>
>> >
>>
>> > 143.516/102.322/173.001/24.089 ms (8/134302)=C2=A0 146 KByte = 7.486359
>>
>> >
>>
>> > 484=3D480:4:0:0:0:0:0:0
>>
>> >
>>
>> > [SUM] 6.00-7.00 sec=C2=A0 4.98 MBytes=C2=A0 41.7 Mbits/sec >>
>> >
>>
>> > 2097=3D2078:17:2:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 4] 7.00-8.00 sec=C2=A0 1.77 MBytes=C2=A0 14.9 Mbits/s= ec
>>
>> >
>>
>> > 85.406/65.797/103.418/12.609 ms (14/132595)=C2=A0 153 KByte 2= 1.74
>>
>> >
>>
>> > 692=3D687:2:3:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 2] 7.00-8.00 sec=C2=A0 =C2=A0957 KBytes=C2=A0 7.84 Mb= its/sec
>>
>> >
>>
>> > 153.936/131.452/191.464/19.361 ms (7/140042)=C2=A0 160 KByte = 6.368199
>>
>> >
>>
>> > 429=3D425:4:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 1] 7.00-8.00 sec=C2=A0 1.13 MBytes=C2=A0 9.44 Mbits/s= ec
>>
>> >
>>
>> > 131.146/109.737/166.774/22.035 ms (9/131124)=C2=A0 146 KByte = 8.998528
>>
>> >
>>
>> > 520=3D516:4:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 3] 7.00-8.00 sec=C2=A0 1.13 MBytes=C2=A0 9.51 Mbits/s= ec
>>
>> >
>>
>> > 126.512/88.404/220.175/42.237 ms (9/132089)=C2=A0 172 KByte 9= .396784
>>
>> >
>>
>> > 527=3D524:1:2:0:0:0:0:0
>>
>> >
>>
>> > [SUM] 7.00-8.00 sec=C2=A0 4.96 MBytes=C2=A0 41.6 Mbits/sec >>
>> >
>>
>> > 2168=3D2152:11:5:0:0:0:0:0
>>
>> >
>>
>> > With source side rate limiting to 9 mb/s per stream.
>>
>> >
>>
>> > [rjmcmahon@ryzen3950 iperf2-code]$ iperf -c *** --hide-ips -e=
>>
>> >
>>
>> > --trip-times -i 1 -P 4 -t 10 -w 4m --tcp-quickack -N -b 9m >>
>> >
>>
>> > ------------------------------------------------------------<= br> >>
>> >
>>
>> > Client connecting to (**hidden**), TCP port 5001 with pid 108= 884 (4
>>
>> >
>>
>> > flows)
>>
>> >
>>
>> > Write buffer size: 131072 Byte
>>
>> >
>>
>> > TOS set to 0x0 and nodelay (Nagle off)
>>
>> >
>>
>> > TCP window size: 7.63 MByte (WARNING: requested 3.81 MByte) >>
>> >
>>
>> > Event based writes (pending queue watermark at 16384 bytes) >>
>> >
>>
>> > ------------------------------------------------------------<= br> >>
>> >
>>
>> > [=C2=A0 1] local *.*.*.85%enp4s0 port 46448 connected with *.= *.*.123 port
>>
>> >
>>
>> > 5001 (prefetch=3D16384) (trip-times) (sock=3D3) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/10666) (ct=3D10.70 ms) on 2023-01-0= 6 12:27:45
>>
>> >
>>
>> > (PST)
>>
>> >
>>
>> > [=C2=A0 3] local *.*.*.85%enp4s0 port 46460 connected with *.= *.*.123 port
>>
>> >
>>
>> > 5001 (prefetch=3D16384) (trip-times) (sock=3D6) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/16499) (ct=3D16.54 ms) on 2023-01-0= 6 12:27:45
>>
>> >
>>
>> > (PST)
>>
>> >
>>
>> > [=C2=A0 2] local *.*.*.85%enp4s0 port 46454 connected with *.= *.*.123 port
>>
>> >
>>
>> > 5001 (prefetch=3D16384) (trip-times) (sock=3D4) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/16580) (ct=3D16.86 ms) on 2023-01-0= 6 12:27:45
>>
>> >
>>
>> > (PST)
>>
>> >
>>
>> > [=C2=A0 4] local *.*.*.85%enp4s0 port 46458 connected with *.= *.*.123 port
>>
>> >
>>
>> > 5001 (prefetch=3D16384) (trip-times) (sock=3D5) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/16802) (ct=3D16.83 ms) on 2023-01-0= 6 12:27:45
>>
>> >
>>
>> > (PST)
>>
>> >
>>
>> > [ ID] Interval=C2=A0 =C2=A0 =C2=A0 =C2=A0 Transfer=C2=A0 =C2= =A0 Bandwidth=C2=A0 =C2=A0 =C2=A0 =C2=A0Write/Err=C2=A0 Rtry
>>
>> >
>>
>> > Cwnd/RTT(var)=C2=A0 =C2=A0 =C2=A0 =C2=A0 NetPwr
>>
>> >
>>
>> > ...
>>
>> >
>>
>> > [=C2=A0 2] 4.00-5.00 sec=C2=A0 1.00 MBytes=C2=A0 8.39 Mbits/s= ec=C2=A0 8/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 134K/88055(12329) us=C2=A0 11.91
>>
>> >
>>
>> > [=C2=A0 4] 4.00-5.00 sec=C2=A0 1.00 MBytes=C2=A0 8.39 Mbits/s= ec=C2=A0 8/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 132K/74867(11755) us=C2=A0 14.01
>>
>> >
>>
>> > [=C2=A0 1] 4.00-5.00 sec=C2=A0 1.00 MBytes=C2=A0 8.39 Mbits/s= ec=C2=A0 8/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 134K/89101(13134) us=C2=A0 11.77
>>
>> >
>>
>> > [=C2=A0 3] 4.00-5.00 sec=C2=A0 1.00 MBytes=C2=A0 8.39 Mbits/s= ec=C2=A0 8/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 131K/91451(11938) us=C2=A0 11.47
>>
>> >
>>
>> > [SUM] 4.00-5.00 sec=C2=A0 4.00 MBytes=C2=A0 33.6 Mbits/sec=C2= =A0 32/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > [=C2=A0 2] 5.00-6.00 sec=C2=A0 1.12 MBytes=C2=A0 9.44 Mbits/s= ec=C2=A0 9/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 134K/85135(14580) us=C2=A0 13.86
>>
>> >
>>
>> > [=C2=A0 4] 5.00-6.00 sec=C2=A0 1.12 MBytes=C2=A0 9.44 Mbits/s= ec=C2=A0 9/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 132K/85124(15654) us=C2=A0 13.86
>>
>> >
>>
>> > [=C2=A0 1] 5.00-6.00 sec=C2=A0 1.12 MBytes=C2=A0 9.44 Mbits/s= ec=C2=A0 9/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 134K/91336(11335) us=C2=A0 12.92
>>
>> >
>>
>> > [=C2=A0 3] 5.00-6.00 sec=C2=A0 1.12 MBytes=C2=A0 9.44 Mbits/s= ec=C2=A0 9/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 131K/89185(13499) us=C2=A0 13.23
>>
>> >
>>
>> > [SUM] 5.00-6.00 sec=C2=A0 4.50 MBytes=C2=A0 37.7 Mbits/sec=C2= =A0 36/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > [=C2=A0 2] 6.00-7.00 sec=C2=A0 1.12 MBytes=C2=A0 9.44 Mbits/s= ec=C2=A0 9/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 134K/85687(13489) us=C2=A0 13.77
>>
>> >
>>
>> > [=C2=A0 4] 6.00-7.00 sec=C2=A0 1.12 MBytes=C2=A0 9.44 Mbits/s= ec=C2=A0 9/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 132K/82803(13001) us=C2=A0 14.25
>>
>> >
>>
>> > [=C2=A0 1] 6.00-7.00 sec=C2=A0 1.12 MBytes=C2=A0 9.44 Mbits/s= ec=C2=A0 9/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 134K/86869(15186) us=C2=A0 13.58
>>
>> >
>>
>> > [=C2=A0 3] 6.00-7.00 sec=C2=A0 1.12 MBytes=C2=A0 9.44 Mbits/s= ec=C2=A0 9/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 131K/91447(12515) us=C2=A0 12.90
>>
>> >
>>
>> > [SUM] 6.00-7.00 sec=C2=A0 4.50 MBytes=C2=A0 37.7 Mbits/sec=C2= =A0 36/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > [=C2=A0 2] 7.00-8.00 sec=C2=A0 1.00 MBytes=C2=A0 8.39 Mbits/s= ec=C2=A0 8/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 134K/81814(13168) us=C2=A0 12.82
>>
>> >
>>
>> > [=C2=A0 4] 7.00-8.00 sec=C2=A0 1.00 MBytes=C2=A0 8.39 Mbits/s= ec=C2=A0 8/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 132K/89008(13283) us=C2=A0 11.78
>>
>> >
>>
>> > [=C2=A0 1] 7.00-8.00 sec=C2=A0 1.00 MBytes=C2=A0 8.39 Mbits/s= ec=C2=A0 8/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 134K/89494(12151) us=C2=A0 11.72
>>
>> >
>>
>> > [=C2=A0 3] 7.00-8.00 sec=C2=A0 1.00 MBytes=C2=A0 8.39 Mbits/s= ec=C2=A0 8/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > 131K/91083(12797) us=C2=A0 11.51
>>
>> >
>>
>> > [SUM] 7.00-8.00 sec=C2=A0 4.00 MBytes=C2=A0 33.6 Mbits/sec=C2= =A0 32/0=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A00
>>
>> >
>>
>> > [root@bobcat iperf2-code]# iperf -s -i 1 -e --hide-ips -w 4m<= br> >>
>> >
>>
>> > ------------------------------------------------------------<= br> >>
>> >
>>
>> > Server listening on TCP port 5001 with pid 233981
>>
>> >
>>
>> > Read buffer size:=C2=A0 128 KByte (Dist bin width=3D16.0 KByt= e)
>>
>> >
>>
>> > TCP window size: 7.63 MByte (WARNING: requested 3.81 MByte) >>
>> >
>>
>> > ------------------------------------------------------------<= br> >>
>> >
>>
>> > [=C2=A0 1] local *.*.*.123%eth0 port 5001 connected with *.*.= *.171 port
>>
>> > 46448
>>
>> >
>>
>> > (trip-times) (sock=3D4) (peer 2.1.9-master) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/11987) on 2023-01-06 12:27:45 (PST)=
>>
>> >
>>
>> > [=C2=A0 2] local *.*.*.123%eth0 port 5001 connected with *.*.= *.171 port
>>
>> > 46454
>>
>> >
>>
>> > (trip-times) (sock=3D5) (peer 2.1.9-master) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/11132) on 2023-01-06 12:27:45 (PST)=
>>
>> >
>>
>> > [=C2=A0 3] local *.*.*.123%eth0 port 5001 connected with *.*.= *.171 port
>>
>> > 46460
>>
>> >
>>
>> > (trip-times) (sock=3D6) (peer 2.1.9-master) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/11097) on 2023-01-06 12:27:45 (PST)=
>>
>> >
>>
>> > [=C2=A0 4] local *.*.*.123%eth0 port 5001 connected with *.*.= *.171 port
>>
>> > 46458
>>
>> >
>>
>> > (trip-times) (sock=3D7) (peer 2.1.9-master) (qack)
>>
>> >
>>
>> > (icwnd/mss/irtt=3D14/1448/17823) on 2023-01-06 12:27:45 (PST)=
>>
>> >
>>
>> > [ ID] Interval=C2=A0 =C2=A0 =C2=A0 =C2=A0 Transfer=C2=A0 =C2= =A0 Bandwidth=C2=A0 =C2=A0 Burst Latency
>>
>> >
>>
>> > avg/min/max/stdev (cnt/size) inP NetPwr=C2=A0 Reads=3DDist >>
>> >
>>
>> > [=C2=A0 4] 0.00-1.00 sec=C2=A0 1.09 MBytes=C2=A0 9.15 Mbits/s= ec
>>
>> >
>>
>> > 93.383/90.103/95.661/2.232 ms (8/143028)=C2=A0 128 KByte 12.2= 5
>>
>> >
>>
>> > 451=3D451:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 3] 0.00-1.00 sec=C2=A0 1.08 MBytes=C2=A0 9.06 Mbits/s= ec
>>
>> >
>>
>> > 96.834/95.229/102.645/2.442 ms (8/141580)=C2=A0 131 KByte 11.= 70
>>
>> >
>>
>> > 472=3D472:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 1] 0.00-1.00 sec=C2=A0 1.10 MBytes=C2=A0 9.19 Mbits/s= ec
>>
>> >
>>
>> > 95.183/92.623/97.579/1.431 ms (8/143571)=C2=A0 131 KByte 12.0= 7
>>
>> >
>>
>> > 495=3D495:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 2] 0.00-1.00 sec=C2=A0 1.09 MBytes=C2=A0 9.15 Mbits/s= ec
>>
>> >
>>
>> > 89.317/84.865/94.906/3.674 ms (8/143028)=C2=A0 122 KByte 12.8= 1
>>
>> >
>>
>> > 489=3D489:0:0:0:0:0:0:0
>>
>> >
>>
>> > [ ID] Interval=C2=A0 =C2=A0 =C2=A0 =C2=A0 Transfer=C2=A0 =C2= =A0 Bandwidth=C2=A0 =C2=A0 =C2=A0 =C2=A0Reads=3DDist
>>
>> >
>>
>> > [SUM] 0.00-1.00 sec=C2=A0 4.36 MBytes=C2=A0 36.6 Mbits/sec >>
>> >
>>
>> > 1907=3D1907:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 4] 1.00-2.00 sec=C2=A0 1.07 MBytes=C2=A0 8.95 Mbits/s= ec
>>
>> >
>>
>> > 92.649/89.987/95.036/1.828 ms (9/124314) 96.5 KByte 12.08
>>
>> >
>>
>> > 492=3D492:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 3] 1.00-2.00 sec=C2=A0 1.06 MBytes=C2=A0 8.93 Mbits/s= ec
>>
>> >
>>
>> > 96.305/95.647/96.794/0.432 ms (9/123992)=C2=A0 100 KByte 11.5= 9
>>
>> >
>>
>> > 480=3D480:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 1] 1.00-2.00 sec=C2=A0 1.06 MBytes=C2=A0 8.89 Mbits/s= ec
>>
>> >
>>
>> > 92.578/90.866/94.145/1.371 ms (9/123510) 95.8 KByte 12.01
>>
>> >
>>
>> > 513=3D513:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 2] 1.00-2.00 sec=C2=A0 1.07 MBytes=C2=A0 8.96 Mbits/s= ec
>>
>> >
>>
>> > 90.767/87.984/94.352/1.944 ms (9/124475) 94.7 KByte 12.34
>>
>> >
>>
>> > 489=3D489:0:0:0:0:0:0:0
>>
>> >
>>
>> > [SUM] 1.00-2.00 sec=C2=A0 4.26 MBytes=C2=A0 35.7 Mbits/sec >>
>> >
>>
>> > 1974=3D1974:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 4] 2.00-3.00 sec=C2=A0 1.09 MBytes=C2=A0 9.13 Mbits/s= ec
>>
>> >
>>
>> > 93.977/91.795/96.561/1.693 ms (8/142656)=C2=A0 112 KByte 12.1= 4
>>
>> >
>>
>> > 497=3D497:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 3] 2.00-3.00 sec=C2=A0 1.08 MBytes=C2=A0 9.04 Mbits/s= ec
>>
>> >
>>
>> > 96.544/95.815/97.798/0.693 ms (8/141208)=C2=A0 114 KByte 11.7= 0
>>
>> >
>>
>> > 503=3D503:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 1] 2.00-3.00 sec=C2=A0 1.07 MBytes=C2=A0 9.01 Mbits/s= ec
>>
>> >
>>
>> > 93.970/91.193/96.325/1.796 ms (8/140846)=C2=A0 111 KByte 11.9= 9
>>
>> >
>>
>> > 509=3D509:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 2] 2.00-3.00 sec=C2=A0 1.08 MBytes=C2=A0 9.10 Mbits/s= ec
>>
>> >
>>
>> > 92.843/90.216/96.355/2.040 ms (8/142113)=C2=A0 111 KByte 12.2= 5
>>
>> >
>>
>> > 509=3D509:0:0:0:0:0:0:0
>>
>> >
>>
>> > [SUM] 2.00-3.00 sec=C2=A0 4.32 MBytes=C2=A0 36.3 Mbits/sec >>
>> >
>>
>> > 2018=3D2018:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 4] 3.00-4.00 sec=C2=A0 1.06 MBytes=C2=A0 8.86 Mbits/s= ec
>>
>> >
>>
>> > 93.222/89.063/96.104/2.346 ms (9/123027) 96.1 KByte 11.88
>>
>> >
>>
>> > 487=3D487:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 3] 3.00-4.00 sec=C2=A0 1.07 MBytes=C2=A0 8.97 Mbits/s= ec
>>
>> >
>>
>> > 96.277/95.051/97.230/0.767 ms (9/124636)=C2=A0 101 KByte 11.6= 5
>>
>> >
>>
>> > 489=3D489:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 1] 3.00-4.00 sec=C2=A0 1.08 MBytes=C2=A0 9.02 Mbits/s= ec
>>
>> >
>>
>> > 93.899/88.732/96.972/2.737 ms (9/125280) 98.6 KByte 12.01
>>
>> >
>>
>> > 493=3D493:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 2] 3.00-4.00 sec=C2=A0 1.07 MBytes=C2=A0 8.97 Mbits/s= ec
>>
>> >
>>
>> > 92.490/89.862/95.265/1.796 ms (9/124636) 96.6 KByte 12.13
>>
>> >
>>
>> > 493=3D493:0:0:0:0:0:0:0
>>
>> >
>>
>> > [SUM] 3.00-4.00 sec=C2=A0 4.27 MBytes=C2=A0 35.8 Mbits/sec >>
>> >
>>
>> > 1962=3D1962:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 4] 4.00-5.00 sec=C2=A0 1.07 MBytes=C2=A0 9.00 Mbits/s= ec
>>
>> >
>>
>> > 92.431/81.888/96.221/4.524 ms (9/124958) 96.8 KByte 12.17
>>
>> >
>>
>> > 498=3D498:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 1] 4.00-5.00 sec=C2=A0 1.07 MBytes=C2=A0 8.97 Mbits/s= ec
>>
>> >
>>
>> > 95.018/93.445/96.200/0.957 ms (9/124636) 99.3 KByte 11.81
>>
>> >
>>
>> > 490=3D490:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 2] 4.00-5.00 sec=C2=A0 1.06 MBytes=C2=A0 8.90 Mbits/s= ec
>>
>> >
>>
>> > 93.874/86.485/95.672/2.810 ms (9/123671) 97.3 KByte 11.86
>>
>> >
>>
>> > 481=3D481:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 3] 4.00-5.00 sec=C2=A0 1.08 MBytes=C2=A0 9.09 Mbits/s= ec
>>
>> >
>>
>> > 95.737/93.881/97.197/0.972 ms (9/126245)=C2=A0 101 KByte 11.8= 7
>>
>> >
>>
>> > 484=3D484:0:0:0:0:0:0:0
>>
>> >
>>
>> > [SUM] 4.00-5.00 sec=C2=A0 4.29 MBytes=C2=A0 36.0 Mbits/sec >>
>> >
>>
>> > 1953=3D1953:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 4] 5.00-6.00 sec=C2=A0 1.09 MBytes=C2=A0 9.13 Mbits/s= ec
>>
>> >
>>
>> > 92.908/86.844/95.994/3.012 ms (8/142656)=C2=A0 111 KByte 12.2= 8
>>
>> >
>>
>> > 467=3D467:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 3] 5.00-6.00 sec=C2=A0 1.07 MBytes=C2=A0 8.94 Mbits/s= ec
>>
>> >
>>
>> > 96.593/95.343/97.660/0.876 ms (8/139760)=C2=A0 113 KByte 11.5= 8
>>
>> >
>>
>> > 478=3D478:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 1] 5.00-6.00 sec=C2=A0 1.08 MBytes=C2=A0 9.03 Mbits/s= ec
>>
>> >
>>
>> > 95.021/91.421/97.167/1.893 ms (8/141027)=C2=A0 112 KByte 11.8= 7
>>
>> >
>>
>> > 491=3D491:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 2] 5.00-6.00 sec=C2=A0 1.08 MBytes=C2=A0 9.06 Mbits/s= ec
>>
>> >
>>
>> > 92.162/82.720/97.692/5.060 ms (8/141570)=C2=A0 109 KByte 12.2= 9
>>
>> >
>>
>> > 488=3D488:0:0:0:0:0:0:0
>>
>> >
>>
>> > [SUM] 5.00-6.00 sec=C2=A0 4.31 MBytes=C2=A0 36.2 Mbits/sec >>
>> >
>>
>> > 1924=3D1924:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 4] 6.00-7.00 sec=C2=A0 1.04 MBytes=C2=A0 8.70 Mbits/s= ec
>>
>> >
>>
>> > 92.793/85.343/96.967/3.552 ms (9/120775) 93.9 KByte 11.71
>>
>> >
>>
>> > 485=3D485:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 2] 6.00-7.00 sec=C2=A0 1.05 MBytes=C2=A0 8.79 Mbits/s= ec
>>
>> >
>>
>> > 91.679/84.479/96.760/3.975 ms (9/122062) 93.8 KByte 11.98
>>
>> >
>>
>> > 472=3D472:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 3] 6.00-7.00 sec=C2=A0 1.06 MBytes=C2=A0 8.88 Mbits/s= ec
>>
>> >
>>
>> > 96.982/95.933/98.371/0.680 ms (9/123349)=C2=A0 100 KByte 11.4= 5
>>
>> >
>>
>> > 477=3D477:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 1] 6.00-7.00 sec=C2=A0 1.05 MBytes=C2=A0 8.80 Mbits/s= ec
>>
>> >
>>
>> > 94.342/91.660/96.025/1.660 ms (9/122223) 96.7 KByte 11.66
>>
>> >
>>
>> > 494=3D494:0:0:0:0:0:0:0
>>
>> >
>>
>> > [SUM] 6.00-7.00 sec=C2=A0 4.19 MBytes=C2=A0 35.2 Mbits/sec >>
>> >
>>
>> > 1928=3D1928:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 4] 7.00-8.00 sec=C2=A0 1.10 MBytes=C2=A0 9.25 Mbits/s= ec
>>
>> >
>>
>> > 92.515/88.182/96.351/2.538 ms (8/144466)=C2=A0 112 KByte 12.4= 9
>>
>> >
>>
>> > 510=3D510:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 3] 7.00-8.00 sec=C2=A0 1.09 MBytes=C2=A0 9.13 Mbits/s= ec
>>
>> >
>>
>> > 96.580/95.737/98.977/1.098 ms (8/142656)=C2=A0 115 KByte 11.8= 2
>>
>> >
>>
>> > 480=3D480:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 1] 7.00-8.00 sec=C2=A0 1.10 MBytes=C2=A0 9.21 Mbits/s= ec
>>
>> >
>>
>> > 95.269/91.719/97.514/2.126 ms (8/143923)=C2=A0 115 KByte 12.0= 9
>>
>> >
>>
>> > 515=3D515:0:0:0:0:0:0:0
>>
>> >
>>
>> > [=C2=A0 2] 7.00-8.00 sec=C2=A0 1.11 MBytes=C2=A0 9.29 Mbits/s= ec
>>
>> >
>>
>> > 90.073/84.700/96.176/4.324 ms (8/145190)=C2=A0 110 KByte 12.9= 0
>>
>> >
>>
>> > 508=3D508:0:0:0:0:0:0:0
>>
>> >
>>
>> > [SUM] 7.00-8.00 sec=C2=A0 4.40 MBytes=C2=A0 36.9 Mbits/sec >>
>> >
>>
>> > 2013=3D2013:0:0:0:0:0:0:0
>>
>> >
>>
>> > Bob
>>
>> >
>>
>> >>> -----Original Message-----
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>> From: LibreQoS <libreqos-bounces@lists.bufferbloa= t.net> On Behalf
>>
>> > Of
>>
>> >
>>
>> >> Dave Taht
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>> via LibreQoS
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>> Sent: Wednesday, January 4, 2023 12:26 PM
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>> Subject: [LibreQoS] the grinch meets cloudflare's= christmas present
>>
>> >
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>>
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>> Please try the new, the shiny, the really wonderful t= est here:
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>>
>>
>> >
>>
>> >>
>>
>> > https://= urldefense.com/v3/__https://speed.cloudflare.com/__;!!BhdT!iZcFJ8WVU9S<= br> >>
>> >
>>
>> >
>>
>> >> [1]
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>>
>>
>> >
>>
>> >>
>>
>> > 9zz5t456oxkfObrC5Xb9j5AG8UO3DqD5x4GAJkawZr0iGwEUtF0_09U8mCDnA= krJ9QEMHGbCMKVw$
>>
>> >
>>
>> >
>>
>> >> [1]
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>>
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>> I would really appreciate some independent verificati= on of
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>> measurements using this tool. In my brief experiments= it appears -
>>
>> >
>>
>> >> as
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>> all the commercial tools to date - to dramatically un= derstate the
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>> bufferbloat, on my LTE, (and my starlink terminal is = out being
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>> hacked^H^H^H^H^H^Hworked on, so I can't measure t= hat)
>>
>> >
>>
>> >>
>>
>> >
>>
>> >> [acm]
>>
>> >
>>
>> >>
>>
>> >
>>
>> >> Hi Dave, I made some time to test "cloudflare's = christmas present"
>>
>> >
>>
>> >> yesterday.
>>
>> >
>>
>> >>
>>
>> >
>>
>> >> I'm on DOCSIS 3.1 service with 1Gbps Down. The Upstre= am has a
>>
>> > "turbo"
>>
>> >
>>
>> >> mode with 40-50Mbps for the first ~3 sec, then steady-sta= te about
>>
>> >
>>
>> >> 23Mbps.
>>
>> >
>>
>> >>
>>
>> >
>>
>> >> When I saw the ~620Mbps Downstream measurement, I was rea= dy to
>>
>> >
>>
>> >> complain that even the IP-Layer Capacity was grossly unde= restimated.
>>
>> >
>>
>> >
>>
>> >> In addition, the Latency measurements seem very low (as y= ou
>>
>> > asserted),
>>
>> >
>>
>> >> although the cloud server was "nearby".
>>
>> >
>>
>> >>
>>
>> >
>>
>> >> However, I found that Ookla and the ISP-provided measurem= ent were
>>
>> > also
>>
>> >
>>
>> >> reporting ~600Mbps! So the cloudflare Downstream capacity= (or
>>
>> >
>>
>> >> throughput?) measurement was consistent with others. Our = UDPST
>>
>> > server
>>
>> >
>>
>> >> was unreachable, otherwise I would have added that measur= ement, too.
>>
>> >
>>
>> >
>>
>> >>
>>
>> >
>>
>> >> The Upstream measurement graph seems to illustrate the &q= uot;turbo"
>>
>> >
>>
>> >> mode, with the dip after attaining 44.5Mbps.
>>
>> >
>>
>> >>
>>
>> >
>>
>> >> UDPST saturates the uplink and we measure the full 250ms = of the
>>
>> >
>>
>> >> Upstream buffer. Cloudflare's latency measurements do= n't even come
>>
>> >
>>
>> >> close.
>>
>> >
>>
>> >>
>>
>> >
>>
>> >> Al
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>
>>
>> >
>>
>> >>
>>
>> >
>>
>> >> Links:
>>
>> >
>>
>> >> ------
>>
>> >
>>
>> >> [1]
>>
>> >
>>
>> >>
>>
>> > https:/= /urldefense.com/v3/__https:/speed.cloudflare.com/__;!!BhdT!iZcFJ8WVU9S9zz5t= 456oxkfObrC5Xb9j5AG8UO3DqD5x4GAJkawZr0iGwEUtF0_09U8mCDnAkrJ9QEMHGbCMKVw$
>>
>> >
>>
>> >
>>
>> >> _______________________________________________
>>
>> >
>>
>> >> Rpm mailing list
>>
>> >
>>
>> >>
Rpm@lists.bufferbloat.net
>>
>> >
>>
>> >> https://lists.bufferbloat.net/listinfo/r= pm
>>
>> >
>>
>> > _______________________________________________
>>
>> >
>>
>> > Starlink mailing list
>>
>> >
>>
>> > Starlink@lists.bufferbloat.net
>>
>> >
>>
>> > https://lists.bufferbloat.net/listinfo/= starlink
>>
>> _______________________________________________
>> Bloat mailing list
>> B= loat@lists.bufferbloat.net
>> https://lists.bufferbloat.net/listinfo/bloat
>
> _______________________________________________
> Rpm mailing list
>
Rpm@lis= ts.bufferbloat.net
> https://lists.bufferbloat.net/listinfo/rpm



--
This song goes out to all the folk that thought Stadia would work:
https://www.= linkedin.com/posts/dtaht_the-mushroom-song-activity-6981366665607352320-FXt= z
Dave T=C3=A4ht CEO, TekLibre, LLC
_______________________________________________
Bloat mailing list
Bloat@list= s.bufferbloat.net
https://lists.bufferbloat.net/listinfo/bloat
--
--000000000000f491e605f2134099-- --000000000000f491e805f213409b Content-Type: image/jpeg; name="Web capture_12-1-2023_1018_speed.cloudflare.com.jpeg" Content-Disposition: attachment; filename="Web capture_12-1-2023_1018_speed.cloudflare.com.jpeg" Content-Transfer-Encoding: base64 Content-ID: X-Attachment-Id: f_lcta3a6g0 /9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdC IFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAA AADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlk ZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAA ABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAA AAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAA AABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEA AAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAA ACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgICAgMCAgIDAwMD BAYEBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMD AwQDBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ EBAQEBD/wAARCASqBvwDASIAAhEBAxEB/8QAHgABAAEFAQEBAQAAAAAAAAAAAAYDBAUHCAIBCQr/ xABoEAAABQICAwcOCAwEAwQIAgsAAQIDBAUGBxESEyEIFBYxVpPSFRcYIkFRVFVXYZSV0dMJMlJx dZGSsxkjMzQ2N1NzgZahsUJicqMkwfBDgrLhJTVEY3SiwtQmRXaDtEaEpPFkZrV3/8QAGwEBAAMB AQEBAAAAAAAAAAAAAAECAwQFBgf/xABHEQEAAQICBgYIBQIFBAIBBAMAAQIRAyEEEhMxUZEFQVJh odEUFVNxgZKx8BYiMsHhBiNCVKLS8TNDYoKy4sIHJDQ1RHLy/9oADAMBAAIRAxEAPwD9UwAAAAAA AB8AfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrvFvdB4P 4FppqsU73g0E6u4bUNL5npOmWWZkRdwsyzPzjlXG74W/BHDW5jtmxaFOvk2C/wCJnQ3kNRUq+ShS tqz85FkNv7rjcQWBuunKBMuu5KxRJtvk62w9T9WesbcyNSVJWky40keZD8cN1LuWL/3I+JLVHuGM VQosh3fNEqxtZx5zaFEeiouIlp2EpB9/vGQmFZmYfq7gp8JVgTjzCdtyNW1WLd0ttbEGPXSTqVPm kybUlxJ6Ki0su1MyPYOQ8e93vuirEuezLVxHosih3nh/c+/5cinLUzT7ipakmjJSMzJRKQZkXGnt 8yyMtmqbOrmFu7GYrVnVbCuh2TiXGpUqr0iu22k4zE92O2bi2pEczNOkpKTyUjLblkQ0nA6/eLKK A1Js27cQKXZ7mqZYapsqYlDOsJS2FONJNRJPIy48yIzyyE2VvL+jKi1mnXDSIdcpEtuTCnsIkMOt qJSVoUkjIyMvMYvR+dnwWkTdERLhvbhpZdw2rhy/pP0alVZh9puLIU5sajE+WmaEo2GfFsLuj9Ex VeJu1bjjumcF9znTI9SxYvJik780t6xkoN2Q/o8eg2ntjIu+I/gXu1Nzrui6ougYY30iTV0NqeKn TGFxZK20/GUlCyI1EXdyGi92vubcc67jZaW6TwOtu373n2zBVBkWtW1N6t1OkZk42lxSUGfbHn2y VbCyzGscNMZMLa5uprD7Jfcq1nBrFFpwoNu1eIb0OmzX1GaCbU2RIStCjWaCXm6kzWRGZFtEYH9z 9W+ZnL6e+5j/AJIvRwjP6+6z9NAH50Xzce6uxR3cmIWA2E2N8mz6EzRokl2Q+0clNNRoIM1R2tJO Ti1HkZ5lsz2jO7mzdDY14S4t4rbm3dDXdw5k2Bbbt1U6vE3ovSIzSG1qbXmeZmpLyDIjzMjJRZmW QrRXFeHGJuvE1fCN/JeqmYrmiM7TET8dzvoB+Kr27lxbuymVLGl3dpx7VuZl916m4btW1PehuMpV 2jS5CWzY0jT3VaXnURns37uifhBb0kYK4Jnat0RMPqjipDXLr9yLhuyU0dhlSWnTaabSpxRms1mW iRqyQRF8bMr56t7Z5Ze9W8a1r5Z5+7e/S0fFKJCTUfERZmPzI3H+6/uuHui6VgjN3R5Y3WpckN1b NafokunyoMtCTVoGmSklGkyI+I1F8xjJYY3RuyN2pfV9YnYaY+tYdWlZdbepFGo5U/fLU5SEkrRk I0kkZaKkGalaW1ZkRERCaomLW4X90Xt9SnO9+qYjnF/o7bwc3Q2GWO8m54uHdRmSnLQqaqRVCkQ1 sauSk1EZJ0vjF2p7S2Dzj7uisMNzTacS9cVqlMhUudPRTWVxYa5CjfU2tZEaUbSLRbVt8w5C+CTR XWyxwRdKWk1kr0V1RJksmyk/jdbo/wCXT0svNkO/KvQqJcEdMSvUeDUmELJxLUuOh5BKyMtIiURl nkZ7fOLY9GpqxTO+KZ5xEyimfz1RVG6ZhyH+Fs3F/K64fUEj2DqqwL4t/EuyqLf9qPuvUe4ITVQg uOtG2tbLiSUkzSe1J5HxGODNzJaVoSfhC90PT51r0h6DCjRFMxnILS2mdiM9FBpyT/AhoG4N2peO Jl23XXGt16xgfS7anuw7VtGHbM6U3MjtF2hvLitm2glHkR6Rq26Xakkk51iadSmeuYir3QvXh1U1 1U9VM2982u/ZEB+b1R3ceON1bgCPjRbMRbd0w60mh1+qwIZOHGjJPJcttsy0UmZGkszyIjPuZiju Zt0S/deMdoRMKd2LKvKlVdJpuW1cTVqh1NClGWj1OW3H1LqyzUerS5nmktpkrZMUzNc0cPK7OatW iK/vKbO/ZWKNhw7/AIeFrtywzuqdEcnNUtK9J7e6MtJxRF8VO0uPjEpH5OVvBrGGqfChTLcpePtS p1Xdp3VtFWRFUa0U3WJV1O0daXaaPa6WeX+UfrE2lSUJSpWkZERGffMVojWwaMSd9V/qviRqYk0R ui3jD0AACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAfDUkjyNRZmA+gPmkRnlmWY+gAAAAAAAAAAA5Z3f9Vo03D+3cLqxg lU8RyvmrFCaZp5mh6nKb0VHJQ4RHoOJJRmnPJJ5KJXamZH1MPKkIUpKlISZp2pMy2l8wD8S39xnu uNyZjyi4cKLBcvaLTFOHTqgUQno0yM4k0qQ80SiNJmRmSk5/xyHdW4uxc3Xdy3pJsjG/ACmWXase mLfhS6dTzhNMvpWkia0NNRHpEpR7MstEdmAJuiIsAACEuO909uWcaZ+NtI3UO5fualU+94EA6bPp 1VI97VFgs9EjPi4jMjIzLuGRlkIRRty9uv8AdE4xWHiRuvqtaNFo2HU/qnT6NbqTUqRIJaFkZq0l 5Eamm9LNXEnIiIzMx32AUf27W6s47iude/flPfD8urspeO074SnEqpbnqu0WFc9Nt6K+USsNKXEq DZtII2V5GRpPMyMjzLIy4xvTcz7kHFIr2xGxy3U9Upcy9cRaSugOQKUeceDAWlJOIJRGZZmTbSSy M8iTtMzMx0XR9z/hjQcYavjvTaPIbvCuQ0QZss5jqm1spIiSRNGegn4pbSLMbGFMKjUwKcOrOYpm J+Mze3vhNdU1YtVcZRMxPKI3/F+dNibnP4RjAGkP4GYLXvZK7CVNccp9wzmkrn05la8z0W1nkZ90 yNCyzM8htXdPbkbFzEWk4YYi4c4kMv4tYWHrGanU2G2mqspRJNzTS2kkIM1o2FkSdFSiMdggLTeY iJnOLZ9eW5EREVXtlnl1Z73L254trdy1e+Xbx3Td523SKGxFVHYta3ozK2ZDp/8AbOOqJayyLuJc 294hpikblzdq7nHEa8KTuW7gs6Th/flSXUnDriTU5SHFlkakIJSTUoiyLMtIjJCcyzH6EAJnOYnu t747yn8sTHGb8tzkP4Pzc1Ys7nRnEuPis/ElybkuEqhEnMSEuHNRkvSeWlP5M1GrPRPvjrwAF665 xJiZ6oiOUWRbOZ4zdydgZud8SrG3Y2MeMlyU6E3a96MR26U83LQ464aNHS0my2o4j4xqOl7mPdx7 mK67woW5Rrlm1Oxbzqq6ohFcL8fSHHC0TUkjUnSUSSSWfbEZISeRHmQ/Q0Bna0Uxwi3w716q5qmq Z/xTf47nOtdwq3VR7n6m2/RMfWnsUITqZk2qyqVEOHUNua4imyZyS3lsJRJJXfPbs5/nbjTFfGzF yx7zvjBDDjCNm0aomqVKqWxNQ9LrakmlRJNDTaEoM1Jz0lZmWZ7e4f6FAJjKvadd7/FSYvRqdW7m 4hxx3OW6cgbsWl7pXAJNrz2ZNJao1QarDhp3syRkTiiTpJNZmREZZHs7w7ba1mrRrctPRLSy4s+6 PYBEzFEUdUXt8epNX5q9eeERyyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwzjbibaM3Fuv4ulcbxVbB+oQYVvwo8WQs 5TSFGdbQSkJNBm606bBZnkS4qTHcpkRkadu3vCPW7YVr2va67OpcA+pjuvN5t9xTqnjeUpTqlqVm ajUalGZnx5isxN4qjq3e/wC/qnKYmmev6NCyKliDMxYxHvbC26Ldj0+PbtGqf/HQlyinoJmQ4lCV JcQTSVJz/GdvlmXajLR8YMUsRk1yr4dzKBQYNqUmDPkR6tAckrqUiRETKNrTS4go7aUKSnWaLhma ldqWhtkre5TwjjNtsQGK/CZTT41JdZi1yU03JgsaRNxnkpXk42RKMtFWZGWwZu6cAsOrsm79lRal T9bDbp0xml1J+EzPit7G2ZKGlEl5CSNRESiPIlKLiMaVW1o1d3D+f2Jm8zM75t4RET9EDp+6FuOt 2Hft7wIUGOiiW/TqzSmnmlGaVSYmuNLvbFpZGZFs0ReYEz78quLmLMu47tZqFMbm0lMOAUNaN6ay mRniShanVESC1h5pJJaSzUvYajISe69zjhbeEqW/UqfUY7FQgtU6dCgVJ+LFlsNFk0l1ltRIXoFs SZlmXcEnomHNtW7dc+8aQmaxNqkOPDltFMcOM6TCSQ24bJnoa0kESdPLS0SyzyFLbp7rfTP42Up1 qdaJ693O/hCUAACVgAGLum26XeNsVe0a2l9VOrkCRTZZMPrZcNh5tTa9BxBkpCtFR5KSZGR7SPMB lAHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp 8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6f Acwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnw HMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8B zB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAc wfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHM H4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB +Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwf g4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4 OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+D i3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4 tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OL cx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3 MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tz H4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx +AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3Mf gF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4 Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+A Xp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF 6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Be n86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp /OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6f zpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben8 6VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/O lU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzp VPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86V T34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU 9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVP fh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT3 4fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+ H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh +Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34f g4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4 OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+D i3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4 tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OL cx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3 MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tz H4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx +AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3Mf gF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4 Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+A Xp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF 6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Be n86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp /OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6f zpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben8 6VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/O lU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzp VPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86V T34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU 9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT34Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVP fgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+A6fAcwfg4tzH4Ben86VT34fg4tzH4Ben86VT3 4Dp8BzB+Di3MfgF6fzpVPfh+Di3MfgF6fzpVPfgOnwHMH4OLcx+AXp/OlU9+H4OLcx+AXp/OlU9+ A6fAcwfg4tzH4Ben86VT34neDe5NwdwIueVd+H0W4W6jMgLprp1C4Zs9vULcbcMibfcUklaTSO2I syLMs8jMBuQAAAABSlSo0KM7NmSG2I7CFOuuuKJKG0JLM1KM9hEREZmZhM2zkVQGAtu/rGvK3Tu+ 0LxolboRazOp06e1Ji9p8f8AGoUaO17u3Z3RWtS87Qvykpr9kXTSbgpi1raTNpcxuUwpaDyUknGz NJmRkZGWewwLsyAAAAAwtzXtZtlpp67wuuj0NNWmt06AdRmtxily3M9BhrTMtNxWR5ITmZ5HkQDN AAoS5sOnta+dLZjtmpKNN1ZITpKMiSWZ90zMiLvmYCuA+EeZZkPoAAAAAAoR5sOWt9uJLZeXGc1T yW1ko2l6JK0VEXEeipJ5H3DI+6ArgI7euI2H+G1ORWMQ74oNsQHHCaRKrFRZhtKWfEkluqSRn5sx e2xddr3rRo9x2dcVMrlJlkao86nS25Md4iPIzQ42ZpVtLLYYRnuJm2UsqAAAAAAADC1e9bPt+s0u 3a7dVIp1Vri1NUyFKmttPzlpLSUlltRkpwyLaZJI8iGaDvO4AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQu7casHrBrEe3b4xVtG3qrLJJx4NUrUaK+8RnkWg24slK zPZsLjExadafbS8y4lxtZEpKknmSiPiMj7oRN4vBOU2ewAAAAAAABh7pvG0rGpfVy9LnpVBp2tbj 77qUxuMzrVq0UI03DJOkozIiLPMzPIgGYAfEmSiJSTzIyzIx9AAAAAB8MyLaZjAVzEGxLZp8er3H edDpcGXL3hHkzKg0y07J0zRqUrUoiU5pJUnRI880mWWwBIAHwjIyzIfQAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AB5WhLiTQtJGlRZGR90h6AJi+Uj8wcYcOcW8EsYavuTcGVR4lh7oWYc+EtKzQdAPNJVBLKS/wmjR y4iIjSRfFG4bgRf1FxhsjcK7nS9EYa0K27QVcFXrsantSpjiUKJpDTaHSNHbLcStZmWZ5ntLLbv/ ABEwDcvzHTDnGZN0lBTYCJyDp28tYc3fKUJ/K6wtXo6HyVZ59wYHHLcw1fEPEWh414V4qTMOsQ6F CcpSKqimtVGLKgOGZqZfiuGlLmRnmk9IsjyMyPJOUUXpoppnjN/hExTyy8Vq7TVVNPCLe+bTV8Zz hzRd26mx2tPBLGayapeiXb8wkuGnUtm54sRpCqhDkqJTbjjRpNtLuhsVkWWZ7CLIbjxGxixGo26V 3NljUu6nmKLetOqj9fhk00ZTVtQTcbUozTpJyWWfamQvGdwlbknBK+sN7lv2pVi6sR5ZVWv3c5GQ h52ek821tsEeihpB/Fa0jyIzLS4ssXaG4nxLiYx4a4y4mbpSTeU/DqPKhMwlW0zBjux3GFtIS2TT v4tZawzUtWsNeiRdrkJpvrfm/wDG/wAKZifGzPvj/wAsvfMW+kovuQq/uj8ccQL8ui7Md6hHtWyL +qlJiURilRT3/HbdURMuvaJKShBaBJ0e2PM8zMZj4SP8xwF//wCw0H+zo3Jubdz2vc/Qr0hruxNd 4X3XULmJRQd7b2KSvS1GWsXp6PFp9rn8kh53Su54Xug2LBZRdqaDwIvGBdhmcHfO+yjaf4j8ojV6 Wn8ftssvimJqm+pbq1f2uU3vXM9d7eNnNtYvDdRYl4+boCxrLx6dtC37AjxplNS3SI0l5Dm9Uu6p Klp2NqPS0jUSj2llkNRYz33i3j3gfuWb4qeJk2i1KvX7Dok0oURs2lVBuQtDdR0T2KWg2zMmz7TN XEO4bT3MzlsYoYv4jneaZJYqMMsph9T9DqdoRtTma9Yetz+N8VHe841tUtwPLf3O9h4OUnF1VNuL Dq5kXTRrlTREuITJS844SVxFPZKTk7llrONKTPMs0nTC/Lqa/VFMz74qz8GmJnVVNM8Y+Gr/ALmm cbt1Bi3SMY6zgfS8Wb1oycO6PDbcqtvWUmsSa7UlMpUpcpKUmhhpWaTyQRbTPIZK/N05uk7qw43N ku26tLse68QLpet64G5FHJBOGhaGjdNh9OklHxnCIjLYfGNz3buP8VpF4Hihhjuk3rLvetUNij3b Um7ZZlR6yttGiUlEdTqSjOZ7c0qVlsyyyEhu7clzrrewVkzcWKvPk4SVvq1Jm1hk50utrMk6RLd1 idUZmk8jIlERGREWwWo/REV79aL85v8ACfuFKspmaOFVuWXi03iDUd1Bae6Iws3OtubpGfJ4QUGq S6xXKhRIinHDQstFxDKEkkloIyJJZ5cZmRiOUndeY0YP4H7oQr4uVu9bmwmuhqgUisyYSGTklKeJ ptbzTWik9BRmrIssyyLzjqu7dzyu6N0lZm6BK7Uxk2lSJtKOk7x0zk74Mj1mu1haGjlxaCs++Qgz e4ctypwccqLeN2u1SmYz1dFX1caHvZ6kOIUa2jQ4a1k6pC9FRKNKS7XakyMUi+pae+/OLeF0xERV P/rb92jdz3uhMcLkxQp2HUrEDEG56ReNHkpk1mt2EqlHb9R1Wbao69Am3WszPLWceinviR/BXW9f CbHvG7q/ihVK1Al3PU4qqVJjNaJTEuoNyYb35RS3M8jSZ6JdwbrwS3PONNhXHBrGKm6grl+QKLTi ptMpLFKRSohJIiInJKW3FnJcIiIiUrI+M9o97mzczXTudbiu1iFiqmsWLcFRlVWn24uiNsO02S+4 lSlb7Jw1Olop0dHQSXdIi256xamvLszHjePD+WdUTVRae1E+ExPjaefFoDdv4MVG+N0Rat8SMMo+ Mtv0ukqhVCyI1aKNPhkteZS0NpWlSknlxmZFmMFuTrhw9sHD3dCuYMu3nY9Vj01yvt2NcULQXbrq GXkpfjuLNWuSvRbzMy2Ehsj0uMb/AN0tuLpWNN703FnDLGKuYW37Bi9T3KzTGlPFJiZmerW2lxtW ZZ7FEv5yMQujbkF/AHB7Ga/LxxUruJV/3ZasyLUa7UmzbNTDTC9W222a3FFsJBGalqz0Cy0S2Dmi ZwsCuN2VXjnHv+OcOmbV4tFs86fDf9xvaspOLm64sTATDTdW3dje3cFNqkyFFrVruUiO2y5DfeNv XE8giWb+W3Zkni2cYoY17sTFW4Mb8QbSs+/bytCm4fKZiUmJbVlnWyq0tTWmvf7miepRppJKSTke ipR7e5nNzJuQrzxWwHwicvbHasP4cU5MevFZa6QwlZy23VKSg5hGSzYJRZ6tSDyzPJW0brv3cd30 eKdz4oYAboGdhg/fkZli6YaKI1Um5bjKdBt9g1uIOM6STWRqLSPNWZZbc+iuJjE7rzbuyptf463H e58Odam/dF+/Ob+FuG5ofFTdvYrVSh4Q2qp25cPKteVDerFxzKPa66lVIy2Vm3q2IbhHklSi0jNR HkkyF5S92njVb+5VxBuGrxKnKui3bjiW7blertAcpi6jFmLQ2xMejqIi1qPxhqSntcyTxZjf2J25 Dq90lYl02BjTXrbxDsGOuHEuqpR01d2dHcI9aiU04pJO6R7S2kRd4yIsribuSJl64C3FhBjLjFcl 71a5Zh1J64JBEycKUlZLZOHGJSkR2m1JSZNkZke0jPIyImX5pmOvwvG74X4LZ3otw/ad/g5rvWx8 arJ3U25kjYsYw9cBMuoTX0SX6W1EfjyDhqNxsjayStri0TNJK74/RwvikORaFuJsVpOJ+GmKOKe6 fmXnNw3dcKPEXbTMNh9hTJtpSWrdMyd25qdWbhqyyyLjHXRFkWQteIw4p76uUzePBW0zia3dEfGN 76AAKLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPh8W08h9HwyIyyPiET uH5NYo4G0yi4o4vXpinud6njhQLgqEiVAu61azrpVGM+0KOphtwiJbWZFomSj7QtmQnlV3UCcHty xgtYmCeI1xVJq7apMoirjfoJyavS4cVZa5puERq05DetbQgjzIyRnkNo3/8AB33u5ftx3buf91Td WFVNu2UuoVejQ4q5DDspZma1oNEhrRIzMzyUStpnkeWwSqV8H5Z9OwWtDDexb9rNCuexKy5cdEu1 xpEmSipOK0nXHWjNKXG1nlm3mnYlO3YedcO9OFFM7vy5deXhu64tMr4sxVizXGc/m8Yy92dss4ab srdR44HhDjbBlXHd1RXaFCTVrYu+u2mdHlumoySttxpaNUpSFcWRcXfF7PuTdZ2buVqDuqarj1Va 3M1VCr9TtxNIhsxUU0zIpbemSDWo1IcS4pWactWrLIjyLeze5bxNr2FOINkYqboyr3jXb7inDKov UtMan0xrIiLe9Pbd0Ens7YyWWl5tuezbbwepVMwKgYHXBJarMCPbqLelPLj6tMlsmNUpRtmpWjmW 3LSPLvjSqbRNUb/y/G1793CGcRE1U09Wd/jERH7y54k7p667ixdxDvOy7gcl4c4XWImpvQWUtmzU qo+zr20rXomstFGjsSovjHsGhsHt2Rj3U7nsG9X7rvm7W7wqzDFw2y7YTkajUqDIVtehTkJ0nDa7 QiNSjIyNXHxjrXc0bi609z/g1cmEFTryrqYut2T1Tmri71W9Hdb1aWtElrMtFGZErS7uZEQwuEm4 /wAWsMajbluObqy5Z2GloSlv0i2I1LbhSVNEozajSp6HDXIZSR5GjQSRkRZaJFkJp1aK464iI55z V9be7ciqZmibb7zytER9L++c0GwpuDdH40bqXFm2E471C37Lw+uSImPAi0qK65JbNtK1RTcWnNLZ lnmrarNWwxK/hOiMtzIkjPP/APFVC/8A2xsbSwZ3PS8JcTsT8RVXYmqFiPVmamUMoOp3hoNE3oae sVrc8s89FPzD5ustz5K3TWEEnC6FenBV96fEnN1MoJyzaUw4ThETZON7TMuPS2ecV1tWjDyzjVmf hMTK1OeJXM7pvb3WybdZcS1BQ6viQ0Sj+YiH59QMXN1Pi5hffu61s3GNm2qBadRn9Q7MTSWHYtQh QFnp77eX+NS44RKI9AyLYXENoYO7j3dMYd4jUO7713c12XtQ6Y6pcugTKc82zNQbakkhSlTFkREa iVtQfxRSrm4IuZC7osrDzdD1e1sKb4qLlSr9oporEl1S3l5yW4k1SiVGbWkkp0dBWW3M1EeRRXE6 2tTO+Jt3Tfr+CaJiIiKo3TF++LTeOdkfqe6JxZ3Rd/YYYTYUXqvDdF12cd4Vasx4LcyUg0mSN7tI eI0aOkraZlnkRDO4mXzugcEdyyy1jDjRQqPfD9aKkxq/T6SqbMmRDWZNmzFSWiuYpCTVkSdAi4yz IyEzxI3HRVCq2XeWBWI8jDO7bGpfUGBUEUxupx3qcZZGy9HcUklnmRGStLj4yPZlGK7uDavXcF6J YkvHqvyb2oN1qvOJds6GUhDNSWpSnCRCNwkpZPTWZN6Z5KUasz4hNVpiYpyz8Na8W4fltHNWm8at +HjbO/xaIw5xs3RV5UfH/CC7sR7sZXQLMO4aHWqxR4sGrttm2tZ5tM9qhLiEZFn26dIzzIyIRq2H b9w73CGDledvpNej3Dd9JKDBqVFhvtUmOb76VtNaxtWkalFpaw+3Iz2GQ6yw13F1btfES98RMRMZ 5t8zcRLc6g10pFIaiHnkpJrY1a9BpvRUZE0aFZcekYitK3A19tYLW/gjcO6BZq1HtK5IVboTh2qh lcSOwtxa4qjTIzd01OZk4o+1yyyMjyKaJmJpvxov/wCtU38LeKtca0Tb/wA7f+1MW8bvlfvPH3dE boS/8LsKcYXMM7fwyjsMOSYlLYlyalPdRpZOa4jJLScuNOR7e6NZXduxcdrr3J1sXnbNbi27iBFx GRZFakx4yFxZLrazJSiQslZIWlSDMiPPPMiMdDYm7ku9KjifV8XsBcc5eGVwXRCRAuElURmqxZyE Fk24lpxaNU6WZ9uRmfeIuM8fW9wda3WQs3BSy7wk0qPa1ysXPKqU2IUyRU5KVmt1TuS2yJSzP4xZ kkiIiIyIZ0x+WInjF/mvM+7V6lpmbzMd9vktb362aPYUXtj1h9uyV4DYm4sHflGuG013HGcdpjMN VPfQ6lKmmybLa32xkWkZnkRd3MdEXnIrVcuNdp06pyKfEhUpVUlKirJD8lRrNDbSVH8VOaVGoy2/ FIjLPMRiZuely91DS90fwsShNOth23Oo+8czWa3Er12v1mzLRy0dA+PjE8vCxm7neZqUGryaTVI7 LkZEtgiVpsLyNbTiT2KQZpI+4ZGRGRkY1veim+/P/wCU28LIiPzTPu+kX8borZU2s0aVbC1VeXOp 9zsupdjS3TdXEkNo09JtR9saDJKiMlGeR6OR7chtMQiycMmrVfjzahWnqpIgsrjwUqb1bMNtZkay bRmZ5qMizUpSj2EWZFsE3FVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8MiPYY+gA+E RFsIsh9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF NyQw0ei6+2g+8pREPO/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/ YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/Y fhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAK O/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG /YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEAr AKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPO EG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOE ArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/Yfhb POEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbP OEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/YfhbPOEG/YfhbPOEArAKO/Yf hbPOEG/YfhbPOEArAKO/YfhbPOEKiFoWnSQolEfdI8yAegAAAAFGYZlFdMuMkH/YRVOrEymmLzEK pHsLzj6Pyowuw1sO0NyVae6Yti5qzSsWOrBk1KauGQs5qzqjjBRlRVuKaNK2iJJkSCPu+cbjvfdK boanqvjGyl4j2vS7bw3uRigPYbyqS27LrCNYy04pUzTJ5l9euNTSEJNJmlGewzIWiL1akb//APn/ AHQiqNWZj73z5S70AcDYw7rTG/DXEGv4Z02qtzKnQrpRXnjkQmEmmzlR0OrSRJbyPQXrW9PPTPLa oKXjfuosZLssyl4dYuwLQpuIyLmq9OlyrbjT960yG6yUM2kK0DWpSc+2Wo9jqjMjNKSFNbK/C3jb +eUpnKYiev7/AJ+MO+Myzyz2j6Pzzt7HW/q/c2B2LN3JRUq/Fsa8n6gxCLVMz5MFZtaegWRFpmzp GRERFpHkRbCEpw53Q+NdrV+x6/irjdZ10W1inQKvWjjQqIhngeUOEqXrdNlzTlxyTm2s3NFWkSNE yMzz0rpmiLzwmeUzHjqymqiaZiONvGInwu7jHzMh+elC3WWPFhP389XcQ2MSqWzYybutqoSbah0V vJx1KW1pajvuu6nRcIzKQlDnafFy2nNdzpUcUHt1rHj4m4xUXECZIwoRUES6VTkQEMJeqaVE0402 4pCjTnklwiSak5ZlntOMOJxJtHC/1y8JUqnVi8/e7zh2lJkxobKpEuQ2w0gs1OOLJKUl5zPYQ8xJ sOoMFJgS2ZLKuJxlwlpP+JbBri9YkW4LwnUuuSGiYplEVNp0Z/8AIqfMzJT5lxKNGSSLPPLSzFhZ RQabXrMmW64hpy5aXIcq8VlRG28lptBplGRZES0uGlvSIi0ieyPPRLKEtugAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAANF7uNyYzuS8T34DjzbzVAecStozJSSSZGaiMtpZERnn3hni17OnWTEXbzzLvj6OS8 Tbygz8Wtz+VtXJHluLgVGfoRZSXdNpNPIydUlJnmnMy2ns2jW2D2P+6LmVTCm7b3xptm7aBijUan b0i1odDYjS6YpmPIcRLJ9s9NxSTjkThGlKE6wyIjMyUm8Z3j73zEfRWJ4/eUTP1d+EZHtIx9H5yY D4kYzVbB/BrBvDbFalYeSqxRK1XJdzVamtVNx4o891JRmmX1JQZnpZqUZ5kRbMxnrm3UOM184PUG qWXjRTrVvyn0erVep0qk2pFqJVuJBlHFVNbfnyWo8aOak6Wjmbh6R6BL0dEWxP7c1Rw+l7X5tK8O aa5o4TMcnfhmRbTMfR+fd37ofHTFugsUqhYlWxYEWLhO1eFaTNpaJR116SwtK2GtNaFR0JMjMltq NRGothkWR9PYB1SqMbk+zaxENUmoN2fGfbMzNZuOlGIy49p5mFNMzTNU9VvG/kzqmImmON/C3m22 5VqUzMTTnanERKX8VhTyScV8yc8zF2NJ0u1rLl1K3YEp2JU4tdozk2VKdcLXypBpSvfKlcZK2nkZ GWjxFxENhYYVCZU7IpsqdMXMVorbblL+NIaStSW3T86kklX8RCUqAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzMuLMfRzDLrCYPwiyI02qFHhnhAaybdf0 Gzc6sZZ5GeWll/HIRHdoY8Yl2M/UqjgpjdFp8yzqO3WqrbTFrQ52+Y61mSHXpsuS2lttRpNOgwlb u3MknxlWqqKaaap/xX8JmP2WmiYmY4W8Yif3dmAPz1vbF3HGw8cMVMUWcTin06hYX064adarlJQt lJyUuklpB6wlfi3W1OqWWSnCMkKyJJGMPbW603VUfAzE2t1td0HU6LBps+g3Lctix6IWtflNtORt 7tuPsuoJKsyWZksyV8UtgvRE17vvOyl/v4P0iAcJXHugt0pglExYti+8QLevGsUiFblRoVa6hIpz FNTVZDjCidZQpRLbYUjSI1KM1EXbKLPIpDPxUx5wdorVXv7dC2Tf1Lte56WdxzqXTo8SWmizS1al TI6CUiOTTi0LS42sjUgjNXeFb/l1p3fd+S1p3Rv/AOPN2YLWdVaZTNA6lUosQnDyRr3kt6R94szL Mal3K1+3rirhzNxOu6pJkQrlr1RmW2wmMhoo1ES+bcNOaUkazWhvW6S81HrS7hEQsZUemVBhF1Vt 2NJqci6EU6amSZaTUfWm2UZJKIySgiUSjLLbx590WmJpm0qxVFWcN4pUlREpJkZGWZGXdIfRBsO2 maVWbptakvm5RaTLYKG3paSYa3GSW7GQfyUmaVkn/DrdEsiIiKciEgAAAAAAAAAAAAAAAAAAAAAA AKb6zbZccTxpSZl9QqClK/NXv3av7AIxbtvUKu0CnVut0eHUJlQjNy3XZTKXTI3EkrRLSI8iLPIi LvDI8CLM5JUb0FrohZH6F0D6Li/dJFkta9NXbHxn3RWqrVTEXXvAizOSVG9Ba6IcCLM5JUb0Froi w01/KP6w01/KP6xTap1V/wACLM5JUb0FrohwIszklRvQWuiLDTX8o/rDTX8o/rDamqv+BFmckqN6 C10Q4EWZySo3oLXRFhpr+Uf1hpr+Uf1htTVX/AizOSVG9Ba6IcCLM5JUb0Froiw01/KP6w01/KP6 w2pqr/gRZnJKjegtdEOBFmckqN6C10Rh6g0+8yS2HFE80emjJWWZ97+I9w5hS46XkKMs9hlnxH3S DaGqyvAizOSVG9Ba6IcCLM5JUb0Froiw01/KP6w01/KP6w2pqr/gRZnJKjegtdEOBFmckqN6C10R Yaa/lH9Yaa/lH9YbU1V/wIszklRvQWuiHAizOSVG9Ba6IsNNfyj+sNNfyj+sNqaq/wCBFmckqN6C 10Q4EWZySo3oLXRFhpr+Uf1hpr+Uf1htTVX/AAIszklRvQWuiHAizOSVG9Ba6IsNNfyj+sNNfyj+ sNqaq/4EWZySo3oLXRDgRZnJKjegtdEWGmv5R/WMbQ6HGt5p+NAkyjjuu6xtl141oYLIi0GyP4qc 8zy75n3MiJtYNWUh4EWZySo3oLXRDgRZnJKjegtdEWGmv5R/WGmv5R/WG1NVf8CLM5JUb0FrohwI szklRvQWuiLDTX8o/rFOQpZx3SJaviK7vmDaGqyfAizOSVG9Ba6IcCbM5JUb0FrojD0xxZ0+OZrV nqy7o15c9TrrOIUJcdVQbSlbbTCWXSU26gz7cyM9iFFmeaTSrMiI8yGmHOvNlMSdnF22+BNmckqN 6C10Q4E2ZySo3oLXREOvCiVeJIRcNHrFRbiIlR5M+DFSkzeShRaaiP42RpItJCfjER7DPYeEveoS pc+3qjbOcmWbq1R3UuN6l3NGZNLM1pPJWwyyFtWbxEK68REzLZnAmzOSVG9Ba6IcCbM5JUb0Froi wtuBNpVK1dRkJdkuuOSXjQkySlTijWaUkZmeRZ5Ft7ghlYmvYh1WCzRpOrplJlokPqWtTTjplnsJ pTZ6REZFtPLzHsEzTaLzKNeZ3Q2FwJszklRvQWuiHAizOSVG9Ba6IwSaU2iuOV4pL+udioiKb0vx eilalErLLPS7Yyzz4iIX2mv5R/WMNrDaKZX/AAIszklRvQWuiHAizOSVG9Ba6IsNNfyj+sNNfyj+ sNqaq/4EWZySo3oLXRDgRZnJKjegtdEWGmv5R/WGmv5R/WG1NVf8CLM5JUb0FrohwIszklRvQWui LDTX8o/rDTX8o/rDamqv+BFmckqN6C10Q4EWZySo3oLXRFhpr+Uf1hpr+Uf1htTVX/AizOSVG9Ba 6IcCLM5JUb0Froiw01/KP6xa1NLq4iltLMnGj1idveDaGqzPAizOSVG9Ba6IcCLM5JUb0FrojGR5 JyGG30KPJaSVx8Qqaa/lH9YbQ1V/wIszklRvQWuiHAizOSVG9Ba6IsNNfyj+sNNfyj+sNqaq/wCB FmckqN6C10Q4EWZySo3oLXRFhpr+Uf1hpr+Uf1htTVX/AAIszklRvQWuiHAizOSVG9Ba6IsNNfyj +sNNfyj+sNqaq/4EWZySo3oLXRDgRZnJKjegtdEWGmv5R/WGmv5R/WG1NVf8CLM5JUb0FrohwIsz klRvQWuiLDTX8o/rDTX8o/rDamqv+BFmckqN6C10Q4EWZySo3oLXRFhpr+Uf1hpr+Uf1htTVX/Ai zOSVG9Ba6IcCLM5JUb0Froiw01/KP6w01/KP6w2pqr/gRZnJKjegtdEOBFmckqN6C10RYaa/lH9Y aa/lH9YbU1V/wIszklRvQWuiHAizOSVG9Ba6IsNNfyj+sNNfyj+sNqaq/wCBFmckqN6C10Q4EWZy So3oLXRGP12X/af1DXf+9/qG1NVkOBFmckqN6C10Q4EWZySo3oLXRGP13/vf6j6Tij4lmf8AENqa q/4EWZySo3oLXRFpFYYoN3xaLS2UsQqjTpUpTCCybbcYcYSRoTxJzJ88yLZ2pd3PO+oijN13MzPt S/uLWd+sOifQtU+/gjSmdaLomLJEAAJQDytKVpNCizIyyMegDeNIWbuJtyxYF1Rb2tPBmiwq3CcU 8xLNTzxtuHxqJLi1Jz27DyzLuCRVvc0YD3JiXExhruGFFm3hCUhxmqOtGayWkjJKzRnoKUWexSkm ZGRGR5kWWzQDdbuJzvfrQmt4LYX3Jc9RvOuWdCmVmrUdVAmS3DXpPU8zMzYMiPLRzUe0iz28Y+0T BnDK3JNtTKJaUWI9Z9NepFEU2pf/AAUR0kk40kjVkZHoJ48z2cYmoCLRa3395yTnN0CoWBGEttS6 HNollQ4z1tMTY1LUS3FFGalrNclJEpRkZLUozPSz49mQw9n7lnc92DVa/W7RwooNPm3Qw7FqrqWT XvhlzPWNZLMyQhWkeklJER7MyPIhtUBM5703lqaxdyjueMNEuosfCqj0pMiI/AfJslq18d7LWNua aj1iTyLYrPLuZC7wu3M+BWC1Xdr+F2G9Mt6oPxVwnZEU3NJbCnSdUg9JR5lpkR+bLItmwbOAL53V tFrMFdFl2/eDLTdZiqU4wZmy+0s0Ot58ZEou4fdI8yPukKVq2HblnG87SIyzkSEpQ5IeWa3DQXEg j4kpIzM9FJEWZmeWYkQAkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABa1OmU6tU6TSKvBYmwZrS2JEeQ2T jbzaiMlIUk9ikmRmRkewyMXQCJi+83NP4f7kvc/YRS6jWcLMMKPb9XqERyIqa2TjjiULIyMkm4pW gR57dHLMtgjW533GGFWCUWl3HMtOhzr+iRX4km4WGVpU6hxR6RpSo8kqNB6JqIiUZZlntPPoUBMZ TM/DlfzknP7428mpa/uUdzzdNh0jDO4MLaVOtqguLdpsFw3P+FUtalr0FkollmpSjMtLI8xVufcr 7ni83LacubCS353BBjetGQuPotxWcyPV6CTJK0ZlnorIyzM++ee1QDj3pmZmby1Hc25M3Ot5Uy3q PdOFVIqcS1Yxw6Q3I1it6sGWWrJWlmpPeJRnlsyGybctuiWjQIFrW7T24VKpkdESJGQZmlplBaKU FnmeRERFtGTAIyyhW0ZdyCycGLEkzVyjhSWmnFGpcVqQpDJ5nmoiItqUmeeaUmSTzPMtomzDDMVl uNGaS000kkIQgsiSkuIiIVABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAANT4s7lTc/Y51+NdGK+GsC4qpDiFBYkyHnkKQwS1LJBE2tJZaS1HtLujGTNxdu XKgilNz8GKDJTRKculQCeJxepiq0s29qu2+OrJSs1FnsMhusAjLKCZvva0qe5uwPrV0U+86vh1TJ tapdGO3o0t/TcUmnmhbZsKI1aK06DiyzURnkrjGMtnckbnKzrUrdj21hVSoFEuNxpyqRW1unvlTa iWjSWazUREpJGREZFn3Bt4BMTMbvvrN+SH1bCHDWuzK9PrNoQZr1z0xij1Y30mtMuGzp6ppSTPLJ OtXkZER9tx8Q1deG5Ms+m4G3FghgPbduWdTrt0mKm48069k04WTjiczNSnSIi0dI8iMdAgKTTExb 74puw1mWrSrGtGi2ZQmEs06hQI9OioSWRJaabJCS+pJDFXDhbaVyVFVVlxn2JTuRurjO6GtMuI1F tLS7mllpecS4BeqZqm8q00xTFoY6g0Ck2zTW6RRYhR4zZmrLSNSlrUealqUeZqUZ7TUZmZmMiACE gAAAAAAAAAAAAAAAAAAAAAAAKUr81e/dq/sKopSvzV792r+wDE2P+hdA+i4v3SRYL+Or5zF/Y/6F 0D6Li/dJFgv46vnMZYvUtS+AADFcAAAAAAAAAAGPltuQVLnx9qPjOt57D85ecZAeHWydaW0oiMlE ZbRMD62snG0uERkSiI8j849DHRZZwkohTy1ak5JS4Z9qv+PcGRAAABAAAAAAAAAAAAAALGs05+q0 9yFHqcmAteX4+Plpp8xZkZbRcxWnGIrLD0hT7jbaULdUREbiiIiNRkXFme3+IqixmRKo/OiPRKsm NEZMzfYKOlSn+8WmZ9qXHnkWZ7Npd2b9SO9fCjMXq4jqz7iDFB2ouRWNfKgvJzlIjIS3kszJbpNp cPLiT2xKPvER/MFZQa6ZISSzT2u0yCIzTdVpydCCwnvIIRatYbW5Kkzq4WvYmOpW4bie3SgzIs1J b7p9qZl5zMS2ORJYbSXESC/sKgmmqaZvCKqYqi0sBhhcL1eoj0Wak9KG4baCcQaXFsHnoLUlWfGR H3T4vnGOuHDCO9clCn0GmQ2YMR83JLJFooI89Ilkkthn3Pq7wy9VptUZkqrduy1NTSZQyuOZIJp9 tKzVkZmkzIyJS8sjIszyPvlcrrV2StkOhQYSD4lzJZrcL52205Hzg7KcWmYu5Zw5j8ssVeVUnRKm 6qsKqMSisJbJh6EWWm+sySWkrPP4yiIiyyz4xjrZs52nVxNx0u5lyqdNaM1tGksnMzM0GRl8+0+M zLaM4u3nqo4b90VA6go1JMmGdYxFIk7SI2dNRL27c1Ge3LvDMIQhtBNtpJKUlkREWREQxxMa+VLS jCzvU9AADnbgAAAAAAAAAAAAAKMzPeb+XHq1f2FYWlWWbdOfUXycvrMTA907LeEfIss2kn/QXA8M oJtpDZcSUkQ9hJAAAIAAAAAAAAAAAAAAAAAAAAAAAAFCa6bMZxxPGkjMVxaVT8yd/wBJgPlHo0ap 01mfJfkabxGo9FzIi2mL3gxA/byud/8AIerV/R+F/oP/AMRjnLdP7uKzMA7xtixIcxp6sO3RS4lz MyqROdTDokhta3pDDjSSQ48ktVooSaz7ZXaHkeXRFMWZzMui+DED9vK53/yGKbM4VbkUxDi1ttpS pOmeZ7SIX1iXzbWJVpU2+LPmOy6PVm1OxHnYzsda0ko0mZtupStO1J8ZELCR+l0v923/AOEVxIiI yTTMzKUUP8q7/pL+4tZ36w6J9DVT7+CLqh/lXf8ASX9xazv1h0T6Fqn38EWw/wBKKt6RAAC6AAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8HxSkoSpa1EREWZmfcIcDS/h Jq1cW7Xoe50wzo1uT7OfqXUqo1aS0+5KcfShZuGwpDqW0pSpOjmpCs8jEUzrVxhxvlMxaia53Q77 AcdbsvdFbs3CDEOlUDc5YCRr5oMqjty5c12gVCcbUs3nkqa04z7aU5IQ2rRMjPts88jLLlyr/CW/ CF25dtFsa59zfaFHrtwupZpkCdblVYelKUrRLQSuYWZZ93iIMOdpMRT1zYrpmiLzwu/WgBbU1yY9 T4z1RaS1KWyhTyE/FSsyLSItp7M8+6OTN2fu8H9zpcNHwqwzsNd64i19BLiwD0zaYSo8kaSG/wAY 6pRkeSEmnZt0u4FU6sxT1yURrxeN2914A4E3Nvwj+IVwYuQcCN1ZhCjD+6KyaSpkhmNIiNLWv8m2 5HkKWtOlxEslmRnsyLjLvojzLMheaZiIq6pUiqJmaeuH0AAVWAAAAAAAAAAAAAAAAAAAAAAAAUpX 5q9+7V/YVRSlfmr37tX9gGJsf9C6B9FxfukiwX8dXzmL+x/0LoH0XF+6SLBfx1fOYyxepal8AAGK 4AAAAMdcVaYt2hza3ITpIhsqd0czLSMuJOZEeWZ5FnkfGMTRcQrfq1Op811bsN2opj6ph9laVGp7 IkkkzSWmWZ5GotgtFFUxeFZrpibTKTgACqwAAApSYzUtlTDySUlRfV5xbU99xKlQJJ/jmeI/lp7h i+FpUI7i0pkx89ex2yduWkXdIxMcBdgKUWSiUyl5Hd4yz4j7wqiAAAAAAW9QgxqnCep8xBqYkINC yJRkeR94y2kJFwAsYRRqSzDo7tRW88baksnJcI3niRlmfc0jIjLM8u6QvgIkAAEAAAACLVeLctRX JefnIgU6OoybZZTm7IIu6tR/FI9uwhKRaVUtKnPl/kFqZtKJi7FUSBdkA47E6sRZ0RK1Gpxxo0vq bNPals7XMld3ukMvAdnuodOoRG2FJeWlskOaem2R9qo9mwzLudwVWFEplsy7qSGEetuQxcKK/SKq /HJ9aSnxDURsvpIsiVkaTNKyyLaRlmRZCbxVvRbV3M+A+KWlGRrUSczyLM+M+4Q+iiwAAAAAAAAA AAAAAAAAAAALGsbYRslxvKS39Zi+FjVdqY6C+Mb6DL+B7RMbxekWREQ+gAgAAAAAAAAAAAAAAAAA AAAAAAAAAAFpVPzJ3/SYuxaVT8yd/wBJgL61f0fhf6D/APEYwmI2FVp4pKtZV1NSVnaFyQrqpuod 1eU6KSyaNew9JH4xWae7sGVtlh1VBhqTMdQRoPtSJGRdsffSMmcd4v8A8wf+y30R1RuZyuCIi2EQ hFQmm3eMxiMyp54mmthcRdr3TEv3s+fHUH/so6Iiso3I9zTlklyQtDKFERaJKWejxFxFn3O4K4m5 NKR2w3LKQ+5LfSpSkFk2niTtCd+sOifQtU+/giLYW1Km1S47ilE24xUnDaN2M9mbjDZEZElWzRIz Ms8iUfcEpnfrDon0NVPv4ItFOpFlIq1s4SIAASkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAHJO793QldsK16TgZhQpcrEzE13qZS2Y55uQ4yz0HJJkXxeM0pM+6Sj/AMJj iWJgHRdzju/8BsOqY5viY3EjyapLMzM5U1bbpur29zPYXmIdZ7sD4NiRuq8X2cV2MbnLSWxSo9MR DRQDmGRtKcVrCdKS3lnrOLR2ZcZ5jgHEncBXLY+6ss/c/JxRqdXRcaG1nc3UNxBQtIlnlq9erSy0 P2ieMUwPy42HM5TNXOLTaO7j3yvi/mw6ojdFPKZmLz+z9y6/W4Ft0OfcFUeS1DpsZyU+tR5ElCEm pR/UQ/PrcJUyo7qTdB31uyb6ZVIh0+Wui2iw9tRGaLMjUgj4jJGRZ99ShtTdeUuu4EfB6VGwKPUp VdqFLt2n2qU1qOpDsoj1UdburJSjSZp0lZaSsu+fGJT8HLZabJ3IdixFwHIkmoR3ahJbcbNC9Y44 rPSI9ueRENMOmNpiYkTeKbRHx3zyizPEvOHRRP8Aim8+6Ornm6YH5d7vKh4hbn3dlWduyKdZcq5r XgstolpYQZpjqQ2tpaVqIj1eaFmpKj2ZkOs90puu6ruf8ULAw6g4TSroavdxSHKi1UVR00/J1tvM 0Ew4S/yhntUn4v8AEa73eeL+6ywKuW2L8wooLNzYctkk7hpKaW2+s1JXmpK3NBTjSFoPIlp4lFxH xHlrTTVRjUza0zafCbr0zE6+DxjOO7fFuTgTdWbqmvbpXGvCjFWl4ZVOzqRTpDUSkSZnbOTnEyW1 uqS4SSJaUmpBFo7C0j7pj9wH6zTKTTGJ9aqUWAysm0a2S8lpGmrIkpzUZFmZnkRd0x+VVqQsZfhH t0rYmI1wYPP2DhpYGi5q3VLW2sycJxxKXVNt6xxxSUFklBElKSM8+M+991vSUVjDGjUp2Ccxh+8b bbfZ0DWS2uqkfTJRF/h0c8/NmOiI1cKjCiLTNfhVMRf92NU62JVXGdqfGLzZPo+MeEcuExUYuKVo PRJUveDD7dbjKbdk5EepSol5KcyMj0C25GWwZGrX/YlBrcK2a5elCp1YqRpKHT5dRZZkydI9FOra UolrzPYWRHtHON84e201dO6Gqsa0Ym+Jtp0fJxMUj1iyjySPR2ZaWTbRHlt7ROfEQhV6TG7DORcd uXdblYrdbotEXOw9vG3nJCq3JbbaSgqbKSpLjbi0kSCzRIbJ0iM0p7bLKmYqqmnhbxv5eK17zaOE +Gr5+DuEfRSjLUuO2tbZtqUgjNBnmaTy4hVFpi02TE3i4AAISAAAAAAAAAAAAAAAAAKUr81e/dq/ sKopSvzV792r+wDE2P8AoXQPouL90kWC/jq+cxf2P+hdA+i4v3SRYL+Or5zGWL1LUvgAAxXAENxN iSqpS41FhNrccnu6laUzN7kTeWZrM9pZJMknxGfGRZZiPvYirp1lUVVEVFXNU8TCmmnDfLUsrJKz M9EjLMjRnmRGkln3SIa04M1UxVDKrFimqYlLb6uRi3aY0UqmuTGJzu9XSLMkpQosjzMuLPPIvOYi Fp0xuqzI9SqtWhxYDdQdOn0tKEk8w8WiSUrUeZpVk0hWiWW1R555kMXdF61O5KIVNkrOK4s3UOx2 oJrNx9JGaWzNSy0MjJO3M81d/iEqse36E7FuYn4KVOx9FgmpDTalsNalKklrSLSPMtHYaj0SQguM jM+mjCmmi26Zc9WJrV3jcnwDGWu+qVbVJkreN1TkJhSlmrSNSjQWZmfdPMZMcU5S7YzAAfDUlJZq Mi+cQPoCgufCaPRclNJPvGoh56p0/i36z9shIoOZ06XryL/h3zyWRcSFd8ZAWcmZTnY60OSWzQss th5n/Au+LKnz6i8wTDEdClMERKU4rLSLuZF82W0Ta+YzICxKZUD2FSzz7v40sg31VC//ACtP8Hy9 giwvgFiS60vaTURsvkqNRn9ZBqaw6ea5jLP7tGl/cLCzuO3erZxJkWa5DqFOWpyJISRKJKlFkolJ P4yTLYZC3tGv1irnNiVml6h2A8bG+myMmZCk7FGgldtsMjI+53jMZPeM9ex6qrMv8jZIP6wKPVmC /FTGni7zreWX8S4zFr5WlXVzvC/AWJS6mku3phHlxml0tv8AAOqbhfGpsvPvEjP+uYrZa6+AWJ1Z pH5aLJa/1I9g+9WYB8Ti+bV7AtIvRQnJ04bye+gx4TVICyz30gv9R5f3HiTNp78Z1vfLSyNB7CX5 gjKR9hy4yYbJuSG0maC41kQp1GoMttJJqSjNSuNKiMWkdFPYp7CjituurQR9sWZZ+fMWi2I7ijUc dsjV3kkRDOuqIyWppmc2TQ1FrLbbdQZS6cZ5EhvPMiJaTzSrZ3SMXBQloqa6ic97VqZJve5mWrIy PPT7+fcGFp76KZOQlbx6p1Ki0T26OW32fWKtSqbLz5EwlxzJPEScjL6xMVTFNyaYmpnyMlFmRkZH 3SH0R+n3hQHktxkzU60skaJbc1bdmzu7D+oZpmXGkF+JeQrvkR7SF7TG9W8TuVgHh55mM0p991Lb aNqlKPIiL5x4iTYk5s3oUlt9sjNOk2olFn3syAVgABAAAAAAAD4ZkXGeXcH0WNWcNLSWi4lnmf8A AKXIU4hTS1GZp2kZ94V1s7LauV1zIkIjN6xZZ7csi7osHarEdkNkhrWk2eZqPZoH5hQr8pZvtQGM 9M06Zn3CI8yz/oYtosbLRYaLMzPj7/nEVVTTKYpvCRpUlaSWk8yUWZH5h9HltGrbSj5JEQ9C8KAA AAAAAAAAAAAAAAAAAAAAAAAAAC0qn5k7/pMXYtKp+ZO/6TAXtrGfUCGRfIP/AMRjW2Im643OOE11 ybIxExTp1FrkNDbj8N5iQpaEuIJaDM0NmnalRHx90bItNRKt+GZcWgf/AIjF5IpNKlum/KpsV5w+ NbjKVKP+JkOqNzOWOsm9rWxGtan3rZVYaqtEqrZuw5jSVJS8klGkzIlERl2yTLaXcEfuaNOl1ipR 6co0vraZyyXoGpOzSSSv8Oacyz7mYnLLDMdpLMdpDTaNiUISREXzEQisj9Lpf7tv/wAIrXNsyIvk r4e2w1SJ02qrjtx5MpskG00o1JQglGZEaj2rVme1RjLzv1h0T6Gqn38EXVD/ACrv+kv7i1nfrDon 0LVPv4ItTVNUXlGrFOUJEAAJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAB80UmeeiWffyH0AHwyIyyMiMgIiIsiLIWNbq8ahU16pyyc1LJZrNCDWaSzyzyLbkXdEbwyvVN 4Uha3JByZLK1611LeTeWmeiRGRZGeRFsIctemYVGkU6NM/mqiZj4OmjRMWvAq0iI/LTMRM+9MjSk 9pkRgZEewyzHJ27txgxpw+csO1sEqjc9OqNelTpNSl29asavym4UZkjMijyTS3ka3EGZ6STIknln tI45f+I26QqmCNrYpYP4/Ud6DSaB1SqciRabTk+vTCWebcqNlq6fFIkKS48lZaGSjzIsjLoiqJiZ 77fz7nPMTFURxi/8e92oREWwiIgyI+MaPx8xkuWxdzs1iBZ8ulKr1ZapkWBMQnfMNp+atptL6SI/ xjaTd0k7clERd8WG5hvHFZdwX9hLjFfMa9K5ZM6MTVfZpLVOOXHkMk4lK2GvxaTSeZdrxllnmLWv NUcP2tf6wrM2imZ6/wCfKW/8i73GGinjNJbPMOX7kx5x9ZYvW57ZpdjLo9mXqVsFTpsWVvmoxz3v m8UlL5IjqTrzLI2XCVo8Se7eXZj9i3h9Fvik3DTrfq1StY6bJVVaTRZio0KBKz1sh6CT7jz+oJCj Mm3UaZZH+L25Z04kVREx1xePda/0V16c+6beNvq6VAa6wTv2ff1AnzZ962ZdSoc047dRtdt5hlad BCtF2M666phxJqMtHXOEZaKu1z0S2KNZiYylaJidwADVG6NufEy1LBk1fDZdOiOxkqfl1CWknDjt pNOSW2jIyWpZnlmexJEfGZllpg4U4+JGHExF+O5rhYc41cURNr8W1wGFs6Tc0u24L15QYcSs6Bpl tw3TcYNZKMtNszLPRUREoiPaWlkeZlmOWd0Durbpo+Nth4eYX12mwqFDvel0K9Z72pWp05RKVvJo nCPRJKEmp1wtFSTU2RKLthnVGriRh75mbftyVrpmjWv/AIb+DsAByDeWIO6moG6OokY71o7NvVu5 CpVNsBmksSH5dEQ2Ru1h2YhSnmTJSldqeiktFJGWZnnO92I7i/b1jKxAw0x/ew7jUKOspEJi04da erMp1aERWG98mWg4pxSW0knjNws+IUvaiK+M2+nmi062r3X+vk6DAatt6Xifh3ueurGJFysXNfFH t96oVGa5FaYZemJaU4aNWwltOrSfaEaSIzJOZ7TGuLfxW3TVcuGyaAtWG8YsQLblV5mT1KmuFQzj nHNbbiN9kc/T3yhJGlUbR2qPS0dBV7XrmiN8fz5SiImaIr4/x5w6ZAcnyd1TiC7btryp8i07LKoL q8Ko3HVqNMqFHOfAluRtSlLUhlUYndUp0lOuq0S7XtzLSHTFoVd+vWxS6zKlUyS9MitvLepj6noj ijLM1NLURGpB8ZZlnkFsrk5TZmAABAClK/NXv3av7CqKUr81e/dq/sAxNj/oXQPouL90kWC/jq+c xf2R+hdA+i4v3SRg3HKutxZtx47aSM+1Wo1Gf8SGWJ1LUrwBY79ntkRvUxWRcZtrJR/wIe2qpDdP RNw21fJWWiefeGVl7sZdloQLsitsSnXGVtqI9Y2eSjR3UH5jFrRcObat+psValsvNPMNm3o6ztFZ keajLvnn/Qu8JQRkZZkeZD4akp+Moi+cxaMSqI1b5K7OmZ1rZorc9KhQV7/gNLiS6m6mG7NbI1ah Lnamsk55aRnkWeXz8Qz9pW9It+3zpdWkxpCz0jdeba1emky41d8+PaYwtcqMdF10SFUG32oTanJC pC0f8Opwk9ohRmWWlxmXzCvUr1J6RcESMtlUOCwxFYW2RqcfmuoUtSUmR5aKUGz3ONStuwdeF+hz YltZRw/OEVDcYpU1EmnsS3moikKSrRaI9ic07OPP+BkMsuY7LcVHpxlkg8lvHtSnzF3zGPolNNil xKREQ4xBjMpQZqWpS3Dy27VGZ5Z5jJT4k3qY5FoclmHI0cmnXGdYlB9805ln9f1jlrmJqmXTTFqY h83hL8av/ZICpLSz0pb7sjzLPIvqIYiuUO53qvHrVvVmFGeKNvSQiTGW4hSc9LTSRLLJRHxEeZbe MZmls1OPG1VVnszHU6JJdbY1RqIkpIzUWkZaRqJR7MiyMiy2bYnKL3Im82sqtwYbRaKIzZF/pzHv e0bi3u39khUHwjJREpJkZHtIy7oreVlJMOKhemmO2Si7uiLeW2/Gk7/jN6ZGnRdR3TLvl5xfAFyy mxIaktk60rMj/oKgxr5Kpszfac97PbHSz2JV3FDJEZGRGR5kYSAAAgB8UnSSaczLMssy4yH0AFOM ycdhDJvOOmgstNw81K85mKgt47MxuTKckTCeadWk2GyaJOpSSSI0555qzMjPM+/kLgTJAAAIFNUe Ovaths/nSQ8rhRHC0VRmzL/SQrDy44lptTqzySkszEiNuKRDkrgLMkk2faHnxkeZ/wDMexkYcJqW y7JmNEpUo9LbxkniIvNsFlJokyMZnAfUtBFmSV5GfzfN8wyxKLzeGlFVotK21iWalDeU2SySbhZf OkVKxPaJh+Y8hRNttGaiRtVokR55ClDhSJs9JSVGytk9Im+LZkZfx4/7DNVKLFKizYzpmhlUZ1Li iTpGSTSeZ5Fxnl3AimZtE7kVVWiZhE6bWGahYjlGlU8oVSpkuBDcaUadMjW80TbqcuIjJwshMnqd DfPSUySVdxSdhl9QjVmpol9UaTValazaHiZbim87kopDaNFaD0eNO1CDMjLjSW09EZSyo7MW0qQy w2lBFDaUpKeLTNOa/wD5jMd+kRlEw5MCWGvpSYVHVSCdkSDqpLjIY4y0TLJRn3T+MRERd0y4izMs lQaOuk0qDT0SWoTuoQa47ZJItPRLSyIuPb3RicV40rqNGqsXWtnTnyeU+ySjcbLYZZJIyzTpEgz4 8siPIyzEWnxahcVxOVFqK+5JS8puPrXDSttSFEZElrMiQRf4lLIy2nlmeRFFFGvRvKsTUr3Npb1q hfFqCT+dA+6mrFxTGP4t/wDmKsBM5MNpNTcZXKJJa1TKDSg1eYjMz/qLgc17Ohh6g/VYTKV78ZUt StFKSazNXzFmLrUVfw5nmh5gtlImSZT56a2nVNN95KSIuLz7RkBN7FljqquX/tbJ/wD6sfNGsF/2 rB/93IX4CLjFyY9WkIJC0sbDzIyMxYt9V4jqllFbzbLM+34y+oSIfDIjIyMsyPZtFZpic0xNskUX MlyamqU7GQeqSTakEr/DsPZ/X6xnYEqnOmSmSS04ezRVsP8A8xjmKe65IkutbS1xtectHiP6jGYX AiONpbdZSoklkR90vmPjIRGc5wmd2S4AY/qdIjHpwJi0kWwmnT0kZd4u8PqaktkyRUI6mT4tMtqD /j3Beyq/AU232HUkpt1CiPiMjHyTKjQ2jflvoZbIyI1LVkWZgKoDDVa4UxqcUqjlGnPOSG46EG9o kalqIu4RmZkR55ZbRRs6fUahCku1Occh5EpxvLUk2TZEeWiWRFn/ABzMW1J1dZXXjW1WfAAFFgAA AAAAAAAAAAAAAABQnNG9GcbLjMjFcWVTdXq0w2fysk9AvMn/ABH9QkYChXLXaZTigtUZL7TLiybc NZlpJ0jMj/qMjwzr/J9HOGMu1HaZbS0hBaKCIiHrQR8khbXlFoYbhpX+TyOcMfaccyoVJ2qzI5Mq dSlOgR55ZFkMxoI+SQ+kRFxFkImqZ3lohlKH+Vd/0l/cWs79YdE+hap9/BF1Q/yrv+kv7i1nfrDo n0LVPv4I2w/0qVb0iAAF0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAIdiDh6q+yhki5KlSjiGvPejmiTpKy2KLu5Zf1MYe0MHDtOtMVZN3VOUhhRq3urRQ0rMjLalJE Xdz4uMiGyQHl4vQ2hY2kxpddH54tN7z1PSwul9MwdHnRaK7UTfK0dfwalx0wHn4wu0eoUHFe6rEq dJTIYOVRHk5SYz6SJxpxpZGhWeinJWWknblxmNcXduC7LrFEoNEs3EG6LNbplDctupOUx1Cl1mmu KNTrMg1ke1RqX25ZGWkeQ6hAenEau5517tM3LuZ6Hc1pVDDuTdtZYtFyhU6jUqkMmhLdJchHm1KZ Xlpa3Y3nmZl+LLZxjJYD4EM4KwK05PvetXjXrjmFMqdbq+gUiQaUEhtOSCJJElJERZENqAJibXnj v++XJW0WiODVrmAtHcoV2UI65MJu7Ll4SvuaCdJl38T+LTs2p/EFtPbtMXdXwhkSbquK9LfvWpUS r15mC0TrDTbiWN7aWWaFkZOJUSzJST8w2OApFFMWt1Rb4Wt9FdSnPLfn43+qBYZ4WFYNQuG4qncD lcr90SWZFRnqitxkuEy0TbSSabLRLJJHme0zM9p8RFPQAXvdaIiAaRxS3NkvEe9HbwjYr3NQydYQ wqnxXEri5EnIz1ayNJ58Z5lxjdwDo0bSsXRK9pgzaW+BpGJo1evhTaWuMGsIHsJYM6G/fFauRc1S FG7U3jWpGiaz2ec9PI/MlPeGtMVfg/8Ac3YqXNDvCfY8OBV+rzVbqsphKjXVSTma472asiQszLM0 5H2pZDpIBTFxq8fF21c/m4/fuVxcavGqmqubzO9zbF3IVxwMd6rjnT90Nd8aRWZbTkqkoixjjnDb P8XDJSkmtLRFsySZZntPbtE0rmAMm7LYtu27xxJrda4PXhGuw5ElprTl73fU8zEcJJEWqQo0ZbM/ xaRt4BlTOrERHUpMzM3++DEXZbrF12rVrVkSFsM1aC9BW6giNSEuINJqLPZmWYjFGwjptGrVmVpq rSXF2ZQpdBjoUlOT7b+9tJxfeUW9U5EWztjE+AI/LOtG/wD585LzaI4fx5NO07ASu2zbjdu2TirU 6QycuqSZKXafHltPlNlOSFEbbhZEaVOmklfJ4+MT/DuxqThrZdJsehrdXCpEdMdtbhlpKy2mZ5bC zMzPItgkYCbyjf8AUAAEAKUr81e/dq/sKopSvzV792r+wDE2P+hdA+i4v3SRYL+Or5zF/Y/6F0D6 Li/dJGIjzWpa3EpI0ONqMloVxkMsValXFN1hl8snWkrLLLaQqAMV2PKJNiKU3AUg2V8RLP8AJn5u +PSaU0vNUxxb7h8ZmeRF8xC+ATcRa736Xb1Fdn1KWso6T7RDjZOkbmR6OWezPZszMhF7Do1cl1eN UJtL3hBQpyUr8SlJSXMlt9sWw0GRnpEWRkZER55jaCkpWWitJGXeMsx98w0pxNWm0M5w9aq4AAMm gAAAZZlkIzTykUC4YFqxFqXS10591onDNTja23U/4j/w5OpSRdzIhJhFruhVGFUYF4UjXOu08lR5 cZCdPXxFqSaySXHppNKVEZd4y2i9Gc2Vryi6UgMBDvegypTcRa5MRT5ZsKlxlsJe/wBBrIiMZ8Vm JjemJidzy42h1BtuJJSVFkZH3RjzJ6kmRpJTsTiMuNTZf8yGSAyIyyMswS8tuIdQTjaiUk9pGQ9D Ht5U+dqeJiSeaO8lfeGQCQAAEDy6la21pbc0FmkySrLPRPuHl3RbwVzMlsTGzzZ0UJezL8f2pZr0 S+LtzLLzC6GGrtZkUJ+PLdjvyILqiYWmPH0lNLUexxatL4hcWRJ7ueYtEXyRM2zZkBSblxnZDsRt 9KnmCSbiCPaklcWfziqKpBYVBRyHWqeg/jnpOeZJe0XylJQk1qMiJJZmZ9whZU1JvG5UHCyN8+0I +4guITHEXpEREREWwthD6ACBby4TcrRUZmhxG1DieNIpRZbqXt5TiJLpfEUXE4XtFSoVGFSoa59Q kIYYbNJKWo9malElJfOZmRF5zIYWRW4FaUaKRUGXtSSHCcbMlZGosy2/MJnKLzuN82W9arjFm15U xiKy71TgrN1gnCaNa2lpJKi2HpKPXGnIizPJPeFZl2oWtIpsCS1p0yekiQ44skbzcyz1Zn/izzyL zkMNXqhKaaRcydJydRkOJQ2mIl/T0zRt0T2llo8ZGRkRq25DJ12sVOpW7a1fYhNz3ZZsvKhNqNtL jy288yM88iSelsPzbR1YdsXDs5q74dd2CxMqdXm1Bu3qE86nVslv0kmWrUT7iGmkLLLZmpRZHnxa feFZpV0S69KpdCmRmpEUm11CdJTrFPOHkerSRZaKSLvC8rEiLDhS61X4LjT9dcZiRYa3lx9BtlRr J1xaSM0mR5q0ssyLRSW0zzilv31b9qvum/RKpKqs9wjU9mk1PktRaBI1iyUpPnyI9h7CLIivqTFF ohSaomu8y3AnS0S0jI1ZbcuLMfRimK4p+Ky+cB2O44klKZeMtNvzHkZln/HYL+LKRKQakkZGWwyM cF4vZ22m11vSs9GTnx74Xn8+wXwx342mzOMlx5jv/eQ4f9y2f9d3Ii0ogAfFKSktJRkRF3TGPk1l pCT3q0qQZd0tifrEDI8W0xYyKtGa0kskp9aSzMmyzIi85i1iIk1VTh1B4ybTlk03sTt758Z8Q9VR xiM0inRkJQbvxiSXEnun84mJjeTE7nqhMzUMG/JcSaXzNwk5bczy25/wGUFtClMvoJttOgaCItHv F5hciL62cFrZA+KSlRaKiIyPjIx9MyIjMzyIhio9y0uVVl0hlxRuI2E5o/i1KyzNKVd08jIxMRM7 kTMRvXTlKgOGatQSVH/iSeRkLGo29BqURcV6W5qSUSzzWStBaTzI8z4jIxl1ONpUlClpJSvikZ7T +YRPgfTq7cVXkMTJlOZQltMlUV9SEvPGR6alJPtT7Q9HPLMj28ZFlph0zVNlcSrVhb0Jlypy36lb yGpS4kZO95DsdTJLUo1kSsjIiUsiLYeXEsZO2X5SKQ2+zDce16luuOLWRLW4aj0jP+JComZKrtUl xbfuCTTqbSyRD/4RqOrWP5aStrja+1JKm8sss8zGVpdPbpUBmntOuOpZIy03MtJRmZmZnkRFxn3C Ia41UW1WeFTN7qe/53cpLv20h1QlJ/KUx4vmURi+Ac14brEqs3/iiSiy4/xR5EPSavTlGSSkpIz2 ZGRlkLweFtNOJNDjaVJPjIyzIwyHpKkrSSkqIyPaRkewx9FidMNlRrp8pcfM9qctJP1GG9Kp3av9 TCQF8KEuQhhlRmvJRkZJy48xQ3tVS2FUkq/1NF/yGFlvSI89xE99azyIkHo5Fl38i2EK1ZRkmnOc 1+xUH2j7Y9NPeMZZl1D7ZOI4jEaOXHJBrJ1KiT3jzGSgHVjjJUy3HQhW1JOaWlkfzCmHed69dupl gFjp1hv4zEZ0u7oKNP8AceXZlUQ2pZUssy4snSM8/mIto1szXj77UZpTzyySlPGYtoTTj7yqi+nR UpOi2k/8KfaLBpuStaXJUF+S+W38YZJbSfm7gvt9VTuUtP8AF8vYJsL4BY77qRcdML+DxH/yDqhK L49MfL/TkYiwvgFj1SeP4lNkmfnTkBS6ke1NML/vOkX/ACCwkND/ACrv+kv7i1nfrDon0LVPv4I9 W0/JdfeTIiGzkgjI9LSI9o8zv1h0T6Fqn38Eb4f6WdW9IgABdAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApSvzV79 2r+wqilK/NXv3av7AMTZH6F0D6Li/dJGGmQkSHd8Muat5Oei4nu/P3yGZsf9C6B9FxfukjC0xxTs NKlZZkpSdneJRkM8S+9alSOVPi/nUbXI+W1x/ULiPOiyvyLyTV8k9h/UK4tpNPjSu2W2SXO44nYo u9tGOS65AY9uY9CMmKltLPJLxF2qi8/eMX6VJURKSZGR90hE5D6AAAAAAAAAAAAAtqhTYFVirhVK I3IYX8ZDicy/8j84sGU0Cz4TiHJe9Iuan1LkvKNCfipy01bCzPLJOeZnnkR7RmB4eZakNm08glJP uH/fzGLRPVO5Ex1xvGXm5DLchlWk26klpPIyzIyzI9o9jAQLTZplRblMXFW1NIUpaIT05TrW0jI8 9PNZltzyNRkR5DPiJiI3ETM71CbFKXHU1nkrjQrvKLiMfKfJVLhtPrLJSiMj+cjyz/oKkl1LEd19 R5JbQpZ/MRZi2oxGVMYzSZZkZ7fOozzDqSvQABAAAAMfV5z9NSzIiUd6e488hlaWTSS0oyUZq7bI jIu9mXGMgAx1HgqpjMtt+rOzlLlPSFKdWZm0lajUTZZmeSUkZERfURcQnqRul7qSlPm1TmzMlPnm sy7iC4xepSlCSQkiJKSyIu8LGnJOQ67UVl+UPRb8yC9ovwngkAAEC1qlNg1aA7AqUZL8ZzI1tqPI j0TJRcXeMiP+A0pRK+qPOmRIU1ilPMPrjsw5aVOFqkL01ElaEmS+2WZdwyLR843ZUHSbirLMs1lo kXz/APkIq5QKQ5VWq0qEgpbKVJS4WzMlceZcRns4z2i1ONGHemqLxKleDVXMVUzZC2avW6ay23U6 hBrLT7rTUx6nqU6lmOslkpalJLPNOiRnszLM++MtDmut3HTJTFzt1Ck0iSlvUZoWtlSyNvRI9mZZ EWwtqcuIZWuwXnFR34csobqF5E7qUOJIjIyURoUWRkpClkeffF1BkUCHUoCbmtegwjIlNxZUdPa6 ZFnkaTSWhsLMizVkZcY6MLEoqmJpyngxxMOqmLTnHFsZWiRGpZFkks8+8NT3DckeDLVdBUpTy556 ERCElmhpBGWuUf8Ah0s8u/kZFx7BMqhfdH1DzdKS/UnzQokJjtmaDVlsI15aKf4jUjFs3O6qJ1Ba Q7UWVLcqTj6NHMkZky0kl5Iyy7bSIs8z25jWdWqLTKkzMZxDMUui3VNqkO45NYUwW3WRHE6X4tRk ZkRZ5JM8si48iM+6NoRmUsNJQScjyLS+cRO2oFZptOa4TSjXIUtTq9ZompJKM1avNHaqMtpFokRc RZbMzzEupTnMiioJhB8S1lmoy8xDgqmdaZq6nZRFoiIVq682wiI84exEpCss+PYYspNbkSlF1PQt JEWRqM8iFhNbNa2VPPKccU4kjNZ55pz2lt7gvOLYQzrryizSmnipmmQ/tmSlu/5c8k/UKxrWaCbN Xap4i7w8gMpqmV4iIekvOMpUaFmXdPLu5C1hmp4jlumZrdPYZnnkXeHyorMoxtpIlKdPQIsuPPjF dls0oQ0RFmREWwsiMxO6k3yyVKZWazfzMkkWj/qGTHlptLTaW0FkSSyHobUxaLMZm83eHSaNpZPa OrNJ6elxZZbcxBDptOpNKqrdIYb0I1QgPNOtn22rWpGWiri+Koyz+SZibzmSkQn2FPKaJxtSTWki M0kZbTyMjL+ghdNpkKDYkY4pPFFnPoYqLy3VLNEZKlEWSTM9FJ5JT5iWfzjr0eMpc+NviF/iFCfO nxK9CzKTSH0vpy+QexXz9w8u7kLy0N7XTaNUjtvKaVNkSG3HEmRqSs+7/DveYebvqcdu0pMuKhct p4kspOPkv4yiTpfMWe35hc3/ACKtR7LdbtlDEeU+tqOSzUTeqJxREpZF3VbeItu3PuDTA/TmpiW1 rsZT6xwajros6hTkyIZaLkhmJkw+ZJLRXplknakizM9hZZHlsGYtqpTKxR2ajOjtsuPGoyQ2ZmWj mZFtPj2Ck1Z9toNCzpDCzQZGRLI1Jz7h5GeWfnGYJJJIkpIiIthEQ58Sqmd0NsOmqN76AAMmgAAA AAAAt50ZMlg0no5p2kZ8QrLWhtBrWokpIszMxYaDlWV+MJSIhHsTxG57CC196dzHQaU1JqevNSFM sJLYku1NeZ7M+6JEPKG22kkhtCUpLiIiyIegQAAAAAAAAAAAAAMnQ/yrv+kv7i1nfrDon0LVPv4I uqH+Vd/0l/cWs79YdE+hap9/BHRh/pZ1b0iAAF0AAAAADFVG6rXpDxR6tclLhOnsJEiY22o/4KMj AZUBSjSos1lMmHJafaXtS40slJP5jLYKoAACwqdfoVESS6zWoEBKuI5UlDRH9oyAX4C0p1WpVXZ3 zSanEmtftI7yXE/WkzIXYAAAAAAw8y8rQp7+9Z91UeM9nlq3pzSFZ/MaswGYAUo0qLNZTIhyWn2l fFW0slJP5jLYKoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAKUr81e/dq/sKopSvzV792r+wDE2R+hdA+i4v3SRhqc3q4iS76lK+szMZmx/0LoH0XF+6S MJTHFORS0zzNK1J/gRmM8TctSuwABgu8rQhxJocSSknxkZCxVBfiGbtOcyI9psr+Ke3ud4ZAAFrE nIkGbS0KaeSWam1cf8O+LoWs2CUokuNrNt9va24Xc8x+YeIs/SUUaYnVSCzLI+JWXdITa+4XoAAg AAAAAAAAAAQe46bEqeIFOiT5b7SXaa6cY2nzbUh1LhGZpyPjyMvqMTKIwuNEYjOPrfW02lCnXPjO GRZGo/OfGKFUotHrbSWKzSoc9tB6SUSWEupI++RKI8hiI1Bsuy5aajFiMU92WZQ0ZLUSTNaiPRSj PRLM0kewu4NJnWiIUtqzMs7OacfhvMtKyUtBkXsFkzVmYhNxJUZyNoJJJZlmnYXf+oZQWlTjqeZJ 1oi1rJ6aNnH3y/iKRPUuqb/g7P8AjGCz77hD6U2GfFLZP/8AWEKEVmnS2EvtxGMlFt/FlsPukKp0 +CfHEa+wQZCoUmOfFIbP/vkPSXEL+KtJ/MeYtjpVOPjiN/wIeVUeAe1Dam1dxSFGRkGQvRi6g4yh TsdjVtGstbKcJO0kkW0zy4zyIfJiZsBg1oqS1bSShCkEalGfEWZ8YR49UgkpwybkqdPSczPJWfz8 WQmIQ9xa3SXqIqsUx/fsNllThHFLWKUSSzNKUltNWzi48wiXHRpkB2ptzNCMy6bLi3m1taKyMiMj JZEfdLuDBT7Zp1XkR2I1TrFCShRqVGp8g4qHTM1Goz0Ms1KM9p8ezZke0VrotqXUoSKRTKfTFsSU tsy5U4jfeS2j4pkS0nrFFmeRqVmRnntzMX1aeuVZmqEoJRKIlJMjIyzIy7o+jV9iIuWjSpVswpc+ QUD8dGgVEkEt2MSzQskrJJEWiZkae2yPiyLjEsot3sOxFR7hU3BqkJv/AI1oyNKCWWZGaDP4xHo5 lkZ7DIK8GaIvGcK0YsVZTvX9WM9egs9mh/zMWIpR6vDraDnwZKHmlmeiaTz2EeX/ACFUcVd9abuy ndkpyGtewtruqLZ8/cFGOTMyOluQ0hw2zyUlZErIy7ouhaSWlMO78YQRn/2hEeWkQUz1ImOtdkRJ LJJERF3hSfkPMKbKOZpccPIld4em3m3W9alXa93zCi1/xL5vmR6CNiPP5wiLTeUzwhkKaTaJJuTF 61Si2LcPPIy/sPkt7XvqcLi4i+YUR8UpKEmpRkRF3TCapqi0kUxE3W6k6dQIl7SQ1pJLvGZn/wCX 1C5FkUljfpr08km2Scz4uMxcb7jZkWvRmfnCqmSJhVAAFUrM/wDiKjlxpjp2/wCo/wDr60i9So0q JRcZHmQs6Y2pEc1rcNanFaRmZEXc83nzP+IuxarfZFO5noz6ZDJOFx8Si7xiqMfSFGaHUdwjI/r/ AP6DIDembxdlVFpsCHsVSjwb4lUZmqHEblQnd9NLTq223dhk4RqIkmZpM+I/8ImAtJdIpU89KdTY sg8yPN1lK9pcXGXcGuFXqTdliUzXFoQyjW9a8eHweot9uuKqC3HG0ZJUzmo9FSTSRaJKNSVZEeRm ZKy7olj1qTa1aSLeuSc27JaUg25bTfbEbaiNDmSs+3yLafnMe10GjLiyIRUyMhmW4p15LbZI03FH mazyy7bPbpceYtDtKmKSaHZlZdQpOipt2sy1oUXeNJuZGXmMh0RpFLHY1QjFO4dzZs1unVR1VNXL U3DmPk2r8U2SUKUacszzUThkf+LYezuz9tK0tpS4vTURESlZZaR9/IGmmmGkMsNpbbbSSUoSWRJI uIiLuD0OeuvXnc2oo1I3gAAzXAAAAfFKShJrUZElJZmZ9wh8WtDaTWtRJSXGZmMepR1dZNoJZREn mpXFrDLufMJsPqEOVRzXO5pipPtEfL85+YZEiIiyIsiIfEpSlJJSRERFkRF3B9AAABAAIlVWLjpV 2Q6pBflz6fOXqJEU0kaYyci7ZJlxFmRHtLv7duQlotNNrIpqvcAAFUgAAAAAAydD/Ku/6S/uLWd+ sOifQtU+/gi6of5V3/SX9xazv1h0T6Fqn38EdGH+lnVvSIAAXQAAAPzt+E33edfwUfbwRwjqG9Lo mxkyarUkbVwWF56CEd5xRbc+4WXfH5yWfubd2FukKQ7iNbdj3TdkBTildUpU1CCdUXGbZvuJNz/u Ee3YLj4QGoT6luxsUnag8txbNaNhvSM+1aQ0hKCLPiLIi+sfu5ubqfRqXgLYUKgMtNwUUCGbaWiI k7WkmZ7POZgPw1wG3XG6E3ImI3UuqVCtHCp8re9Ztqrqcy0SPJSSQva2oi4jIfvLhPiZbeMWHlDx JtKTrqZXYiJLW3agzLtkK7xpPMj+Yfkl8NHbVvUnHW0q9TIrDNRrNDWdRNtJEpw2nCS2pXfPJRln 3iHSnwMd+SrgwAuGzJby18Ga4omCUrPRafQTmRd4tLSAbF+EO3bZblmzYtu2dqZF83G2s4ROESkw mC2KfUXdPPYku/8AMPyPtuyt1zuza7VKrb1Pum/JLKtZNfclkiM0pW0k6by0NJPvJI88u4JX8JTi FMv/AHX16655ao1vut0aKk1GaUoaQWlkXczWpQ/VTchzsINy3uSbEZvi8KBbJ1Onpqsx6bJQyp95 4tNSjIzzPYZFn5gH5A2viVunNxTieinSJNetesUtaFSqNOcNUd9rPiNGZoWhRFkSkmZd4x+8+5zx po+6CwdtzFSjoJpNYjEqQwR56iQk9Fxs/mURjS2IuAm4x3dt0Uu95t5Rrol0eKqIhuiVlDZOtGrS /GEktM8j4jIyyzMb2wWwOw33P1mJsHC2ivUuipfXKJhyY9JPWr+MrSdUoyzy4i2eYBPR84h9HlxO m2pGkZaRGWZdwB+QPwkHwg+IEnEOr4G4PXA/Q6LQnDh1WfDc0X5kgi7dCVltShPFs4zIxyza2473 ZeMNvMYi0HC+5q3TpSdexPlzmm3Hk8emhL7qXFEfcMiPPuD9Hbv+Bywtue8pd5tYs3MiRUKkupSm pkVmQl1S3TcWjMtA8jzMvmHftHpcSiUmHR4LSW48FhuO0hCdEiShJEREXc2EA/nrwU3V26K3JmIZ w3avWkN06UTFXtysLcNCkpPJSDQvahWXEZZdwx++OEmJdBxiw2t7Ey2XDVTrggtzGiPjRpF2yD86 VZkfzD8SfhWqna1S3Xlb4N6hT0aBFYqK2cslSSSeZHl/iIjSRj9Rvg1KLVaHuNLAYqza0OSGH5bS V55ky48tSOPizSZH/EB0+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDiybbU4riSWYiqYpiZkiL5PXmH0fk1Tc f/hKt0RiviVF3M97xDtm1a/JgssPQ6Q2lhgnnEskS5DJqXmlvPMzMx3HuNYe60h2RWkbrypRptxq qmdNWwUIiKHqkbP+ESlHx9PjLP8AhkLUUzVTrTllfmV/lq1Yzzs6CAYS9bphWRaNYu+otuORqPCe muIaSalrJtBq0UkXGZ5ZF84/K6obsP4SO/LXr26Xw/otKo+F9uSH1O09cCMolx2Vdua9aW+F6JfG U2pJFkrYWQz141pjhnPctqzq35P1sAac3JWP7e6WwPomKaqWmnTZZuRZ8VBmaG5LZ5L0DPaaTzIy z4s8tuWY5u+Et3ddwbnmHTMMMG601EvuomidNnFHak9TIRK7UjQ6lSNN09haSTySRnxmkxfFvg16 lW+9lcL+7TrU7negDVW5YvW5sRdzzYl8XlUuqFbrNJRJmytShrWuGpRGrQbSlKeIthERDaotXROH VNE9SmHXGJRFcdcXAABVcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSlfmr37tX9hVFKV+avfu1f2AYmx /wBC6B9FxfukjBUn83WXedX/AHGdsf8AQugfRcX7pIwVK/Iul3nl/wBxni7lqV6AAMFwAAAFKTFZ lI0HkZ94+6XzCqADHE7Kpp6MjSfj7CJwi7ZHzi9bfYeTptOoURbTMj4hU4xaLpNOcVpHGSX+kzSX 1EJFdEmO6rQakNrV3krIzFQWjlKpzidE4jZedJaJ/WQp7wlMfmk9zL5DvbF82fcIMhfgLA5dQj/n UMlpLjW0ef8AQxdR5TEpGmy4Si7pd0vnCwqgACAELxMpJzocSTqVv6DqWW20GZLS6tadWtOX+IlE RdzYZiaDCXZIRGhRXtIjdbmsOtNd11SFkrQL5yIxphTauFMWL0SWzUqtUCmt1KGy0iJIOOy40s1E 6SSLM9u3jzIZsRCx6g45MqVLiTm6nTYzqlMzUJyPTUozU2ruKNPfL+OQl4YtOrXMGHOtTdYQi3rM fhZZIV+Nb+Y+P+ovxZ1Bl3SZlx0aTjKtpFxqSfGQrRZTMtvWsqzLiMj4yPvGKTnmurAApS3EsxnX FGZElB7S4yEbxaI/4+oG6e1mL2qe8a+6f8BdSJcaIWlIeSjPv8f1DG006g5DaajoJhOWanV7VKPu mRC+j06PHVrTI3XT43HDzULSLKa+VVNuLBbUoyUS9eackoy7pH3THpc6fTUpTNaTILiJbZ5GfzkM r8wxdWURuoR3Up/uKVVWhNMXlaylUasaEtSH25DZaKHmlaDiPMRkfnPzbRiYd10R6HLpV+E+hGvU 1EdlRFqWbZbNM1oSaU5HmekZ8W3iFd0lRXteklG2s8lkXcPvisomJTKkKJLjbiTSoj2kZHxkJw9J qw9+cIrwIr96MU2wLhtZiU/h9VqZW2XXFOPsPu9sSsiUkiWnPaZbMjyLtiPYJFT5T0htbctnUyo6 zZkN556LhERnl5jIyMvMYj7LVTtWoVSsUaPCo8BmNpPPKb1ypWh2+moiPPZtTmZ6WRqIuMjKqzdt HuOpQJTFPcp1ceM9+R9FRa5kk7HD7iiLZkZ7S4hvi00Y9M1xvY4c1YNUUzuSNa0tpNazyIuMW5zm ssjaczP4pGn43zChFZKU648ozNk3DUlOXGff/wCv/wCuQHBMRS7YmZYxcOSek8ykm0nkeqz+Nkfs F2xLaWgyUWqNB5Gk+4LkYqa1oy9doko0kSsjLMj74tE6+UqzGrnC9VOipPI3f/lMU1OJmuJQ3mbS T0lK7hn3hcNG2ptKm0kSVFmWRD2K3iFs5Wq229/JLQTkaO984rmyyZGk2k5H5hQnGlvVP5kSkqyI /Nkfs/uLoJmcpI4LYoi0nookrSguIu6RgqG0lJqN1aSIszPSFyLWa4pZpiNKyW5xmXcIKZmZRMRE KUKMpUZCifWnjLIvMZiuw46hw47x5mRZpV3yFdCEtoS2ktiSIiFOQxriJSVaLidqVBrXnNNrL2JJ OM7pcaT2K+YZpKkrSSknmR7SMRZqSZL1MhOgsi2H3D+YZeBNaZbNt5WiRHmRi9E6uUq1RfOGTAeG nW3kE40slJPiMh7Gu9kjtxXWikTWIUY2XVoPXTUqV2zMYjLSXl/3i8wkKVJURKSZGRlmRl3SGLtV aJFJqN0ymmyj1g0zGEuGWyKTCEoJXcLS0VKy7mnke0Y+yXFIpjTZlkl7SeSkjPRbIzzJKCM9iSLi Ihti0RRTHFnh1TXM8ElAAGLQAfFLShJrWoiItpmYx5PS6kpRRVaiOWzWGXbK+bvCbC9ckMMmROvN oM+LSURZi2dq0RB6tleudPYlCCzzP5+IemqXCbzNTJOqVtUp3tjP6xcttNtJ0Gm0oIu4ksgyFkiE /LUT1RUWWw0sp4k/P3xfERJIkpIiIuIiH0AvcAABAAAAKE6UUGE/NU2twmG1OGlHxjIizyIYCj1y 46hXGYUynxGIu81SnFNuGs1EpREzlxZZkS88/kn5hVu6qRUQpNDTL1M2TCekNJNBmS0Nl2xfxzy/ iLF+ocFKlDqtTqEPeFdQkjI2zQuLoNJJBEekZKRxlxFkai48xvRh61EzbNjXXaqM8kvAUYc2JUYy JkGQh9lzPRWg8yPIzI/6kZCsMWwAAIAAABk6H+Vd/wBJf3FrO/WHRPoWqffwRdUP8q7/AKS/uLWd +sOifQtU+/gjow/0s6t6RAAC6AAAB+PPwt25Ouii4hvbo60aO9Nt+uNNIrhx2zUcKUhJIJ1ZFtJC 0kktLiIy28Y1Pue/hSMd8ArBi4dM0ah3PTKcnV09VVJ0nYzfcQSm1J0iLuZ55D9csY91puZ8JqjM snFjEGkRJ5MEqVSn2zecU0stmk3keZKL6xr2z9xzuB8cabS8ZbUwZoE6BV0b6iuxzkRY7hZntVFQ tLXHnmRoAfi3ugMWcXd0Jcy8asTGJC2ai6cGE8hhTcNsmyz1DJns7UjzPIzPbmY/Q/4EEz4N4nlt y39B+7WNWfDC1mzqDd+H+C1i0mmUqnWtS3ZKoFPZQy1F1qiJCCbQREnMkmf8R0b8DDYkugYCXJeU tpaE3NXDNjSTlpNMNkjMu+WlpAPy83XalL3T+KClKMz4Tz9p/vTG0cKNyHutt2zTCv8Ap7sVdIhN pgQp9enLjsLQ0RJ1cdKULPRTkRZkkk593MYD4Q6yplkbr7EOJJZNDVTqBVWMeXxm30JVn9rSL+A/ ZD4Pip27U9yFhyq2jbJhilpYfQgyM0SEmZOErLu6WYD8SsQMNt0HuJcVIcetrlW1cEXKVAn0+Sam JTZH8ZtZZaac9hpURH3yH7e7h3dJlun8CKZfE9CG67BWdNrLSCyIpTZFmsi7hKIyUXzjj74bxVJ4 O4apza6p7+lmRf49Rqyz/hpZDMfAiszE4X4jvuJcKKuvRiaM89E1lH7bLz5GnP8AgA/SsAAAHEW7 /wDhCbd3OtHlYbYcTY1UxFnNGhegoltUdCi/KO5cbuR9qj+J9wjqfCK7uxjc3WyeH2H0xl6/62we gsjJXUxhWzXKL5Z/4SP5x+cm433F2Ie7SviZeN01WZEtNiYbtbrj5mt+Y8Z6S2mjP4zh57VHsTn/ AAAYbciblzEPdl4wqqdZ367b7U0pty1t/MyXmrSU2Sj+M4viyLiLaP38t6g0u1qFT7cokVEaBTIz cWM0gsiQ2hJJSRfwIYPC3CqxMGbLp9g4dUCPSaPTmyS200XbOK7ri1ca1nxmo9piWgADXNq45Wvd WK1z4QMQ50WsWyltxbj6EkzKQpJGZtKIz+LpERkeR7e8I7Vt1PY9Lq+I1JRSqrJ62rVNcqL7aEE3 JOY680SWTUotLVrYWlZnkWZGRGZkYi8Zd/8Ax9Scou3QAxkC57cqcR6dT6/TpMeKejIdZlNrQyrv LMjySfmMe6dcNArByU0iuU+ccNWhIKNJQ7qVbdi9Ez0T2Hx94xM5ZSiJiYvDIAMdSbit+va3qFXa dUd7q0Hd6SkPatXeVomeR/OMiCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjriTUVW/Uk0dpLk84jxRULVopU9oHoEZ9wjVlt GRGHvG24942lWrSlSX4zNZp8iAt6O4aHWkutqQa0KLalRaWZGW0jIhTFi9ExHBaibVRL8lcKfgxt 2Oi1q9UJuLacPppzlzGaXGkreOoPJIzS6t1lwiQRmZkWekfHmRDp34L3dJ4iYvWzeOGGLFScqdw4 fTGWCnubXH47huJJK1f4lJUyss+6RkOeLVs/4THchquPB/DCzGryoFcmuuxKyqMcvUmtJI16F6xO qUaUpzJwlERpLZ3+mNxZuXcRNyngbfV31uPHqmKN1MPVRyIj8cgnmmnFRox6Jlpmbi1GrRMtq8iP ZmNaK4porrn9OrFo67/8KV061UU/4tbf1W73aLrTT7amX20uNrLJSVlmRl3jIccfCC4ZbpS7cL5d qbn5NvwLHOlSnbopzZpjzZydIlqaj5NmktJBLzzUnS0sjzEmwaf3Qe6b3N9325uj7VVh7c1WckU6 IUCM9CW2zq0m28RKdWr45nmZKLMiyHF9uW58KDgBaVZ3M9mWG3XaFVX5TcW4SY3yqMiQZ6a25GsJ KNI1KV+MSo0mo+IY4lMzM0deUxwnun3NMOqIiK++Ynu74dDbmrdU7n/CrcHPYgWLTJdLgWalcGRS 5rqXJL1VWWaSNaSIl6xR555FkRGWWwcYYkRLEr+5GxBx4v8AxPtGu4xYm1qnSypbFciyJ1MpyZaF JYSwlZrQeiRGssu1SlJHlkY7UwI+DWt+n7lSRgfjPWJ6KhcdVarlWXRZKEKYdbLJtlK1oWkySRnm ejtM9nfGlN1P8Exh9h7g/ULlwCjYg3TeDMqKiNTXpTEhLjSnUpdVoIYQo9FBmfxtmXdGmkWnFqrn OZ1fhumec+DPBywoojv/AHt4Z+92XuCbzs+4ty/YdHt66qPVJ9GozTNRiw5zTz0Jw1KMkPIQo1Nq Mu4oiMZzBrH+p4g4j3/h9ctEiU5VtVKYikSGFqynQo8lUd01Eoz/ABja0tmoy2ZPt7C25wD4Pfcr 0nc64Qxqs5Gr0K5ruisSq9AqbiDKLIRpESG0pQk0FkfEo1H5xHq9hhi9SlSrwsa2pjdwP4i3LSzU vNJpodYVoHMIiPJSG3moj+fyW1d8aY1U1Y09/KJmd/wV0WmIwLcIi3G0Jm/ut6oxR70uWZb9Op9J tq5qbSYr0lxZm9CkOaCpK8j2HsUpBFxkaePMbSRuicHk2zVbunXedNp1CfjRqmdTp8qC9DXIUlLB uMPtodShw1p0XDRoK2mSsiMy0hdeF1zUGLe8O38Pp1Vp8e4rXepkJttJ76iw0IJZo0th6BJ4z7pD B7oFVfrse7MYSsKoxqM2xaFEi0+qRd6y6pJZryX3CNtfE2knUISaiyM1ry2Dmwq5qpi++bfD8lP1 qv8AEovVjTTO76/nmMvhaXStKx2wsrFFq1eYuVyLGoaULnt1GnSoMllK/wAmre8htDyiWeRINKD0 zMiTpHsGTsXE+zMRynptafNU/S3ENzIlQpcqnSmNNOk2pUeU226SFlnor0dFWioiMzSrLSN1WunF 6s3TfFbw1upNuqtxijFCJlUCrSH0SSf17BaSVkbJklSDI8zUntc+I5TueXsSer1ywK5V7vq1mxYs BNEmXhTGodWKVk4Ulo9W22bzKUkwonFo0jUtwtJWWzaIvb3cs5+u+F6st3HybwAAEAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjLlxIEZyZOlNRo7KTW466skIQkuM zUewiFuiuUVxTqG6vCUphpL7pFIQZobUWaVq27EmXEZ7DAXwCmUhg3ijk+2bpo1hI0i0tHPLSy72 fdFQAABhHr2tFiodSnrigIlksmzbN4syWf8AhM+Ij8wDNgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC lK/NXv3av7CqKUr81e/dq/sAxNj/AKF0D6Li/dJGGgMmzHyV8ZalLP8AiYzNj/oXQPouL90kWC/j q+cxli7lqXwAAYrgAAAAAAAAAAAAALORTkLXr4yzYeL/ABJ4j+cu6LwBO4WCKiqOrU1JJNH/AIXP 8Cv49wX5GR7SMeHWmnkG28hK0nxkosyFkcOVB7enuGtstpsrPMv+6fcDeMgMNc6Xm2Ik5iO++cSS ha22CzcNB5pUafORKM/4C5ZrUdStCU25GWR5ZOFs+sYitXVUaVXm6YVNQqNIaTqX1L0SNwzyPM+I i2pLv5mL4cVa0TCmJMaubH2Olq322Ij8Q0FW1qeYktuqdQ8tJHmSi0S1atEszz2Gee3MTca9lxbx olPgNSWIcadDkHHpzqXiUy+hw9Y5rUmWaCIkZaRHnnllxjYJqTkZ6RZF3cxpj02qvxUwasrcH0WU mEtKzlQTJD3GZf4V/OL0BhezZbQ5qJRGhSTbeR8ds+Mv/IU6y4TdPcSZmRuZNpMu+Z5EPc2Kp3Rk RzJL7e1J9/zH5hj51UjvxEoXm28l1BLbPjSekHeMuyg22UIMvipIhTlS0RSTmk1GriIh56oRP2n9 Bi5T5yH1OdziT8wzrrtGS9NN96+Kro/Yn9YsJL5yHjdMsu4Rd4hSAZTVM72kUxBxi3XFUlWnGXqz PjLLMj/gLgBWJmEzF1qbySM4k8kaLhaJGZdqvPZkfz94JDcBiQVSeaRvhLZtJXlmrRzzNJfUKMty MclRzHkNtMIzzUoiLbx5mNK3biw7PamUqj04oaDcNCJJOma1JI8s8u5mPK6Y6c0PoTDirSJ/NO6I 6/J63Q/QWl9NYmro8ZRa8z1ebcUGRGf02Yk9BSkmZm0ThGfHszL5h7qrlUl0p9mkuJYm5aJ5lmpJ HsM07SLPvGewcsRpUuNKblxH3G5CFktDiFGSiV3yPvjom37nbmRoUavkpipKZQa16OiekZZ/Xkf9 R43QX9ZYHS2JVTj0bOYmLXm8Tfq6s+56/T/9IYvQ9FNWFXtInfaLTHf15M7a7VTapRJqxvk9rF6K X3CcWlOezSUXGfd/iLw06yoZGexDeRllxkYpLceaUlEaRrjUexJ7ci75mPrW+mnVPvsqWpRaPanx fwH2c5zNXF8dEWiKXuCS2nHoqtpNmSkn5jz2f0/qLsYxEh85zqWGT03E6RpXsyyJJZ/1Fc48x7Mn 5JJT3Utlx/8AX8RWqnO8rUzlk81F6MbZJU+3ptq0stMsy2H3BdlIjq4n2z+ZRC2egMIjr1aVEZFm WSjH1mDEcbS5oqzMtuTiss/rD8tjO6rIlIYQRl2ylbEpLbmPMWOtKlPv5G6v/wCUu8LZMFp2S82Z mlLejoZHnlmXHt/iK6XXYvaSTNSC4nPaJmItalETMzeV0AEZGWZHmRgM13l1pt5Og4nMhR3ix3DX 82mYuAE60wTEKSHF0w0vx1KyJREpBmZkZHsC4Ko/U6BU49LcQpxcZ5pOpcI1E5oGWjmXErP+JClU 9Peazby0iMjTn389gwVkOsIZmQ23VKUTpvL0u4tRnpln5lEZfUNqdbU1+DGqY1op4prVaPRLptGJ vSfvWEwyl6M407oNpJKDSRLLiNJFsNJ7NnmEft+txKxEU5DlMOrjLNh447hLQS08eRpPIyPjIZG0 6LAq0eqz6jT4ztInuloxZDZONrcZWslPmk+1I1GRbeMyQkxYNy4Euuy5lHYSzT1NNtJySSSdcRmW aEl/hyyL+A69Ip2mHFU73Pgzq19yVU9anIqTWZmZGZZn3doqSZceIjTkOkku4XdP5iFkxEnuNJS5 J3u3l+TbLtsuPafcP5hcR6bEjr1pINbny1npHn3xzxFozbTN1BLUipO62SlTUZPxGj41+dXsGQSl KSJKSIiLiIh9ASAAAgAAAAAABhbhrdUpD8JuDRm5jct3UqcXK1RNLP4pGRIUZkfFsHqnXJFlvv02 YuNDqcVZtuxVSErMjyzI08RqSefHkQvanTm6lHJpTi2nG1E4y6g8lNrLiUXsGOmOV6U02zWrXpNW YQeisicI1r2H2xIcToltyzLS4sxvRFFVNpyllXNcTlua5eoNdrVxxKn1cVOrOtTEeXBjuLhxW/8A ElavinmRkZkW0tLuFkYn1t2bInWQxQLwhaMuI66bTiXNM0K0laDiFZ7NhkZF3P4C/jVytU0yZftN tuIki0d5PEs0keezQyLaXdy2DzS7zqDtXhUiuUZMFdSSrexodNeaiSpZpVmksjJKDM+PuDqiqLWh zzTneVvaDsiLD4OzoRxpNLbQ2ou10XEGaiSssu/onx7e6fGM+MRWVIt6v9VH3070qhE28pZ5Gypt JmkyP5Jlns7gtadeESr3F1GpqEvRkxDkHLJfaqXmg0oSX+LtV5mfc2F83Ji0TrTMbnRh1xaInekI B5swGLUAAAZOh/lXf9Jf3FrO/WHRPoWqffwRdUP8q7/pL+4tZ36w6J9C1T7+COjD/Szq3pEAALoA AAH5nfC07j67sRHKfj9hrQn6tMpcPeVchRWzW+qOkzUh5KS2q0czIyLbkefcHBeCu7r3S256tV2w sPbyRGpBOKUiJNhNyN7KP4xN6wjNG3uF3R/RIZEZZGWwQS4MBcDrsqxV66cHLJrFTJWkUyfQIr75 H39NaDVn/EB+DGD2BG6B3c2LT9YNup1I6jLJ2uXLNQre0ZOe3NZ7DURbEtp2+bIfvjg/hdb2DGG1 Bw0tdokU+hRERkKyyNxRF2yz85nmf8RKKZSqZRYTVOo9OjQYjKdFtiM0lttBd4kpIiIhdAOC/hON xDXN0HQ4eKeGEApV429HUy/BTkS6hFI9LRT33EnnkXdzMh+YODe6p3Sm5JmVW1rJr8uhaTxpm0eq QicbaeLYZmy6XaL755EP6MhEbywgwnxEcQ7f+GVq3KtvYlVXo8eWafmN1CsgH8/dSq+6Z3eWK8VE lupXfcDxJYQTLGhFgs57VHoloMoLjMzyH7j7kDc60/cxYJUfDZh5EmolnMqslPE9LcyNZl/lLYkv MRDads2daVlU8qVZ9r0mhwknmUanQ24zRf8AdQREMwA/DT4ULEK/aBuvrjptCvWu06IiDBNLEWov NNpM2tpklKiIh+mm4buqSxuJbJu+46lImORaG/MkyZLqnHFEhS1GalKMzPYXdHSimmlnpLaQo++a SMeiSkk6JJIi7xFsAfzI44YpVrGjFa5cSa7KW8/Wp7rzZKM/xbOkZNoLPiIk5FkMHRr9vi3YfU+3 7yrdMiko16iHUHWW9I+M9FKiLMf1D73Y/Yt/ZIN7sfsW/skA/mH67eKnlKun1vI6Y/dX4MysVau7 j2z6lW6nLqEx12bpyJTynXFZSFkWalGZnsHUe92P2Lf2SHtKUpLRSkiLvEQDie/KzPw6xHvvGej0 yRPl23d8eA5HYTmp5qZAS0hJ+bXakvNpZjAX/bMW3Y+ONBuAn5KU2JZC6oppClOvuOTqkt9ZEjtj UpSlns25mO9jQg880ltPM9nGBtoPPNCTz49nGM4otEx99WXuyVmm9Or99fnLiPFWo4c1ej4g1HB0 ocu0o9gOR69It9RHG32TydWwrV7N9JRpZpM9YniURGJE0nCO8rjgN4O1VtigR7Cq0K86hbaVOOQU rKOURqQhlKlHMSopCybUWuSSXMy7Ys+nL5sijYgWhVrKrKn2YFZjnGkLjKShwkmZbUmZGRHs7pGM xChR4MVuIwntGkJbIzIszIiyLMRVRrTN91p8b5e7MoiaKoq93hbxycw7l64aMm+nbUt6t4c3vGj0 JBuXTZzJMrbJLhkhiehta2ieNJkew0q2KzSRDqYeENNN/k20p+Ysh7G0zMxFymnVvYAAELAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAxlxW1Qbspp0e46WxUIRvMyNS8nNOsacS42rLvpWhKi85EMmAG4AAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcrbsvdA4Y07D3FTBCuV9 ui3Sm0N+QGai43HTVSlE62hEPSXpPuEtsyUlKcyMyyz25cz7oyXeD1p39QF3zVrbiW7aNjvuIirQ zlrFpbeQ6oyz0e20jIz40F3Mx+jdz4ZYcXtVKZXLysG3a7UaIs3KbLqVMZkvQlGaTNTK3EmpszNK TzSZbUl3hUqmHVgVxyqu1qyKDPXXYyIdUVJpzLpzmEbUNPGpJ6xCe4lWZF3BFF6M53/xVEfXwK/z xbq/mmZ/+Pi/Om57ruDCLGHEa8rU3RtVuio0/CGmVO3WplViut1jNp5CnW0kWi6lsmjk5t7CUtSl drlli7I3Q+6Mc3P2LE5WIMx86bBpUuk1py86PXJ8OU9LbbdQe8F5ttmk9iXEEfGWY/R5jCHCmLUa XV42GlrMzqJT+pFMkt0iOl2FB0VJ3syskZttZLWWgkyTko9m0xQpOCWDVBoFQtWiYT2fT6LVnEvT 6dFokZqNLcSZGlbrSUElaiMiMjURmWRDSmqL3qz/AOb/AH5K006tMRG+PK331MTbFrXZYmDkmlS7 6rl4VxMSTJOq1M0HJcW5mskpJBEkkoI9FJEXEku6MDSm8OzqVGhKkU96iTbbcfka/LRzSZKW66s9 hL2qMzM8yNJ8WQ3OlCUJJCEklKSyIiLYRCLSMLMPpU9dRftaGtx14pLiDI9S48R5k4prPQUvMiPS NOeZCszebpiLQ+4Wuz38PqI7UVSVuHG/FrkkZPLY0j1KnCVt0za0DVntzMxKh8IiIsiLIiH0QkAA AAAAAAAAAAAAAAAAAAAAAAAAAUpX5q9+7V/YVRSlfmr37tX9gGJsf9C6B9FxfukiwX8dXzmL+x/0 LoH0XF+6SLBfx1fOYyxepal8AAGK4AAAAAAAAAAAAAAAAAAACm+w3IaU04kjJRGWeXFmXGIbddyU +k0hiDVmZSHtPVtPtoI0Nuo7ZGe3PblsyI88j8wmwxlXpLU9C1KjtvpWjQdZcLNLie8L0VRTN5Vr iZi0LStV6zJqYsSvtImVJhtDjUMmzNa3XEl2iCPIjPbtLPtS2nkW0a9uCkQmahDjU6VWo9Penk9L YJh8pDGknR7ZeRkpBq4jI8iMz2nls2hSKVSqfFQxApzERKVG7q0pItBR8Z+YYyg3/blzokqoz7rq 4bpsvtuNG2tCvOSu4N5x8pmIyYxg3mImc0hbRq0JRpKVokSc1HmZ5d0xZ1GU6wttLZ5f4jPv+Yeo 1RbfWTak6Cj4tuz5hb1dRG42klEeRHmX1DiqqvTeHXTTabSukzm3Iq3UqIlpSZmkz7ojdTSSlIkr VmvTSkzPui7NRJ2qMiLzizqSkqimaVEZpUR7D7wpFUzMLTTEQvAHhtZG2hRqLakjH03Wy43E/WM1 3oB8SpKyzSojLvkY+gAAPDzpMtm4fc4vOYCG3zZ8692ShRKumEhlw1OpNs1azLYkthlkRbREKdgl VWSUuLdbTSs8lFvXMyP7Q27DZNts1K+M4o1q2d0x8R2s5wi2EaCP5zHiaf8A050f0ljzpGPTM1cb y9zQP6j6Q6OwI0fAqiKeFoaupWEtwQ5CaixdLC1pd0zQuJ2qzSfEe3ui/mMzpdXTGr84oMtx0jaQ pstU5kezQczy/geRifNPb3hKd0dLJZll5zVkPjtLizozkepx25CXi7dK05kOWv8ApTQqKNTCvEXv aZm0y2/E2l49etj2mbWvEReFM4i6e1r47meintyPiPbtP+4v21pdQlxJ7FFmI2unXBbnb0V1VTp5 ccKQv8a2X/u3D4y/yq+seqPckCQSm4zy0m2rJ2K+Wi8185Hxl5x9Bh40V2w64tV9fdLxcTRppicT DnWp7ur3x1Msky6rq/dK/wDoF8MPrF69cxr8qszIkknPJJFtM/qIv4ZjKRnte0S9mfEZecdNdMxE S5aZvk9q+KfzChAz3sg+4e1PmIQnGDGux8FqEir3fNUTkkzREhslpPyFEW3RT3CLumezaNE2p8IR h3MqTVNrtr1WmRFr0Uy9JDpIIz41pI8y/hmOLE03AwZ1K6rS97Qf6a6V6SwZ0rRcGaqI6/Li6sj9 tKkOZbD0U/VmK6kpWk0qLMj2GQxluVan12nJq9JltS4Us9cw+0rSS4hW0jI/mMe6zXYtF3sT7Lzq pLhNklpOZpLMiNR95JaRZjriJrm1Lw642V4rymN6uWthZkSTcZLvcaRcNuIdTptqJReYeuMW7kY0 qN2MrQX3S7hiMp3o3LgYK4yqTE2mVCDKQ2008pt9LqjS0ZLLIjWZEZpLMuPLYZl3MxmGHyeI0mWi tOxSR6eJlTSkSCSbaiNKkqLMjI+MjLuiaJ1arzF0VRrU5I/VrjY1btHWzIaqZKUy5GQg1qbWTZrI 8y40mWRkZZ55ls7gxMehSbNpT8Z6nPGmvsLUUlcnJ1p02T/KIURKLt9mzYWZZ5DNKpCkIdTRJs2C w4gtclCyNLppzNJnpkoyPuZkZHll3iyyWHMCkVqmVNqQ0UsjUTDi1EZkWaO2SSj2mou6eeeY9HBj DqpmKXDiTXFUTUuUvXA/ZxvUqG1Cp7MEt6tMKJxx5Gh2pkriIjLI/r4+MX9t0uHFpsZ5o23lKaSZ Op2kosuMu8Kt3VQqDSGKLR4y0yJKUx47UdrPVtFopUaSLYWik9heYXkKGxT4jUKKjRaZSSElnmeX n75hpG6FsHfKuAAOZsAAAAAAAAAAAAwt0JfdjxY29X3oTshO/iYTpLNlJGrRJPGZKUSUn/lNQtTG tNkVTaLs0MDWLzotMhuvxpsafIbQpxMZiS3prSlSUryzPLMtLi4zyyLaLJLFlJkZr6tUd1Sfxch9 99BJIuNCTWo0kX+XLLzCPz6nAtmVAi2na8VUN19ol74i6yTKSp7JxaFKURkRGssjPP4xmRZEOinA jrlz1Y02yhK6fULzVT0TJtuxZBuMJfTvSTkWRkZ6JErMzPLLzbRHLUms1rGefKzUgotJI22HGzJR KUbRKUZKURpUWiadictp5ntLO+tuPiTRlrmy5kaoomk06th1ayU0eiRGhJGei2RGZ/FLLYXzi9nY rwaIUqNW6NKRUYqkaUeMk3SWha0pJRLyIs8lkrRPbkRjWiKIqnUUqmq0ayR3PalNuphlmepxCo69 Ntxs8jSZkZH9ZGYiNwFSLDrkOSxTH24qKbIJpMRJK1jhuNEszSZltLJvLLj0j7xDYMGdEqURqdCf S8w8nSQtB5kZeYUanRaVWt7FVITcneb6ZLOmXxHU8SiFt+UluuGsrZfuW4Lghv1h/KTSmk77bbLR aSa05ZbCzNwzIzNJmWjnkNiiPVGgP2tV6jddHbbciTUE7UY6jJJpNOX4xvJO3JOkZkZ98xn2XUPt IeaPNDiSUk++R8Q5ceLTlub4M5Z73oAAYNWTof5V3/SX9xazv1h0T6Fqn38EXVD/ACrv+kv7i1nf rDon0LVPv4I6MP8ASzq3pEAALoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKV+avfu1f2FUUpX5q9+7V/YBibH/Qu gfRcX7pIxU+UzCjyJkhwm2mEKcWoy2JIizM9gytj/oXQPouL90kY6Sy1IS6w+2lxtwjStCizJRHx kZd0hlidS1KKYdzp1Tp9QqE56StTk9xJJeSadHRIiPRSZEaS7xeYSwUo0WNCYRFiMNsMtFoobbSS UpLvERcQqjOurWm8JpjViwAAKrAAAAAAAAA8PG8TKzjkk3dE9AlcWfczAewEaoNzyX5fUqupjsS8 jJOieiRrI9qMj7vEZZGeZGJKLVUzTNpRTVFUXgAAFUgAPiy0kmku6RkAxNcMoLKqil5LRfEd0lEl JpPvmewhpZ+bWqVXqrWYsmEh2Q6RpZKVklakOKLJaTTnsI0oPanaW09onlyw5iqrBkJinIRHS4SU qjIfabWew1LbVkai0dhaKiMj82ZHi6iuhlLgR3Yyii05lpSUIjnEcVIJJp0l7dJZGRqyLSPLM88+ MdGDEautOd+pz419bV3d6XQpKnoTMp7RQtTaVrIj2JVlmZfwHxcp19RpjJNR55GtXEQwPVeO27GX IhyI8eW6220aSLQWpR9rlt7Yvm4hJkpSkiSkiIi2ERDironDnOHZRXFcZSt0wyUelIWbp94+L6hQ qMdluPptp0VaREWjsF+LOo6LmpjqLY44W3IVpqmZWqiLDdOYNtGkt3PIv+0MfepcXu6w/nWYu0kS SJJFsIsiHhx5pks3FkQjWqnrTqwt1U9KCI47imzLizPMhShsKltk/JWsyMu1LT7nfzFR16Q82o2U 6tBEfbHxn8wpN1SnQnYtNkSENPvsm6glbCVxZkRn3cz4he9Vlcrrg6fH7mn9sx4TSoxERKNSstm0 xeDw28y9pal1Dmgo0K0VEeiouMj7xl3hTXq4rasKPU6Llloq+0YoLhRylNtkSslJMz7Yx9gVunVB SmW5CUPodWwphxRJcJaDPSLR4+5n820fVy48pcdcZ5DiTdUjSSfEaTNJ/UZGQtE13tKs6qnNp0dq MtxsjLRyPLPMuMVupbP7Rf1jGwZ82WzUmZ5GRsz3WGjNOjm3xp+fYfH5hngqmqMpkptOcLPqW1+1 c+sYW4bNpNVbS45rG5SVETUho9FxB98jL+wkwtqgtDbKVrUSUksjNRnkRF3RSY2n5as2lFdWDOtR NpQo5d1WO4S6xHcrFKSkyVNit5vNJy/7VovjEWXxk7e+QkFBrEGqQkVOjympUZw8821kojLzecu6 M8RkoiMsjI/6iIVjD5lUxdatOadFqaz03DbTnHkH/wC9b4j/ANRZGMomvDy3x4uq+BpP6vyVcY3T 746vhycCbuao1Oo7oF6JVnXE0+LBhtwe8TCkEpaiL94bn1DJbpDDXc72nhdbtawyuGLJrUlTRGlm cT65LRozWtxBGegZH5i2mZdwbF3ZFg1C77dj3FV6Oqn3Lb6FJJ1stOPUIh7VJS53FJPtiSrb2y++ OQMPbEruJN306zbfYU5KnvEjSy7VpH+Jau8RFmY+V0yNTHro1dbX3T1w/fv6cqp0rovRtJjGnDp0 eJ14ify1Zb57ut+gm4InVmZgMhuqGtTEWrymKeaj/wDZ8m1Hl5icU6X8Bum7FR476ZUxrWEqK6xG LPJJvrNKSJXm7Yj/AIZ9webDtSh4ZWXSLKpJEiLSoyWE5FtWrjWs/OpRmo/OYzS58VZJUbK16J5p zRxH3yH1mg0V6Nh0ROcxD8H/AKg0vC6T0/H0jCyprqmY5q8JlyPEZYefU8ttBJU4rLNRl3TyFYzI iMzMiIuMzFl1SNZGTEZxaiLMU3SkOOf8alZNd5G0hrqzM3l5l4iLQOSjVN/4QiWtSdDaWzjMzP8A oX/mLlEXSUTkhesV3C7hC3ckMNuMqZbUkkmactDLj4xclOjn8Y1I86k5CarxGUIi3Wr5FlllsFfD c40ONUaHGNgkw5alpSkyJzJfbGai4+MzyPui4pzMKQ0l1TiVqVn2ul5+8Kk2lLdkMz6fMVClsJU2 lxCCUlSDyM0qSfGWZeYb6NOzm87pZY0a+7qYGrQ5NHxKj1SU5OkRKm3qoxI0NW07lkpLilGWzLtk pLMzM1ZEeQlwwNUp1w1uO1Squ/Beh69p511klsuGSFEokknM8szLLPSzGeGuNVFUxMMsKJpiYkAA GLUAAAAAAAAAAAAAeHWGX06D7SHE555LSRln/EUZFNgypEWXIjIW9DWa2FmW1Bmk0nl/AxcgJuWu CmphlRqUbSDNWWZ6JZnlxCoADX1Kuen4VVFy1alJOVTVIOal1lGm9F0jIj1jadiG9mzIu+Nk0itU mvw01GjT2ZkZZ5E40rMs+6XmPzC0JlknVPE0jWLIkqXolmZFxEZ/xP6xjHrZpxyFy4C36a+8f45y E5qtdnx6ZFsUf+Yy0i7hkOmMeJyqc+ymNy4uaoHUHF2rTzJT0hvOWvjJhg9m3/MraRF859wXjTaW m0NILtUJJJfMQt6fS4NLaU1CZ0CWrSWpSjWtau+pSjNSj85mZi6GOJia8taKNXeAADNdk6H+Vd/0 l/cWs79YdE+hap9/BF1Q/wAq7/pL+4tZ36w6J9C1T7+COjD/AEs6t6RAAC6AAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcg7vDdpXHucnbZw1wptlqv4h3oo94MupNaI7em TaVaBGRrWtZmlJcXaqM+LI9F2Bu6d17gZi1bdg7tzD6NApF3voZiVFpmOhUbTUSUqJUZSmlpIzLS SfbkR59zI5J8JbgTi45iZh5uqsHqA7cM+xyaZm01ps3FpSzIU+06SC2qTmtaVZbS7Uca7ujdGY6b o2gWXdWIGDT1hUGmS3mKebxuayVLMkmtRaxKVERESdmX8RXAq3TOc61pieF8rfe9fEo1sqd2reJ7 +v74P3WbWl1CXEHmlRZkfmHJe7y3ZVe3NkK3LHwyoDNbxAvN/UUyM8k1paSaiQlegRlpqUtRJSXF nnmOm7IdkPWbQnpZGT66bGU6R/LNtOf9R+c+7BLffwnWBkWaROR2yiG2lZdqR6bitn/eIj+cMWm2 PRg3ymq3wtM/szortg1YsxnFN/jkvsI929utMJcbrZwh3bVkQ6bGvU0pp1QbbjIUwa1aCFaUZaml IJRkSkn26cyM8uI9mbrCv/CVU/Fd2PuW7WhVCyt5MGh53qTpb4yPWF/xTiXO93Mu8NU/DCoYYrmB lRjryqLVYlpZ0eM0acQzPv7DJPd7o75xAxFpmFmElYxKuVWUag0hyoPpzyNakN5kgvOpWSS85hVX TVg7WctWZie/LJeKZorimM9emJ903zt735jQ91P8KHSsd7awHvHqLEuatuMvqprcKlyFoiGo9Jxx cc1k0WilZ9sZHkWeXEP1sZ1mpRrjI3NEtIy4s8to4C+C9sStYhOXvuzMSS35c2IFUkRqc85t1EJt eSybz+KnTSTZF3EskXdHdN0XbbVlUvq3ddai0uATrbByJK9FBOOKJCE5981GRF5zGtX5KKaKo/N1 ++er762MTeuqqN0Zct8suA1m1ulMDHmXHkYj00iZklEeSpLqVsOGlKi1iDTpNpNKkmSlESdvGMzX MZMMLbrke263eUGLUJOq0Gj0lJLWGRN6a0kaEaWZZaRlnmQraV7wmYD4RkZZkeZGPohIAAAAAAAA AAAAAAAAAAAAKUr81e/dq/sKopSvzV792r+wDE2P+hdA+i4v3SRYL+Or5zF/Y/6F0D6Li/dJFgv4 6vnMZYvUtS+AADFcAAAAAAAAFJ6VHjlm88lHzmAqgLDqk48ejCiLc/zK7VIFFqMj86matPyWSy/q JtxGBuG2Jk2pqnsQYk1txSHS1jhtPRnUERJW0rRUXcLMjIZ6hIqbVJjN1g0nLQk0uGS9LPIzIjM8 izMyyM9nHmB011stKNPfSovlnpEf8A33OjF/xUXWJL/G17Bea5qiKeCkURTM1QvwFuzPiPkZoeSR lxkrYZfWK5GSizIyMj7pDNd9AAAYSsEbDjjiSSRmjSTnxGfn/iI89bVJqqo06pR1PutJUadJZ5dt kZ5lxHxFxjO3O+wTRJSvNzLaRbciLbtFnv5gi7VLmRbNiDGc61GdLS0VRapSjUWlRDI48FpBpMjT 2vFl3u8L0UCmx/8AEo0/6iyH3fsX9ukZzrVb141Y3Kws6g6ltyPmk1ZL0si49hD25UGE7GzNxXeS QtZqHZTjObOrPSNKVK4+IWopmJzRVOWS6/4yRxETCfPtUYwWpqz8w6rRq3Efhm6plUeUxlkpCjQ5 orLJWeklXGRln5shmmt9PmtKpGrUg8siIjH2NS4UVBoZZJJGpSzy2ZqUZmo9ndMzMz85iYq1MlZp 1nqTKj6lSSfbzPIiLSLjMWk2HRaxT0w6ibDqFIIszWRKTs4yPjIxcSGkKeajpbIkqPSUfm/6L+wu d7sF/wBij7JCLxTEWTa+9gibrTVRiNsVyAVKZXmtBkZyFIJBkSTWpRkrNWRmeRHsGWY6mxdZvdUd vXOG6vRURaSz41H5zFfUM/skfUGpZ/ZJ+oRNUSmKbMXPo1vVHXqfQwl2Q2ba3mlkhzRPjyUW0s+L MXJuxjmpNDjSUtpPPIyIjz/8xd6lr9mn6hbpaaOatJoLLVkeX8RMVXRq2Un5EdyahDkhomkJ09qi yNW3u9/iFMrpt05ioB1qIiQkySaFuEkzM+4WfH/AXEhhtt9lZISaXFas0/1z/oPUlunw2VzJOg20 yk1rWo8iSRcZmH5ZsTrQtW601UKe+7EN6K4ZutMrdZM+2IzJLhJ4zTnke3LMvrGGco1PcI36tUpN UlaJkSnlkltGZZHk2WRFsz7gyTFft502XIiSdW6wqTk2wZqQ2WjmpRZZkXbEMhKdZkREONLStt4y IlJPYZGLxeid1lMq+u4iY222lBRZBEkiIsmjMsv4D6qotIIlLadQk+6tOj/cXRFkRF3gGV6eDS08 WIqsaHcENdPl045MZ5BkttxJGhZHs7uZHszGu8NcCsOsOqzV63ZlFTHqU5Wbylu6RspMzPQbI/iF n3P6jakuQTCCSRZqcPRSWf8A15vrGHk2hCmG1MN5+HUGyyKVFXoOZfJVsyUXmMjITFGHMxXVGcbm 9GmaVg4VeBhVzFNX6ovlLI05DLiDccLSdzPSJRbS27BfElJcREQj0F2qw5zkOc4hb61qNDiUmSHG zUWSjLuGWlkZf5Ty4xmFOSmCJTqUuJz26BbSITiU53u56Ksty5AeUOIcSS0KzIehmut5vatpdz2t rIy858X/ADFc0pVxpI/4Dy8hK2lpVxGRj7TUKktsozyNWzPLuC2+EbpVoUeIp7VuNEWs/wARHkZH 85DI9S1N572mvtlxknSzLPz5j4ilaC0uJf2pPMu1F+NqLxGbKq0zksFLqsUjUtLclCdp6JaK8vMX ELqPJZlNk4yslF3S7pH3jFUWUiC4h7fkFRIdy7ZH+Ffz+cX3qr0BYlUJSO1dprxqLj0MjIOqL/cp kj+gWLr4BjHKy40oycpsgiLI89g9N1tp4jNqM8rI8jyILSXZEBY9VUl8aI+Rd09Eek1eEfxnFN/6 0mkLF14AotzIrqdJEhsy/wBQrEZGWZHmRgHmAQWjNVY7giVg6o0/KqGtjTGVx/yLUdxxKtAyPYRq MuMj7gnQtXRqK0V68XAABRYAAAAAAAAAAAAAZOh/lXf9Jf3FrO/WHRPoWqffwRdUP8q7/pL+4tZ3 6w6J9C1T7+COjD/Szq3pEAALoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAByZu+6JutUW7bt87lev1M5NCfcOs0KCpJOT2TNCkLSk/yhpNKiNBbTJewjyyHKcbDndlfCD4q WXUMf8KFYe2LZskn5bcinvQDkmSkmtKGZCjdWtzRJOkREgiz29w/1fHwRhxs5vOdpvF+JXM1RaMs rfBzPutsc8fsDZthUzAvBh++Ylbfej1dbVImzSpzTZsk2ozjGRN5ktzavYehs4jGqfhENzVi/flb sPdHYE0w6jeNhrbddpjeRPPNoWTqVISoy0zSrMjRnmZHkWfEO7x8CYmbTf8ANE3iUxMRGrEZTFph +Utu2Buwd3vj1Yd37oDCN6wLMsBzWvIk09+AT6tNK1k21IUbri3DbQWkRaBEnucR9SfCeU/EGubl mfaGGtoV24p9bqkOK/Eo1OemPFGSanFKNDKVKJOkhBGZ7No63AK4ivDjD6om/v4lEzRibTrtZqDc h2NIw33MuGlnzqS/TJsK24S50R9o23WZbjROvpWk9qVE6teZHtzzHjdSW9U7mw+o9MpdElVVXC+3 Xn48eOp8yYbqcdbq1JSR9olBKUoz2ERGZ7CG4R9F6q9bEjE4TE8puzooimjUjhbm5vviw5z9xY91 OFZ8l12vWrSI0V5qCpRznEMSkqbbMk/jFJzbIyTmZZpz7ggF20y4bM0qph0xiJTL4qtGo7aqI7aD tWt+vym22koJ90mltwthapa3HY6kEnTMjJJGfZ4ClMatUzxt4X+t1oi0xPv8beSnHN02GzfSlLho LTSk8yJWW0iFQfB9EzN5uRFosAAAkAAAAAAAAAAAAAAAAAUpX5q9+7V/YVRSlfmr37tX9gGJsj9C 6B9FxfukiJOXvbzTFRmTZEiE3THUIlb6iutGjWLNCFbU9slRlsUWZZZmeWRiW2P+hdA+i4v3SRF4 VRauGXWoD0Bp2nxXt5aThaRSFaP40jSZZaJGZJ85krvClcR1piZ6mWbcbdbS60tK0LIlJUk8yMj4 jI+6PQoPyI8FlJGRJIi0UISX1ERC306nL2IQmK2f+JW1WXzDCzRdvPsx0abzqUF5zFp1QkSTyp8R Sk/tXO1T/DumPbNMjoVrHs33PluHn/QXnFsIMhYFTHHz0p8pbp/JSeikvqH3qNC7znOKF8AXksse o0LvOc4oVGabDYPSSySld9Z6R/1F0AXksERFsItgAAgAAAFF2FEfMlPR0KMu+QtnKOzomcZ51lz/ AAqJZmRfwF+Am5ZhUP1Vp7esqahlRnk2pTWaV/xz4xdnDqLpaD1RLQPj0G9E/rzF28w1IbNt5BKS fcMWiafLaLQZqbiUFxEaSUZfxMTcW9Wp0ZqlPE2nR0clqVxmeXfMWLKjW0haiyNSSMy/gMm9BqTz LjDk5JoUk07EFmYwEZ91nSj6pbpNmfbEXf2jLEi69E23rz8WszItFRlsPu5C1NRSjU3GSkkFsU5l /YU3VPpc3xHiuIV/j0jLIyH2nS2UspYUeiacyI+4e0UimYi8LXiZsu2WGmCybTt7p90xTlflI/7z /kLgjIyzIxby/jx/3pCtOcrTlA6h1l1UlotPSItJPd2d4VWnUPIJbasyP+g9i3djmg1PR16tXGZd wxGU5SbkXxCqsiBCaZhJkKkTZLMFk2F6LiXFmZpUR5cRaO0jyLIjLMhl6S3Nhz36Y09KlQoZ73ck TVlrlPpItI05Z5oPj7bIyz2FkMXHknMrkinLQc2UwtuUhhT5tMNoLRNK16BaRqNZHkWeWw9gkFPY VCacXNma+XJXrpLh5ESnDSRGZF3C2FkQ68TVw8LU63NRrV4ut1L0B417P7RIa5r9on6xx2dV3sW6 fz9f7sv7itrmv2ifrFs262uctSVkZE3kZ+fMWiN6JJpKW/GQWWRL08/OWRf2Mx6qUKDUILsWpMod jLT+MSstmRA8tBy456RGREvM8+LiFwS21HoktJ98iMTusjfdhbfpvAaxmajRGmnatW5Cd7b+Uaia J3RM28y7Y0pQ3nln/hH2NTpUdhUNczXSXXd8urS2TaEqMiIySktiSzLPLzipTKIiktMnJqMiWmE2 pEfXmWiyk8tLRIi2Z5fwLYWwXsJOkS5B8bqsy+YdGNj6+7cwwsHU371dvT0E6ZZKyLP5x6AUpL5M NaREZqPYki7pjkiLy6dy3ePWVJlBpSZNkZ5+cyM8v/lSYvRYb3NkmnnDM3nHU6RmfER9wX4tV1Ip Y2t09me02h9braTURGtpZoUnaRkekW0sshi7f37EuSp0hypypUWOw0tG+VaakqVnn23GZZF3RIpL ZusLQkszyzIvP3Bh5VuwKs+VSTJmQ5uiTa3oz5oUoi4iUnak/wCJGL01fltUzrpnWvSya2FtLU9F Pj+M33DFRmS0+ktE8ld1J8ZDEU+1qPSZSKgU2XvlPbOvvzFnrdhl+MLPRPIuLZsy2ZDL6mFOSS45 b5JZ5ktosyV58+Iw1dbcnWtvepLTrkVZt5dsZNlt2mZ94ZCnxW6aZHJfYQSU5F+M7v8AEWLVNm6K VPMrdjNrNZNLPJZ5lx7O6QyUJikO7Go6CWXGhe0y+saRhxTCs13leolxXdjUppf+lZGLGrV6NSZN OhrZcedqUje7SG8sy7U1Gs8zLYWW35xdLp0FwslRW/4Fl/YW6rfpCnkPqhkbjZGSVGpXa58eW0Xi 3WpN+pkQFiVJZT+TkyWy7yXMiDqUjuTJfOmItCV8Asepiu5Pkl/3w6mvlxVJ8LQLxxxtpBrcWSUk WZmYwz2nJcORSYbhKI/ypKJCVfwPjIXyaTG0iU8t17LiJxZqIheERJIiSRERbCIL2GNZqcpgiTVY imthfjE9sn+OXEL9OokIJadBxJ8R7DHsyJRGSizI+MjFmuksEo1xlrjqPb+LPIjPzkGQquU+E6rT XGbNR93IUTpEbjbW82ouIyWewfNGrR/irbkp/wAxaKvYPpVVCDJMth1gz7qizL6xOfULSNbbdPlP TqfINt+QZm6taSVpGZ5mf8TF3lWG+1SqM7/mURpP6iF01IYfIjZdSvPbsMVAmZneRERuWO+6kWw6 UZmXdJ5JEY+dU3UbH6bJSf8AkTp/2F+Ai4seq7KdrsWU0XfW1kQqMVODJc1TMhJrPiIyMs/rF0KU iJHlJJD7SVkXFn3AyFXMu+AsTo0EvyaFNn30KMg6lJ4t+y8v3phkL4BY9Tn0H+JqL6f9R6X9w3vV Gtrc5DufHrEZZfNkFhfALDfdRa/LQNMuLNtWZmHVGSW1dNeJPGWWWwvOFhIqH+Vd/wBJf3FrO/WH RPoWqffwR6tqazKfeS2SyNKCMyUky7o8zv1h0T6Fqn38Eb0fpZ1b0iAAF0AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMZcNaboNLeqK4z8jVFmbTBEpwy7pkRmWeRbc uPZsEWwovU7qo6ieVKdcacX/AMS8jRS5ms8kpz2nkWWezIX1+YZW9iHvI649NbVANZsqjPaB9tln nsP5JDG23gra1s11i4Ys+qyZcczNByZBOFxGXyc+JR7Mx4WPHSk9IUV4VMbGMpzzm/Xa3U9rAno2 NAroxKp2s5xllFr5Xv1tF7u6qY/uv2HamBdIvuQUuRPqFbftSps0t1uMwyWihcx9CmW81OaRIUWa 9WZFtEYvnEbFmdud8NMQsNMT6lCtop1Ei1Z6qJJ6vVGQ7U22HWXn0ZNoQRGolKQWa+LYXH0Jjhub 7Hx4co824qxctDqdD17cSpW9VFwJWoeIieYUtOek2vRTmky/wltLbnfVDc/YdTcLKPg7GhSafblD kQZMRqI6SVkuI+h5vNRkeea0Eau6eZ8Q9q0xh1RG+9/vut1cXjzVGvTPdMfff3sji7az95Yd1ClN 4h3DZOihMlytUKQhmYwhsyWrRWtKiIjIjI9nEZjWe4voN4xcN5d33Zibdt4MXJNclUddxT0yX2Ke kzSztSlKSNZFpnkX+Ihsu4cJaTcsy55NQuW4yYuqiookmEiee9YzSdPN1hoyNLbqicMlL25klPeE itO2KZZlsUu0qMThQaRDahR9YZGvVtoJKdIyIszyIs9gtF4mqY6/uf28Wec000z1fxb9/BzJcmJG Pj8K/wC8LexDgwGbQv0rfgUp2ksOx5MI966W+FmnW6ZG8vRNtaeIs8+5krpxHx1s5d/2lSZ1UvWZ bhUuob6p9KiKqzUB/SOUUWMRIZkOoJBm2hRGas8jJZ5Ee314IWcukXHRVO1De90V7hFNPXFpFK/F bEHo7EfiUbNvd2j3W8HKDWK5XLnjV2vUmrVxuGhyZTphNLYOMatWpBGk0n8Y9JKyUlXdSMqKa4im Kt0Rn79X/dmpaub+/L3a3+1i8Bb8j3lSq3FTiPLuyTR6jvZ4qpb7lFqkHSaQsmZcVbTJkrtjUlZM tkpBl8YyNR7SEPsDDSm2C7Vqgmt1auVeuPNu1CqVV1tch8m0EhpH4tCEJQhOeRJSW1SjPMzMxMBv NupemJjeDUG6Yn39Aw+mTbEupmhnBbVIlvtoNUtZEaSQhruJIzMzUfHkWRcZjb401iLuV8P8Sr5V iJVK3ctOrJsoYJ2mVHUElKU6JZdqZls2Hke0dnR9WDRjxXjzaI7r+GTt0KrCoxoqxptEd1/Bsiyj uFNtwo92VKDPq7KDbkyYaDQ28ZKMkr0TM9EzTomZcRGZ5bMhoXdSV/GS2MQcJ6hbt8sUez6hfdGo 82nQ2VFKqJvqc1hPPGeRMklBETaS7bSM1HsIhtPB7A2zsEoM6n2jIqLyJ6kKeVNeS4o9A1mW1KU5 nmtW08z4izyIiGVxEwvtzE07bO4nJieC1fiXHB3u4SM5UfS1ZLzI80dueZbM++OfSNTb3wpvTeJ3 Wyvnkyx9nNVcYc3iYm2Vs5jL3ZtM1KvYyUvdm2nQa/fLCrPrtHq7sCgwGFNtoSwlrRdkLUebrpms +4SUkRZcZmMxuuWrtTbFMqbOM72GVj01ciVdFXpjxorDuSCKJGhFq1kpTjxkRpItJXapSRmobOrG GFuVvEagYny3JhVi24UyBDSh0iZNuSSdZpJyzM+0LI8yyGrcRtxhZGKFAt+37lxKxJ0LZq8qtwJT FwmmSmU8vSJRumg1fitqW8stBJmRcYyqtVTTTw8/JnTaM+v/AJ/hd4VV7GCgbkWLcmKD0hN9U+25 Ut1ya0nfBKQlxUdUhGZlrtWTZuEefb6RHtzEOtmvboWtXNh7QpmMTTca/rVmVyoOtUOHraY9GOKZ JhZtmnRWckiVrydySlWWRmSk7utrCWlW7havCeRctx1yA9EkQnqhWagcuoOtvGrS03lFmoyJZkWZ bCIi7gr0vCu2aRVbWq8VyYb9o0eTRIBKdI0nHf1Gmayy7ZX/AAzeRll3dm0WmYnGmqf0/wAVfvMc laLRh00zvzv4W/dzn18cZKhaNtVes1K46VQ0u1ym1e6bWthurvImQZrsdpcmITTym2XG2lOKU00Z EvZmhOQ6dw+uCNdVlUW4Ilxwq81OhtvJqUNk2mZWZflEoMzNGfyTPZxCFM7nukUqkMUi0r/vK20t SahJW5Tp7Wb2/JK5DqVodaW3sccVoqJBLIsi0uPOeWbaFFsO2KfaVusLap9MZJhlK1mpZkXGpSj4 1GZmZn3zEZWJ33j7j7szQAAgBSlfmr37tX9hVFKV+avfu1f2AYmx/wBC6B9FxfukiMIagWrTCgwk KUSNNZEpWalGZmpS1H85mZmJPY/6F0D6Li/dJGFbgINTzkxKXXHs0rJRZlo/Jy7wzxJ3LUwjlDuC O81SJVUQ6uo1wjcjspIlG2ztUS1F/hTo6OZ98yIZygVlm4KY3VGI7rKHFrRoO5aRGlZpPiMy4yCD RabSzKQhslPNoWjfDmRrJs1GrR0vklnkRdwiIhfNusraJ9t1CmlJ0iWlRGky7+feGdUxO6E0xMb3 sBglXzaKJe8lV+ITulo/G7XPvaXxf6jNpcQpBOJWk0GWZKI9hl38xWaZjemKondL0AoNToT6jQxM YcUXGSHCM/6CuG5IAAIAAAAAAAAAAAAFjNfW66iBGWROL2rMj+IkTGYoVaoy0svs0mOqQ+22pZkg yI9hZkkjMyLSPiLMyLb/ABLA0u4KBUojDkYpMBTijQZTmFNZuZ5Gk1lmjTIyMjSSs/MM7UqhEoEV tlljfEh9xtpmMhRE46payTnt7hZ5mfEREYwdTKXRrOjWXChFKqjzanFx2nCyhoNRryI+8nPQT3Ty G1GFGJT+ZlXiTRVkyFTp8tthLZavJ5ZNGeeeRHmKO9GEtlHU0Wig+JXGR57f45ivHl1iZb++a3AT FlNOEZpSrMlER7Febj4hlHqYh11ThOGnS25Zd0cteHNOVLemvWzlgd5JSebLriD8x55i3ksydNkn ZWZG4WWScjL5hmZcNUVRbdJJ8R5CzcjrfdjEkyIjeIsz7+RilOtey82tdSJmYhREy9rM+4stuf8A D+wuE02tPIMjTHQRll2xmRjLRadqHUuqdzNPcIhei1NN85VmrgiDFmnFlyJ6EnviUlCXloURaZJL JJbe8PiIu9ZG95bWZq2oUsv6bRMBbzoaJjBtqItItqDyzyMXmJnrViYjqR/esfL8in6g3pG/Yp+o ZOLGYmNGSiNp9s9FxPePv5Dy9TH28zbyWXm4xlNNUNIqpljt6Rv2CfqFekwoi5zqVsIUkmyPIy7u YvWaWtbZKdWaDP8Aw5cQxNRrSLf3zPbYKUbZJZbjIcSl1089ppI+PaeWQvhU1zKmJVTEM49RKa8X 5qhJ9w0lkMRJpjDLhsmjLLiNJ5ZkLGpXhV2aOUqZTeoalpN5S5biFLJlCiNzRazzUo05kku+oh8u FmjwqAisFV6pLm1LIoiycUnSUeRF2hFokRcfF/EdE6NXVF5mzGMemJtGauunoUhTaHnEIUWRpIyM j+sfShGkskyHCMvmFSK261GaafeN1xKCJSzLI1HltMVTMkkZmeREOLWnc67QtVuS4xabui6gtpmW wy/h/wD1HiOtuY8b7mj2nxEme0vOPZEuYvSPYwk9hd1Ziq5FYd2rbL+GwTeI3otMvMs8yZyP/tki uZkW0zFjJiNtm1q1KSSnUlkR7C84rFCbM/xjrjhd5StgTEWgi93pUtrSJDebqz4koLMz+YOp1TUa pSIymUKy0izI1GXfyGapEdpmMa0ISRuK2mXm2e0X40opiM1KqpuwyYdDKlyJD+i4wba9etw9ujl2 xHnxClYiGUWpT97R3WWFoU40h1RKXoKUakmZkRcZGR/xF0uNHOZIp0xht6LUEGZtOJJSFHxKSZHs PMhijsyXT1KRa9xSaVGcUSlRtWl5pG3M9WSviZ7dnFt4hvFrWYze90pFvKgsSslKI0rLiWnYohTd qcaPUYtIcUs5Epp11GSdmi3okozPubVp+sXgpuX3sdrp1P2SUHJZL/tEF2yfnLui8ZlR5CdNl5Ky 8x7S/gKotXqZBfVpLjpz75bP47AF0Ai946yj25MlR58lKzQTSC1h5mpRklJEfGR5nxkMsy3VobDb RKbkE2gkdsZ6R5FxmZ8ZidXK6L52ZIBbRp7Mg9WZG26XG2rYYuRVIAAAAAAA+KSSiyURGXeMfQAW r1MhvGatVoKP/Eg9E/6ClvSoMbY07WEX+F4s8/4kL8BNyyw6oSmNkynuERf42u2I/Pl3CFdifDkZ EzIQZn/hPYf1GLgUH4USRnrmEKM+7lkf1hkK4Cw3pNi7YcnWIL/s3dv1GPqKohCibmNKjq76i7U/ 4hYXwD4lSVlpJURl3yPMfRAAAAAAADJUMvxzp5f4S/uLad+sOifQtU+/gi6of5V3/SX9xazv1h0T 6Fqn38EdGH+lnVvSIAAXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKUr81e/dq/sKopSvzV792r+wDE2P+hdA+i4v 3SRYL+Or5zF/Y/6F0D6Li/dJFgv46vnMZYvUtS8rQhxCm3EkpKiNKiPiMjGBjWbTk0CHbtRccmRY Tmk2lSjSSkkatBCiI+2IiMiyPjyIxnwGUTMblpiJ3rBdAojkLqculRVRdHR1RtFo5fMMQjDq1EKL ShOutJz0GHJC1NII9uSUGeRF5iISYBMVVRukmmmepAb5tW1qbbr50+ix2qi+aWIGpRk4p8z7Ukn3 OLafcIjMShdxUmC9Ap0qSvfEz8U1oMuOIUtJ6KiNaUmkjJWw8zLIYSrOs06/Ic+vyG0wXIim4Djq iS2w+R5rzM9mkpOWR+YxhKVT61UcOIKKMp8iqCpT7293SZdPWrcWhRLMthZmnPLbkew9g2iIqiNa WM1TTM6sNjRZkSc2b0KU0+2lSkGppZKIlEeRlmXdI+MhWGu7PZv+zbej0uoUFipMxzcNOokkT5JN RmRKz2KPbxkYmNv16LcUFUyM06ypp5yO+y6WS2XUHkpKi7/EfzGQyqo1d25pTXrb8pZMAAUXAAAA U3n2Y6DcecJCS7pj2pSUJNajIiSWZmfcIYunI6pKXUZSNJJrMmEq4kpLu5d/2CbCrrZtQPKOSozG e1w/jq+Yu4MdV7IpFWNl8nZUSbG2szIzxodSfz8Si8xkZeYSEBMVTTOSJpiYtLWNsW9edLVUavMq tQJiKb64i3W0PTnkEWwjRkae4rRIuMzTsLLIXNoVCtR7ngtXXEkNzqpTFKaWv8YZnrDdUlaiIsjS lZJ0T4tAsjPM8tij4aEKNKlJIzQeaTMuI8stg1nHmqJiWUYMRMTErCuqJNLeTsM1aJEWfH2xcQyA xzDZTKg++8WkUZeg2k+IjyzzGRGM8GylJYKQypo+M9pH3jEcW+pmRFWk8yJ3PLv7DEmcWTaFOHxJ IzP+AjRpScqISz7XWkR/UM6v1QvTulJknpJJWXGRGPoFllkXcAXUAAAGPnIVEeKpsJM9EsnkkXxk 9/8AgL5C0uIS4g80qLMj8w9GRGRkZZkewxjEk5SX0tkelEdVkWZ7WzP/AJCd4v5CzbYccLjSkz/o IDUNedyUuntQVrkS4LhRpREnRYM1lrVq255kn4vnE2rDxMUyQs89qNDZ3NLZn/UCfjUuntOVCQ1H S2hKVLcWSSJWXFmfnF6KtTOFK6dbJDK9Q6aupOW7Hjsw4hU/f1TmE0Tz7jJKNOqQnRUZqMkrVmkj PtMsizIzyOucuOSmsradTTo6tGmtKYW0kkaJfjDSoiPM88izItnEI7BjXFcVVOWzOaRMeS6iQ+SV ETUU3CyZSRlsPQMlZnt7cxsxlhqOw3GZTottJJCE94iLIiGuNOrRFF82eFF6ta2TAC3Sl6ovahhB m0k+2Mv8R94X78E5Mw4bLitFO15feI+4QzEeMzFbJphskpLvDipw5jOXXNd9zDOQX4zRLUgiTnlk R8QoiRKSlaTStJGR9wxYu0ptRmbThp7xHtFasPgmK+LBzM/xH75P/MZCPCfkpNTeiREeXbGZCjUq e+ycfYSiN9JFl38jGahNm1GQlSdFXdIIovvRNVtz1EZUwwlpWWZZ55fOKoANoiym9ZVRpRxykN/l I6icT/Dj/oLpp1LzSXUH2qyIyHoyIyMj4jFlTTNhb0BR/klZo/0nxCepBV6RFrMNUOSa0Z5Gl1tW itBkolEaT7m1JH/AYi8KxcdBS1VKe3TlUxpbRTDfNetJKnUpUaCTs2JUZ7T7nEJKLGu0lqu0abR3 1mhExhbJrIszQZlkSi85Ht/gJpm05q1U3jJfEZKIjLiPaAwds1uVVDqEWoQihuwZz0VlClds8y2S MnSI+Mj0yzy2ZjOBVFpsmmdaLsTctPYnwGjlTWorESUzMdW6RaBpaWSzIzMyyI8uPuDKNuIdQl1t ZKQsiUlRHmRkfEZGPEqMxNjOxJTSXWXkGhaFFmSknxkPkKHHp8RmDFQaWWEE22k1GrJJcRZntC+V i2d3yTCjSyLXN5mXEZHkf1kLdVPkMpNUOa6Rp+KhZ5p+YX4CLpWUerRHUFrXCZcLMloc7XIy4+MX TbzLpaTTqFl30mRg4ww9+VZQvLi0kkYtJNJjuJNyOgmny2oUnZkfzcQZC+FnV6vTqFTnqtVpSY8S OnSccMjPIs8i2ERmZ5mWwizCNPJat7yk6p8tmR8SvOQt6/b8W4o7cWW+82htRqyb0TJWaTSZKJRG RlkZ7DLuiYiL/mRN7ZLum1OBWITNRpkpuRHfQlxDiD2GSiIyzLjI8jLYe0XIsqPRqbQYSafSoqGG UnpGSeNSu6oz7p7C2+YXoibXyTF7ZgAAgAAAAeVoQ4k0uIJRH3DIegAWKqWTStZBfVHV8ktqT/gP hTZsc9GZCW53lsFpEf8ADuC/ATcWSKtENWg7psKPuOpy/wDIXiVJUWaTIyPukPi223UmhxCVJPjI yzFkdNUwenT3zZPj0D2oP2BkL8BYFUXY56FQjm3/AO8TtT/5C9bdbeTptLJSe+RhYZWh/lXf9Jf3 FrO/WHRPoWqffwRdUP8AKu/6S/uLWd+sOifQtU+/gjfD/Szq3pEAALoAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFK V+avfu1f2FUUpX5q9+7V/YBibH/QugfRcX7pIsF/HV85i/sf9C6B9FxfukiwX8dXzmMsXqWpfAAB iuAAAKE2BCqLBxp8VqQ0fGhxJKL+oqtttstpaaQlCEESUpSWRERdwh6FpV5qabS5U5R5Ew0pf8SL YJi85Im0ZsBcN5Oxqy3aNuMMS66+ybxIfd1bTDZf41mWZn8xFmMjadEfoVJOPMdQ7MkSHpcp1BbF uuuGtRlsLYWZEWwthEIfh/YCYteqdz3C/v6rplGjWHxNr0Czy7uzSy7w2SNcS1H5KWeHev8APUAA DFqAA+GZJI1KMiIuMzAWtWeQzTpCnMzJSDRkXn2f8x7p7amoMdtaclJaSSi8+W3+otkn1RmE5n/w 8c+1/wA6+/8AwGRE9VgAAEAAAAsKfmiXNbWeZm7pls7hlsF+LFjJNXkkfGttBl8xC+EyKMxKlxXE o48sxGppGTaXC/wKIzErFF2Kw82ptTSMlFlxCk03m60VWiynTZCpEcjVtNOzPvi6FlSV/wDDGwoi JbKjQou7s4sxei1rZI3gAAIBRmRylRnGdmai7XzH3BWABhZbhyqNpPF+MjuJJxHcNRHlkfm25iNY sVGqJhwaDT7eXPOpvoS26RpNCHEqIyJRHtLZt0i72XdErqtLefQ45Cc0VuZaaD4lZGQu4U1uUnLR 1bqNimz40jSmrVmKlK6daNVbW9Rm6HS2oSVKW5tW84o81OOHtUZmfn/pkMio9FJqIs8iM8h9FvPe JiI64fHo5EXfMxSZmqbytEREWhRo6TVFVIX8d9alq+vIv7C+FvAY3tDaZPjJOZ7e6fGLgJTAAAIF jVPjQv8A4pH9jF8LGqfGhf8AxSP7GL4T1AAAIAWLxE3VmHD2E42pGffPuC+GOm6btWhNII/xZKdU eezLLITAyIAAgYS4KFOqEuDVKNUW4U+Ca0JW60bja2nMtNKkkZZ/FSZbeNJCygXVUYE6JQrspTse TINbbU9s0KiyFJyyyyVptmojLYpJFnsIz2CUC3nwmqjDdgvqcS28k0KNtRpVkfHkZbS/gLxVfKpW ac7wrpUladJCiUR8RkeYw9uVWRVXaqtxRqZjTlx2VZpyMkkWeWRFxHnxmYwWHUyLoVyhUt9tFMpU lKKfoNGSUsLbJekSjMyX25ud3ubcs8ikFrUqHSKM1FhTClNqWt03yMsnVKUZmrZs4xNVMU3hEVa1 pZYAAZrgAAC0qUUpMczJJaxvt2z7pGQqw5BSoyHy41FtLvH3RWFhF/4Se7DPYh0ta3/zITvgX4AA gAAAAAAAAAAAAAAAAAMiMsjIjIWTtMb0jciOKjud9HEfzkL0AF1bJzSffblpQoiQWi4k/jbe6XfH yd+sOifQtU+/gi6of5V3/SX9xazv1h0T6Fqn38EdFH6WdW9IgABdAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApSvz V792r+wqilK/NXv3av7AMTY/6F0D6Li/dJFgv46vnMX9j/oXQPouL90kWC/jq+cxli9S1L4AAMVw AAAFpVac3VYLkFx1bZLyMlJyzIyMjLYew9pcR7BdgJibTeCYvlKJKTVKfUlKmTzgPy3EpKWhknIU lw8kp1jZnpNLPYXaqIj7/cF8zd0FmhwKvVnWmN9tEtRJVxKPLtSLjPb3OMebutmoXIUFuHXX6c3G e1ruqIjNzIyMuPvZGLNywaVE18tM6YpThmpwlrTkvM81FmSSMiM9pkRkRme0bVVUVU3q3saaa6ar U7mWo11UWvSH4lPkrN+NkbjTjam1kk+I9FREeQy41lZFRoDOINbgtyGI8lLTUdqPsTmSCzM0lxcR 9zvCfP1Ja1GxT2te4R5Gr/Anb3xnVTETkvRVMxmuZMpmKjTdVx8SS41H3iIWhR5VRPTmkbLGw0sk e0/9R/8AIVo0BLa98SF654/8R8SfmF2KrviEIbSSEJJKS4iIfQAQAAAAAAAsV5JrLZns0mDIvOeY vhYzdlQgq4u2WRn/AN3iF8JkAABAx81C4bvVJjMyLY82RfGT3/nIX6FpcQlxCiUlRZkZd0gUklEa VERkZZGR90WMBRxXl01Znknt2jPupPufwE7xfgACAAAABazICZOTrSjafRtStP8Az75C6FrUZjcS OozX26iySRcf1Bewxj9ddaM477ZNrI9HWJ2ko/N3h8p5TKwpL7jikxULIyJRnmsyFo1GmVUzaS0b TZn2ylltGVjpqFOYKG1GS6lOZNrI8u7ntIVpzzlacsmUAY5TNWZSchMonVkeZs6OScu8Ri5iTWpa T0e1WjYtB8aTF7KrgAHwzJJGZnkRbTMQMfUSXImw4rRFm24UhZn3Els/rmf9BkRYUxJvLeqCi2vq yRn3EFsIX4mSAAAQAsXf/XDHnYX/AHIXwsX8zq0ck7DJtRmf+XMTAvgABAAAAITY9DrlOqdxtSJc VdvyJr5wWEnpONmpZm52yTySnTUstEyzIy7mW2WUumQ6NT2aZT2tXHjp0W06RnkWefGe3uiNVCVB sittOtPtJZuSoIJ1hxZJJpzQUS3k/wCoyb0u5nt4zEvIyMsyPMjGlczOalERGQAAM1wAAAFlVG1E 0mY0X4yMesLzp7pfUL0DIjLIyzIxI8NOoeaQ82eaVkSi+YexjoCyhvLprpmREo1Mmf8AiSfc/gMi AAACAAAAAAAAAAAAAAAAAGTof5V3/SX9xazv1h0T6Fqn38EXVD/Ku/6S/uLWd+sOifQtU+/gjow/ 0s6t6RAAC6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARdzEOgN3y3h8opPVNxnXE ZN/istHSy0s+PLbxZCUDWlpLjVrGC7aobaVnTY8WEyvLak8lGvb8+Q83pDSMXBrwcPBmImuu034R EzP0ehoOBh4tGNiYsTMUUXi3GZiI+rZYANRbrBdcYwDuudb1wSqNNhRkSUyYyzQ5khxJqQSi2p0i IyzLvj2NHwtvi04V7XmIv73JgYe2xKcO9rza7boCD4bTK/Cw/t2LVo82pTUUyNr5bi06Ty9WkzUY knVaf4ik/bSKYlGzrmi97TZXEp1K5p4MoAxfVaf4ik/bSHVaf4ik/bSKKMoAxfVaf4ik/bSHVaf4 ik/bSAygDF9Vp/iKT9tIdVp/iKT9tIDKAMX1Wn+IpP20h1Wn+IpP20gMoAxfVaf4ik/bSHVaf4ik /bSAygDF9Vp/iKT9tIdVp/iKT9tIDKAMX1Wn+IpP20h1Wn+IpP20gMoAxfVaf4ik/bSHVaf4ik/b SAygDF9Vp/iKT9tIdVp/iKT9tIDKAMX1Wn+IpP20h1Wn+IpP20gMoAxfVaf4ik/bSHVaf4ik/bSA ygDF9Vp/iKT9tIdVp/iKT9tIDKAMX1Wn+IpP20h1Wn+IpP20gMoAxfVaf4ik/bSHVaf4ik/bSAyg DF9Vp/iKT9tIdVp/iKT9tIDKAMX1Wn+IpP20h1Wn+IpP20gMoAxfVaf4ik/bSHVaf4ik/bSAygDF 9Vp/iKT9tIdVp/iKT9tIDKAMX1Wn+IpP20h1Wn+IpP20gMoAxfVaf4ik/bSHVaf4ik/bSAygDF9V p/iKT9tIdVp/iKT9tIDKCKYnYk27hNZ02+LoKUqnwjSS0xWtY6o1HkRJIzIvrMiGX6rT/EUn7aRp Pdk1+UxuernZcpLzW+0sx0rUpJkRm4k/+Q69AwI0nSsPBq3VTEOnQ8KMfSKMKrdMxDdNoXRTL2te lXdRdbvCsRGpsfWo0F6txJKTpF3DyMZca33ONYTXcCrGqBZaR0OK2vL5aGyQr+qTGyBnpWFGDj14 UdUzHKVNIw4wsavDjqmY8QAAYMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSlfmr37tX9hV FKV+avfu1f2AYmx/0LoH0XF+6SLBfx1fOYv7H/QugfRcX7pIsF/HV85jLF6lqXwAAYrgAAAPK1ob Sa3FklJcZmfELeTPQ0smGUm88ezQT3Pn7wpN09b6ifqK9YvuNl8RImw+qqanVaMCKuRlxqz0U/WY 17iBctaaq0WKzUypSIZJlLaUnTRILNRaClFt/wAJ5Enae3YNnpSlBElKSIi4iIQ29MPnrtqLNROs E2UVBpajKjpUgzy4zPjzz2/wIXw9XW/NuZ4kVTT+Vjbety36ZOTULhqULqpKWakGtSEuGStmST48 vm4xsNppplBIaQlKS4iIhoWbY1XoNQZoMypP7zc31JffQtRNKS4RpbSsiL4pLMuPi7gkMnEe5yco VMt+lvSHEISiea2VG5tToktadmgWekosz25d4b14M1WmmbsaMbVvExZspVw0VEiREcqTDbsVxDTp LVo6Kllmksz4zPzDIjVMF5qSy/Q4dEiy50xhyPKqLpEqS445sUpORnopSRn3dmRFxjaiE6CEo+SR EMsXDjDtm1wsScS70AAMWoAAAAAALGq5EUVWW0pKCz7xd0Xwx9bJSoaW0KyWtxKUnlxGMgJ6gAAE ALSfGW6SJEfY8yeknzl3SFSRNjRS/HOkR9xJbTP+Aob6nyPzWLoJPiW7s/oJi4uIspuW1rEbDLYp J8aT7xisMI5HmRpyHHZpNFK7VSm0kRaRcXGL3eM3xo79kgtAvHHENJNbiySkuMzPIhZ9VDdMyhQ3 Xyzy0vipP+Jj6mmEtZLmPrkGn4pK2EX8BeERJIkpIiIthEQZCxNVVk9oTSIie6o1EtX8MhVj06Ow rWGRuOHxrcPMxdAFwIiLiIAAQAs5cFS3ClxV6uQju9xZd4xeAJibDHorDKC0Jza47pcaTSZ5+csu 4LepVmMuObEV0zcdPRLYZZF3T2jMDFR4Uepb4eloJajcNBdzRJJ7A7xcw5kTVIZSer0SJJEftFUp rKpG9yPb3+5n3hg5NPdpjydBRuR3T0czPalXc/gMlFpq0rS48ZbDz0Rneq9l7U2uyIAAuoCxeMk1 aOpXEppSS+fMXwsal+LeiSD+Kh3I/wCJZEJgXwAAgAAAGPrlCptwQXINSiMvJUlRINxBK0FGWWkX nGCoF1R6ZGi0C6NZTqhHSUclyEGlqRo7CUhzak8yyPLPPPuCWilKiRZrKo0yM0+0sslIcQSkmXnI xeKsrSrNOd4VEmSiJSTIyMsyMu6Poidpk7TbgrFsQ31O0qmNx1MpcMzXHccJSjZSfdQSSSZZ8Wll 3BLBFUas2TTN4AABVIAAAtp8UpUcyIvxie2bV3SMfYEkpUZLh/GIsll3j7oj1y1q42q9TKLbVLVJ W4o3ZTistWhvaRZ93j7pcQ8TV1yE7Nq0nU05ceLrW4KD165BkeRn2pZ5ZmRbC7o2pwaqouznFpib JYAwlsXTEuSlxaihtbByUmpKHCyPMjyMv4GRkM2MpiYm0tIm+cAAAgAAAAAAAAAAAAAGTof5V3/S X9xazv1h0T6Fqn38EXVD/Ku/6S/uLWd+sOifQtU+/gjow/0s6t6RAAC6AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAHlz8mrttHYe3vDS+53YkHNuqoyJjkg5czS0l8Z5LWnM/nyG0rhrd Op8Cc0ufHTKbiuPEybqdYaSI9ujnnl5xrnc8tKRSJTq05KfbbeV86lLP/mPmukKqcXpjRKYn9OvP OIjzfRaDTVh9EaVVMfq1I8b+Tbw0huz6lPpu50utcCnKlm+2zHd0Ty1Ta3kEpw++Rf8AMbvGmd2G 6lrc5XmalEnOK0ksz4zN9vYPsujbemYV4v8Amj6vI0D/APlYd4vnH1X2GU2RUsOqFOl09qFHkUyA uay24a0pUbZGvTMyLI+LSLud0xnXkyy0EolOIQtpkmEERZaO+iyMtmewsu6MvhqsncO7Xc2dvRoa vrZQJHkXeGGkf9av3z9WOP8A9Wr3ywip06NRJjzks1PRnFIS8ttOZkRltMiIi4j7hEMRJrtXS0ko dTacYN5RJmuGlslZJSZIzJtST2movikZ5cefHL32GZLSmH0EtC+Mj7o9klJESSSWRcRDFkjTlSqx pedemnHQjUpWpDRaLZKTmpfbJz4+/wAXdIUJFaq5VCIzFnsrZNDZpU5+LOVmoyUZJ1ajPIi/wqTx 58QlmRBkXeLYAiEmXVpFOfN6oO6Lra17G0Fq9F3LZ2ve488xSk1CoxdOREWklaLjZuqyQlCNeRaZ noqItndNJ+cTTIu8GRd4BYUKRKlUxp6Y4246eZabZmaVFnsPPRTn85ERDIAAAAAAAAAAAAAAAAAP hmRbTPIWk2sUmmt62o1SJFR8p55KC+szExTNWUQmKZq3QvAEFrOOmD1AIzqeJFvo0eMkTkOGX8EG ZiGT92PgLFzKFdEmqqL/AA0+C66Z/wBCHVh6BpWN+jDqn4S6KND0jF/RRM/Bu0BzpL3a9mKz6iWH d07vacDUZ/aMYiRuybnkZlSME6mnvKlzmkkf8E5mOynoLpCrfh299o+rpp6I0yd9FvfaHUQDkeVu p8cpmZU/De3YSD4lvz3FqL+BFkMPKx03StQz1NVtempPuIhLdUXzGahvT/Tulz+qaY/9o/a7aOhN J/xTTHxj9nZ4GpJcai+scNyr63QtSz31i8/Dz4yhQGk/+IjGIlR8Rqnn1XxeuuRnx6qXqf8AwEQ3 p/pur/HjU8pn9m0dBVf4sWPHyd7rkxm/ykhpPzrIhayK9RIqDck1iE0kuM1voLL+o/P92wilnnUb queaZ8e+Ku8vP6zFseEdluL05VKXJV8p59xR/wBx0U/05gR+vGn4U+ctaehMH/Fiz8I/l3VPxbww pefVG/6BHy49ZUGk5fWoR2dunMA6fnr8VLfXl+wlpd/8GY4/Zwvslja3bcT/ALydL+4vmbIthj8l btPTl3d7Iz/sNaf6f0KP1V1T8Ijzax0Nokb6qp5R5ulJe7P3OUMzSq/jdV3madKcz/ilsyGOc3cO Au3etVrErL9lSH//AKkkNENUCmMZammxm/8AS0Rf8hcFBQRZE0kiLvENo6E6Ojqqn/2jyaR0VoMd VXOPJuR3dyYTl+bUK7pXe1VIPb9aiFovdz2QZ5RcM8QH+8aaU0Rf1eGp95l8kvqDev8AlEx0N0dH +Gfm/haOjNCj/DPP+G0HN3DTlfmeDl5ud7WttN//AFmLV3dt1lX5ngTWnO9ramy3/wDSY11vXzBv XzDSOi+jo/7X+qfNeOj9Cj/t+M+adObtPEFzMo258URdxTtytF/QmRbr3YmLa9rWClNb/wBdeJX9 mxDd6+YN6+YXjo7o+N2DHOrzWjQ9CjdhRznzS1W69xpV+TwjoaP9VXUf9kikrda46q/J4aWwj/VU XT/sQi+9fMG9T+SJ9A0D2Mc580+iaH7KPHzSNW6u3QSviWFZyP8AVKkH/YxQXuqd0if5OzbGT/qc lH/9ZDB718wb1P5In0HQY/7NPj5p9F0T2UePmpXfuq91CxTEPogWdSm0yGSckQ2XHHCSayTkZPKU nRPMszyz72Q2ru4627DwEptMqcmImrVSqQEakl6KHFpzNzRz/wAJH/QxovEaLo2TV3cvyMc3vsGS v+Q25utWaddGFOGc2fGQ+7LqMFxC1ceitnSWX8dgpOj6PhaZolWFRFMa03t12tMKzg4OHpOj1YdE R+ad3ws2JuN6PfFAwLpNIvqmsw3Y7rp09KHUrNyEsycbWrRMyI81rLL5JJz25jeAjuHKCbsG3UJL Ik0uMRF/+rSJEPitOxdvpOJiTFrzP1fK6Zi7bSK65i15lBb6x1wYwvqjNExGxSte2ahIYKSzGqtU ZjOuNGo0ktKVqIzTpJUWfFmRiV0OvUS5qTFr1u1aJU6dNbJ2NLiPJdaeQfEpKkmZGXnIcNbo3DW+ MUN3jBoVhrslE5nCspLh3ZQyqkXVFVVpPQaMy0XM1JyV3tIu6Ilj9aluYC4b2jgBV8QrrplwqplV rdOqNFmSqfT5VRWs1HEbZipNxajUeTbeeikiLPjHJE/kiqd8+cx9IuwqpnaatO62fK/1yfpBmQxk S6LcnV6ba8OuQXqxTWm35kFt9Kn47bmegpaCPNJKyPIz48h+a1YxWTckXDSXug8bb4syhyMLKTVb dqdDddbKq3ApakyidNsjJ54iS1+JXkW0zPLMVMUaxiAzuj6nXOq9ZYsFFLtF6/JjalQqsqGolEha ybPNpGsNKniSZGScyzIsxemm9UUz1+cRnzUmbRMz1R924v04zLvi1h1WmVF2SxAqEeQ5Dc1MhLTh KNpeWeirLiPI+Ix+XVwYkY4zN21U6M3e50ypx7vah0Olyq7NablUHRRoaqEhlTLyHG1OHrjVnpGr aWgQ6F3CdKs+2MSscbWh3bWZlxxLqfXKplQmOu6mKpRm09kotHNRmotIjzMkl3hWmNamKu6Z5W8/ BFczRVq8JiOd/Lxda0C7LYupVSTbdegVM6ROdpdQKJIS7vWY3lrGHNEz0XE6Sc0ntLMhlcy744V3 NO6awJwjvnG+xMR8R6dQ6/U8Yq/IiQZDbylutuKYbQojQgyyNaFFtPuCAVnEGuIxcqE9zFS9WscW r9j0+m2Uw5IOmvUI5KEmo4+jqjaOMa1m6Z5kZC1URrxTG6evl558GuNRste3+Hymf2fpTmQZkPzm tzEA7U3dsuiysUq9ek6tV6Wx1Og1aayujoXmSGX6a61qVMstJSetQotIjSos+M7jcy3+ujbsKp2S /iVXcQZtXXUCfkRavNNinaJms0y4EhskMEntW0qbVtV3MjEURr6vfE84tl4ssSdnrd1uU9b9BKxW qVb8ByqVqezDitfGddVkRZ8Rec/MMbQL8tW5pS4FIqqXJSEaw2HG1tOGj5RJWRGafOWwYHEGRBp1 02tV7hPRosZyQS3l/kmJSkZMuOdwi+ORGewlKIQyhVKmVVFuUmlrW9XIdyOSGjJOTrUHSWbrjndJ taD0Sz2Go05cWyFm8QAAAAAAAAAAAAAAAAAAABSlfmr37tX9hVFKV+avfu1f2AYmx/0LoH0XF+6S LBfx1fOYv7H/AELoH0XF+6SMXLlR4ukp9wk7TyLun/AZYvUtSqCjKlNQ2jddPzERcaj7xC233Olb IkbVo/aO+we2oTqn0yJrqXFI+IkiySk++MrW3rvBKrEgs0oZjJV8rtll/wAg6mLd/PJrzufxkkei k/4EL8AuKMeJHikaWGyTnxnxmf8AEVgAQACmuQw24hlx5tLjmxCVKIjV8xd0VBI8qbQvMloSrMsj zIYu5KfKmUiSxTUtpeeJJL7bQNbZH2ySVkeRmnMiPI8sxlhj7hOQmhVA4iNN7ezmgnvnomJpmbwi qMpQK170t2gyHYVYguQJaiUbshwiUbqyV8VKUZ5ESTLLLZx5CWy59XlSIdThTosGgojomvyHmzU4 +lWZ6vRVlqiJORmo8zzMiyLIxE6dHptnxaFdlMjt9S5cRmNUdBOxozSWT3myMjJQkDlyzLklyaVa 1PjSosdSmpE2VmcdSi40IIvj5HsM+LYY2ri860QwonVjVmUoZfZkNpdYcStC0ktJkfGRlmRioNa3 JEu6PLVV0wHI85SSbbk0tZuocUWxKXWVmWZHsLMuIbBprkx6nRXqgyTMpxhCn2yPMkOGktJJfMeZ DKqjVi7WmvWmy5AAFFwAFGbplEe1fxtA8hIsKpLaUplmOSnnWn0rUhss9hcYrHNqZZZUczzP9unY PdI3scFtcYu1UW0zLaZ93MXgm/ULHTrS9qWoqP8AKs1Gf1kPO9qpIV/xMxDTeW1LBbT/AImMgAi4 t48CLG2tNFpHxqVtM/4mMLc9UuGkTIcimsxXoLhKbfJ1DmaF7DSrNBKPLYZZEnuiRAJibTeUVReL QwlDrkG7aatRNKacSei8yrPSbV3DLMizLukeRfMMhS3nHYhJeMzcaUbazPvkYqRIMSCThRGEt65x Tq9EvjKPjMxbxPxNSlR8tjhE6nvF3D/qE2mZsU3iM1+AAKpAAAAAAAAAABYNnvWqLbPYiSnTL/UX GL8YqvzY1LYaqkx1LbMZektR9xOW0/4CYzyJZCSw3JYWy4WZKL6j7hihSnnHYug8ojcaUbaj7+Xd Fm1eNrvJJSa7DTmWZE44SDPYR7CVkZ8ZfWEWoRSUuoRXNdDkq2uII+0UWwyMuMhOrMRnCNaJ3MwA 8tuIdQS21kpJ8RkPQqkFvPY3zDdaIjzNOZZceZC4ASLeDIKTFbdIyNWWSi7yi4yFwMc9/wCjpm+S /N5B5Od5Ku4f8RkePaEgAAIAWlWqUajUuXV5hmTEJhb7mXHopSZnl59guxGMTIFQqdh1qDS1tpfd iqLNZZkaC2rLYR7dEjy84tTETMRKKptEzDE4bprVdnS8Q6hPjb1rkRhEeJGQpBM6tSyMnNIs1LSZ mnS7uathFokJ6I5YlYgzbfp1MaW2ibApsI5cVKTLe5uMkpKTI+LYR7O5kJGLYk3qVw4tSAADNcAA AYuoNTodSj12mRzkONoUw/H0iSbrRmR9qZ7CURkRlmffIVabHt+46um495SWKrTjNhSHXDStrNJ9 qpKVGkyMlZlxl3RfjCVF+Vb1V4QNGycKQcaNMSvMlII3dHWF3NhLLPPuJHRg4k/pljiUR+pY1qiV OPWJkCjwF6FVW1IbfZShKGDTkTpKz2EZlkZGRGZ5mXcIX6JcylVZ6hPaycllhuQl0iLTJC1LSRGX dMjQf1l8wzV0VCVTKJIlwyyeLRSleWZIzMi0j8xCwplKiwNOQ2pb8h8iNyQ6rSW53tve28RbBfG1 YjPerh3vk9Iq0Q1E25rGVmeWitBll8/cF75xTfZRIZUy4WZLLIxZxZaohphz+0MiyQ4fxVF8/fHL v3OhkB4efYjNm7IdQ2guNSlZEPYjV4WrKud+lkioamLCka59kyzJ0jySf8dA3CLvGrPjIhNMRM2l FUzEXhnINSp9UaU/TprMltCzbUtpZKIlFxlmXd2i5FCFBh02MiHAjNsMtlklCE5EX/mK4ibXyTF7 ZgD6RGoyIi2mKFZq1u2xC6pXRXoFKjZ6OumSUMIz72ksyIz8wREyKwCnSalQbkglUrarcGpxVHkT 0SQh5sz72kkzLMVDIyPIy2kExMF2Tof5V3/SX9xazv1h0T6Fqn38EXVD/Ku/6S/uLWd+sOifQtU+ /gjfD/Szq3pEAALoAAAEafkFv59C6vVmWkrUnWFqdUSiLSNBdqathd8v4iiia2SWzkVyrx1uvpYS hw2NIzUWaT2JMsjIXsq3FTKi7JcW0lpeaiNBKJZq0ctpZ5fxyzBFBmGlt159k30SG3DMknomhCTS RfPkf1gPFMS3V2EvQ7nqCj0SUpGkzpIzLMiURI2D0huO4bhIu+Wo2U6bmTjPap759oLqkUZVMJkj cQrVRUsHollmZHnmMS3bU+dDNqYppgkIWlpKSMlGZuErtzI+LtS4u+AvUtx1Ntupu+WaHc9BRONZ Ky73aDxnDKOcvhlK1JK0Dc1jOiSu9noD7GtlTaEJW42g8nSUSNIyI1py2GozPud0eJduTpjDJPOR Tcjr7RKSWhKk6Oj2xpMjzAVFtx23Esru+WTii0kp1jOZllnxaHeFtGktS0sLYuGqKTIUlKTzZ2GZ KPaWjmXxDF21bZtdql1GiWoyLRPYTZGR/wBxSYth9BNJdlIybJKT0UmWZElwvr7cvqAV4sRM4lnD uua8TatFWgto8j7x9oK/UaVyhqX1tdAUreoSqMlZOG2ajSlBGg1HmRcRnpGe35tgzIDF9RpXKGpf W10A6jSuUNS+troDKAAxfUaVyhqX1tdAOo0rlDUvra6AygAMX1Glcoal9bXQDqNK5Q1L62ugMoAD F9RpXKGpfW10A6jSuUNS+troDKAAxfUaVyhqX1tdAOo0rlDUvra6AygAMX1Glcoal9bXQDqNK5Q1 L62ugMoADF9RpXKGpfW10A6jSuUNS+troDKAAxfUaVyhqX1tdAOo0rlDUvra6AygAMX1Glcoal9b XQDqNK5Q1L62ugMoADF9RpXKGpfW10A6jSuUNS+troDKAAxfUaVyhqX1tdAOo0rlDUvra6AygAMX 1Glcoal9bXQDqNK5Q1L62ugMoADF9RpXKGpfW10A6jSuUNS+troDKAAxfUaVyhqX1tdAOo0rlDUv ra6AygAMX1Glcoal9bXQDqNK5Q1L62ugMoADF9RpXKGpfW10A6jSuUNS+troDKAAxfUaVyhqX1td AOo0rlDUvra6AygAMX1Glcoal9bXQDqNK5Q1L62ugMoADF9RpXKGpfW10A6jSuUNS+troDKAAxfU aVyhqX1tdAOo0rlDUvra6AygAMX1Glcoal9bXQDqNK5Q1L62ugMoADF9RpXKGpfW10A6jSuUNS+t roDKAAxfUaVyhqX1tdAOo0rlDUvra6AygAMX1Glcoal9bXQDqNK5Q1L62ugMoADF9RpXKGpfW10A 6jSuUNS+troDKAAxfUaVyhqX1tdAOo0rlDUvra6AygAMX1Glcoal9bXQDqNK5Q1L62ugMoADF9Rp XKGpfW10A6jSuUNS+troDKAAxfUaVyhqX1tdAOo0rlDUvra6AygAMX1Glcoal9bXQFCZEKnsKkzL pnMtoI1GpamiLIizP/AM2OYd0BVpE+9lpaqS3YNCbjrejoXsJal5GWzu5d8eH/UHTHqTQ50mKdab 2iPvg9noLon1zpcaNNWrFrzO/wC7sZVKdJxGqlXuqnXBJS6qUuJEcNWxUdBERaRERH2xZn/EbjwW pjtLYmRXpa31IZYQZmRERGWlxZENeYdU1ES0IGrbJKnkG8syLjNR8f1ZDbGG7Zodn591Lf8AdQ+R /pvR4nTKNLr/AF13meGcTL6z+otImNDr0Wj9FFojjlMQnI0Bu4rMq95YA1XqO+hCqI8isyEqcNBO MMoWbidnGeSsyI9maS7uQ3+Nd7olOlgRiD5raqJ//wAusfrHRuLVg6ZhYlO+Ko+r4XQMScLSsOun fEx9WTwbbdawjslp9RKcRb1OSoy7plHQJiIlhErSwosxXft+nn//AC6BLRz6T/1q/fP1Y4//AFav fP1AABiyAAAAB4W602k1uOJSlJZmZnkREIdcGM+FFrEs69iDQoqkfGQc1Cll/wBxJmr+g0w8LExZ th0zM90XXowq8SbURM+5NAGi6luycHWFG3b7lauJfEk6XTXXEGf+oyLIRudusL3qWabRwWnoI/iP 1WahpCv+6nNRDvw+htNxM9S3vtH1dtHRel1/4Le+0fV0wA5HnYtbpevEaUTrYt1tXGliOqSsvmUo y/sI/MpWKddMzuTGa43kr42oikRkl5iNBEf9R2UdA1/93Fpj3Xny+rop6Hq/7mJEe68uzZVVpkFJ qm1COwSSzM3HCTl9Yhldx7wats1Iq+JNAZcTxtFNQtz7KTM/6DlFeDtrzFaVceqlZVx51GoOvGZ/ xMZan4dWdTCIoVs05sy4jNhKlF/EyzHTR0LolP68SqfdER9buinovRqf11zPui3m2/Ud2hgtHUpq jSK3XnU7NCnUp5WZ+Y1klJ/WI5UN2LXphmVoYGXDJI+JVVlswMvOZduI63TmWUkhplCElxElJERD 3vTzDpo6P6Po/wAEz758rN6dD0Oj/Bf3y8Tt0Nul6uZlTLasihMq8JXIlPJ+Y0mlB/UMFLvDdK1g zOoYzMQG1cbNNorCMvmWrNQkG9PMG9PMOqmnRsP9GFTHwv8AV0UxgUfow6Y+CDS7avWrkfCLGK+a iSvjNHVDaaP5kJIshj0YP2drDelw5c1xW1S5U553S+clKy/oNk708wb08w3jSqqf02j3REfRtGkT G7L3REITDw7s+nmSods01oy/xJjpz+vIZZukRWSImorSMvkpIhIN6eYN6eYRVpNdf6qplE49VW+W E3nls0R93n5hmt6eYN6eYU2qm0YXeZ97+obzPvf1Ga3p5g3p5hG1Nowu8/N/UN5+b+ozW9PMG9PM J2ptGF3p5v6hvPzf1Ga3r5g3p5g2ptGF3ofe/qG8/N/UZrevmDenmDam0YXeh97+obz839Rmt6eY N6eYRtTaMLvQ+9/UN5+b+ozW9PMG9PMJ2ptGF3ofe/qG8/N/UZrenmDenmDam0YXeh97+obz839R mt6eYDieYNqbRhd6H3v6hvPzf1Ga3p5g3p5hG1Nowu9D739Q3n5v6jNb08wb08wnam0QXEGnm9Y1 faJPxqdIL/5DEqxlmdUcJcCms9LfLkU/n0In/kPFzU3fNuVONo56yI6nL50mMRccrqrhnudkEeZG b6z+ZDC0jSJiurBr4VT/APGfJpT+arDq4Vf/AIz5OxbCTo2TQU96nRy/2yGeGEslOjZ9FT3oDBf/ ACEM2PgcbPEq98vjsXPEq98qO9Iu+t+73b3xoavW6Baehnno58eWfcHiTToE1xp2ZCYfWyebanGy UaD75GfELkBmzWLtEoz7TLD9JhuNx/yKFMJNLf8ApIy2fwFVynU903TdgsLN9JIdNTZHppLiJXfI XIALRVJpS5aJ6qdGOS2RJQ8bSdNJF3CVlmQ9s0+DHkOy2IbDb7/5VxLZEpfznxmLgAGNctu3nX1S naFT1vLVpqcVGQajVx555Z5i4Ol0w5pVE6fH32RZE/qk6wi72lxi6ANxOe9ZppFKTNOpJpsUpZ8b 5Mp1h7MvjZZ8WwfWKTS4spc6NTYzUhzPTdQ0lK1fOZFmYuwA3qUmNHmMLjS2G3mnCyUhxJKSovOR izpNu0KhafUajw4Ws2r1DKUaXz5EMiAAAAAAAAAAAAAAAAAAAAAAKUr81e/dq/sKopSvzV792r+w DE2P+hdA+i4v3SRgnY8SnIfqMtw3DaSpxbrh55ERHnl3tgztj/oXQPouL90kR+54b1QoNUgx/wAr IjOto/1GkyIZYnUtSwspmkJtxd9Yjy3009xJORachakoQ2r4hKSky1jii27dhZ5ecYi26rZ90y3o Nht1K264wyUpiJLSaWJbWwyzb0jSZGRltLJRZ5lnkPOLEC4r9sW2nrLpzkxTbpOSGUGgtUpKCLRU SjItiiMshd2Nal7yboiX/iFvSnIo0A47EdskkZ/i9FS1mWwiyNR5Z90sssgt1F2WbvNg4cNw6XNe lyScJcWOglrbU2eThHtLYR/WPXC1elqztmtawk6xSdQnYg+JRHpZK4j2JMz2HsESm7+KI5WYsOWt FTbqm99S2ZqI3iImjPLizyzz84s2GKow7b7aqbP1duPyHXyJpWSEqqDSk6HyvxJK4u5mQziIWvKb ovenymzepNPqFSaT8dyMyRpSrLPR7YyzV5izMU2r5bffkxmLbrS3YbhNSEahJapak6SUqM1ZFmnb nxbRCW4Mh6mRWajCqEFbMiQ60SIindNDjumTidE+0dyLLtu4MhKlwaki7pLrkphmVW6fqkuxlKN0 yYTklbZdsaTNJ/0E6sIvLFYlnVbvdc4NvVKm1WiwFy97ojkUlxWmRJQR58WRmZGk+PujKUvFmpQq wzRbxteVTt8R0nDdLJw5a0EetUkkKVnmo20pR8YszMz71NCX2XjachVVMM6OumtTURjNxxxTmkfa Z5pSRHkWfcIRp1uPh/Tae/Fo0ifTY1cenuaURaN66+OTJtRkqPSTkSVOmZ5FpH5xtRaqNWWdUTTO tDYbeKNKNyNGk0OsxZU5zVRY78dKVvLyMzSk9LR0iItqTMj8wqFiLGkymY8Cg1KS3JjyHWnNWSNY trLNskn2xn8cs8siNGXdGs4dMo9RpkeDQIVROKupRZcucxBcb1CmSMiURK7ZTqv8Rlsz4xL3U1qt X9Auelw5dJlqguQpLElnSYQylw3EnmWzNZKzPLaSvMKVUU0ytFVUwlFu0eZATNpMphD1Gk5vxScL JbZOGZrYWg+4RmZ5+fLLYM7Bgw6ZEagwIzceOykkNttpySki7hEMCcW7qbMmSadNj1SJIM3WmZCt BbSzy7Ulls0eM+LuDN01VRXBaVVm2ESzI9YlgzNBbTyyM9vFl/EVr43TRwsugAWsioxmD0CVrHD2 EhG0zGa66Hw1JT8ZRF85ixJqpSj03Xt7J7iE5Gf8THpNIinteNx3zLWZiRWKbDNRpKS3mXc0iFpP rCWo7yoLKpS20GoyT8UiIsz28Qujp8I0kjezeRcWweJ0BUimvwIb5xFOtmhLqEkZoMy48j4xMWRN 2Os2otVOjFIbaW0rWuJcQvLNKs9pbDMhnBAqGaKEhmaTqEmzPOkyC08jlFmRJdJPEayVlnltyM8+ IT0XxaNWrLcph160ZgAAyaAAAALCZ+JnxJGRZKM2j/j3RfizqzZrhLUkjNTZksiIuPIxMbxeAPDT hOtIdSZGSiI9g9iAAAAAAAAAAAGMqaESKhCjKb08lKcUR8Wjll7BkxjSzdrys1bGGC0SL/Me0Wgl jJ+Hdpz1tOlS0RXWpBSTdilqnFqIlERGotuXbGew+MiGWpdFg0hDqImvPXq03DefW6alZZZmazMx fgE11TFplWKKYm8QsV09xheuprpNGfxm1fEV/DuD5p1pHbKairL5KDUR/WYvwEXWY2TVZMKO5MmQ CZYZSa3FqfTklJcZn5h4p9x0+pssyYumuO/+TfLI21fMoj2iHMU7ECPUZ7F1VF6XS3NbvZ+AhJqS SjIyJbR8aSI1FsPPYQqwKdMoyKeVIrLci2oryYj7DrKkvJNwsiUeeRpyXlkX+YbxgxNN4lhtZvaY T51pD7SmnCzSssjFpT3ltqVT5Cs3Gvin8pHcMeEPv0497yG3Hmi2tuITpHl3jFOXLgSCJZPOtPI+ IaU9t82XdGMR1NmVAYuPUpbLZKqMZaUGeROEXc75l3Bkm3G3UEttZKSfEZGImLJegMiMsjIAEDD1 q2m6tpKYqk6mrW2tpxcJwmzWRp0SNR5bTTnmk+4Yw/BW9XG0RXb+daZhnnFcZiJ1zpkRknfClGZO EWe0iJOfHnmJgAvFcwrNESjFKu6Q1UEW/dcIoFSVsaebzOLK87aj2kf+VW0u+YkqHEOoJxpaVpPi Uk8yMFIQ4RpWglEZZGRlnmQxabfZhQWKfQ31U1lmUmQpLJEZKQSs1N5HxJVxbOLuBOrV3EXp72WA RWRcdetxuM7c9PjvsyH0RtdBMy1albCUtKz4lKy4j2ZiVCJpmExVEgjV6trjIp1wsRG5btMlJyjv Om2ytLiiQalqyMk6J6KiUZHlon3xJRTkNMyI7rEhonGnEGhaFFmSkmW0jITRVq1RKKo1osht91K6 SpDinp9Kep02Y2mIUNqQS1RyXpL1jiFH/wBmR8RERn9QqWdfbFyXFVqHDXHdiU9LZxnGknmaeI9I zVmZ8XEksu+eYvLNdhMUCNatfgSosuY2RvJeLtHHVpzXoGntU9sSsk/MI/VbaYserNvLnmihyXe3 gtEtybM1ccyLR0TI9ii0lZeYdtVNOJDkiqaJuz9x1yplGmHQnWmkU5Te+pSyJZaSjL8UguLSyMjM z4iMuMxITTHmsaKjbebUWRmR5kfzCLwrUdqkFhirMNQ6cuOSjprHakh0yI83D/xqTlkZnnnxiQ0a jU+gwEU2mME0w2ZmSS75nmZ/xMcuJqRERS6KNeZvUp5SqYfakp+Nnxf4my/5kL1h9qS2TrKyUk+8 KgsX4C23DkwF6tzI80H8VfzkMt7VfALWNPQ8s2Hkm0+njQru/N3xdCBcQkkbhmfcIfljjteF6Yy7 tRmyagzGqEOnXOzRKbR6k643BNpDxJMnSRmZJXkZrMiM9p5Z7CH6lMO6pwldziMc4Y4bjVN9YnU/ G/C66Wbau6FJZmOKej62M+80ZGlw0lkZK2ER9wxrRKtUOT9yrel6YX7sKRhzG1UWm1atzaXPpUNx a4bWipw0m0StuijRySZkR5cY/UKYkiezLulmOdMAdx3Fwuvyp4v4gXK3cd31F56Rrm2NUwwt1Rmt SEnmekeZl5iHQ7zmtcNfc7gVzBSyFD/Ku/6S/uLWd+sOifQtU+/gi6of5V3/AEl/cWs79YdE+hap 9/BF8P8ASrVvSIAAXQAAAAiDmJtBRiC3hzqpKqg43rNYlBG0R6Br0TPPPPRLvZCXjnuw0rRukrgT JNTitQ+bZrVpGXbN5Zd7ZmQ8PpjT8bQ8TRsPC/7lcUzM8Ov4y9nonQcLS8PSMTFv/bomqLcbxEfC HQgAA9x4wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwbrafjLSXzmLSRXKLEz31VobOXHrH0p/uYzqxcOj9VUR8 V6cOuvKmJlfAI1MxKsKCRm/dlM2cehISv+xmMO7jhhsgzSzXTkqL/CwwtZ/2HLX0noeH+rFpj4w6 aOj9LxP0YVU/CU9Aa4dxzts9kGh3BKPuGmnqJJ/xMWrmMtXdPKnYd1R0j4lOuIbL6jMcs9P9HRux In3Xn6OqOg+kJ34cx77R9ZbRHL12WuquVa/n6NDJ6W7PKMhJryI9E0qUZZ7M/YNku4lYkyUKKDZE FgzI8jkTD2fZIYGwqZcMaLUZNzMNtzJ01ySrVnnnpZbR8107pOj9N1YWjUU1WiZmZmmYiPyzG+Y7 30fQmjY/Q1OJpFdVN5imIiKomZ/NE7ondkq2rTpcK3adDnsJakMR0NrQR55GRZcY2BYTeg7N86W/ /qGC1XmMSWy0aLkv5kf8x3dE6PGBjYdMboy8HH0tjzjYNdU9efilI1/ugyzwJxCL/wDxipn/APyz g2AIHj4k1YG4hpLjO1qqReiuD7fRP/5GH/8A7R9XzOi5Y9Hvj6rzBw88I7JPv27Tv/2ZsSx2Qwwk 1vvttpLjNSiIi+scMYK3huib6wzpBR8Q4dCo8RlMCHvWClUk2WUkhJmpWz/DlxdwSd/B5+trN29c QLpr6z+Mh6oLbaV3820ZJHu6R0JTh49cY2LEZzlETM7/AIR4vXx+iaaMaqMXEiM53XmfLxdH3NjR hVZ5qTcV+0WG4n/s1S0Gs/mSR5n/AAIa6qe7JwzJamLQo1z3U8R5ZU2lL0c/9TmgWXnLMQij4QYe 0HI6baVPQov8a2icVn381ZiUNU1llBNssoQlJZESU5ERBToGgYe/Wq98xHhF/qU6JodG+9Xh9L/V ip+6PxzrxGi0MH6bRWz+JJrtTNzMvO0yRKL6zEdnVHdJ3OZnXcY2KMwv40WhUptGX+l5zNwhOt6e YN6eYdNFWj4X/SwqY+F/rdvTVg4f/Tw6Y+F/rdquRg5CrKicvG8LtuZXH/6SrDqk5/Mg0ll5hlKZ hRYNHUTkC0qahwv+1UwS3PtKzP8AqNgb08wb08w2nTcWY1dbJrOlYkxa+TAtUxhgsmY7bZf5UZCp vT/L/QZrenmDenmGU40zvZTizO9hd6eYN6eb+gzW9PMG9PMI2ptGF3p5g3p5v6DNb08wb08wbU2j C70839A3p5v6DNb08wb08wbU2jC70/y/0Denm/oM1vTzBvTzBtTaMLvT/L/QN6eb+gzW9PMG9PMG 1Nowu9PN/QN6eb+gzW9PMG9PMG1Nowu9PMG9PN/QZrenmDenmDam0YXenmDenm/oM1vTzBvTzBtT aMLvTzf0Den+X+gzW9PMG9PMG1Nowu9PN/QN6f5f6DNb08wb08wbU2jC70839A3p/l/oM1vTzBvT zBtTaMLvTzf0DenmGa3p5g3p5g2ptGF3p5v6BvT/ACjNb08wb08wbU2jC70839A3p5hmt6eYN6eY NqbRhd6eYN6f5Rmt6eYN6beINqbRhd6eb+gb0839Bmt6eYN6eYNqbRhd6eb+gb0/y/0Ga3p5g3p5 g2ptGAlwdZEfb0fjNqTxd8hrS33GqhbeC9CS4lbtHYq6XEkos0m26pO37Q3O9T9c0to8yJaTSZl3 MyGorL3M1Jsy6oV0x7sq0pcFbq0MPKLQVp55kf17e+Y79Fx8HZ1Ri1WmM4yvebTH7uvR8XCiiraV WmM4y35TH7uz7RTo2tSE96EyX/yEMuMZbCdG3KYnvRGi/wDlIZMfC4n65975LE/XPvAABRQAAAAA cmbufdn1bc3It2w8N7bbuHEC8HNXTYayNSWkmrQSo0ltUpSzIiL58xWqqKbRxWppmrc6zAfnZgbu 8d0daeOFAwO3ZOG8e3pV26JUucy0hnQUtRpbzJClIUk1FomZHmR5Zj9EiMjLMu6NJpmIirqlnFUT M09b6AAKrAAAAAAAAAAAAAAAAAAAAAAAAKUr81e/dq/sKopSvzV792r+wDE2P+hdA+i4v3SRYL+O r5zF/Y/6F0D6Li/dJF6dIiGZnkvb5xSumatyaZshK6HOgzHKhbFacpbr6tJ9rVJdjvK+UbZ8R+dJ kY8yKNW61ot3Vcap0VJko4caOUdhwy4tMiNSlln3DVl3yMTjqPD7y/tB1Hh95f2hTUqWvDApQlCS QhJElJZERFsIh9Gd6jw+8v7QdR4feX9oRs5NaEbdmwmH0RXpTLbrhZoQpZEpRcWwhZPW1R36qmtO xlnKSpK8yeWSDUkjJKjQR6JqIjyIzLMhJ5dpUGe60/Np7L7jJkba3EEpSDI89hmWzaKsmgRJLWqJ 6Q12yVaTa8lbDzy+Y+Iw2cmswxmksszLbxCyq1DpNdYajVeA1KaZeQ+hLicyJaT2H/y85GZHsMSC pWpS6oyhmQb6dU6h5Cm3DSpKknmW0vqMu8Zi66jQ/wDP9oTFFUZwTMTlLANMtMoJtptKEFxJSWRD xKkRY7Sly3UIbMsjNZ5FkJEdGhmWXb/aGOnWNb9TaWzUmHJKFmRmlxw8th59wIw5vma2WTVc5vCx 6Y3CiUKI7IedJsjjtGgtIzy2mjzn3RKbefqcqktIjU8qdGZM47KH21JcJtHapUSTMzyPLZpZH3yE 3jW3SYTKY8SMlltBZJQgiIiFbqPD7y/tC9UTMWUpym6J9S1O7Zsx57PjSR6KfqLiFyxDjRi/EMpS eWWeW0/nMSPqPD7y/tB1Hh95f2hTUqX1oYIBneo8PvL+0HUeH3l/aEbOTWhggGd6jw+8v7QdR4fe X9oNnJrQijNDo8ec7UmKbGRKePScdS2RKUfdMz74vhneo8PvL+0HUeH3l/aEzRVO8iYjcwQDO9R4 feX9oOo8PvL+0I2cmtDBAM71Hh95f2g6jw+8v7QbOTWhgh8UklpNKizIyyMhnuo8PvL+0HUeH3l/ aDZya0IpTFG2TsFZ5qjqyLPupPiF8MwVv08pBySJwlqTon22wyFXqPD7y/rCcOTWhggGd6jw+8v7 QdR4feX9oNnJrQwQDO9R4feX9oOo8PvL+0Gzk1oYIBneo8PvL+0HUeH3l/aDZya0MELCnfjJEyQR bFO6JH8xZH/USzqPD/z/AGhRi25ToiFIa1mS1ms81Z7T4xOzk1oYgBneo8PvL+0HUeH3l/aEbOTW hggGd6jw+8v7QdR4feX9oNnJrQwQhtRqEZu8pFpTY0hhm5IWrYkkjNtUhBGZGRlxKIsj290hs/qP D7y/tDH1Wy6HWdQuY05rYqzcjuoWaVtLMstJJ98aYUTRVeVMT89OSNW5VKhOZeh1mmqg1CCpLbzR uJWSiNJGlxJlsyVt85GRkMvopzz0S+oX9Ps+mU99+WT8qRIkpQh1593SUpKNLRLvbNJX1i/6jw+8 v7QrXh3q/LuWpqmIzYEyJRZGWZCycpyml6+nO6lZnmpB/EV85dwSvqPD7y/tB1Hh95f1iuzqTrQj MKWqSS0PN6t5o9Fac8/4l5hcjMJt6npkKkkSyWtJJPtthir1Hh95f2g2cmswQDO9R4feX9oOo8Pv L+0Gzk1oYIBneo8PvL+0HUeH3l/aDZya0IlcEBVTok2noYYeW+wpCUvqNKNIy2GZkR5ZHt4u4FI0 IMKFSJE9D0tuMnSzXmpZJIiNXfMs+6JW5Q4LramnEqNK0mlRaXGRjAO4XWsclidGRKiyozeqZfZf US0N6Jp0CM89m3PLvkRi0YeVpVmc7wqAMz1Cia1LuseySg06On2p5mW0y7+z+pip1Hh95f2hXZyt rQ1ziGxX3qMw5buiUiPKbkKWaCVoJQeZnnpFlxdwlH3Mu6L+rUuHe6Ik+lXCqPUqfHM21R3O0Sbu rUesSkyUZfiyLLSLYZ55ib9R4feX9YsqVZ1Cos+fUqdFNp6oqQp/I8iM0lkWRcRDfCmaItLGunWm 8NYUHEWTULjj0WrtNU91qM63NaUaSSUpKi+IrM8yIiVszPjL5xMmazTJFUeozExC5kdpDzjRHtSh RmRH/T+pd8hkriw6ta6X2X6zBN1TJGREStElEZkZkeW0+Ih4o+Gtp0Ke7U6dBUiS6k0axThqUlB6 OaCM9uWaEnl3xWvDoqzhNE1xlLyPJLQazbJaTURZmnPaRDNroURbjbmseTqzPtSVsVmWW0Yvrf0P q+m5CcllLTpZkT5khRGjRyNPdIiLYR8R7RnGFPW0mvgs5UNmWjRcIyUW1K07FJPzGLdqTIhrKPPU SkqPJDxd3zH5xLOo8PvL+0PDtCgPINt1ClJVsMjMRs5TrQwvGPqXDSrJKzI/MYzDFBgx2iaQbppT xaS8zFo7aFMdq7dZ10pLzbWp0UvGSFJzUeRp4j2qz/7pCYw5NZZKUpW1SjP5zHwZ3qPD7y/tD4qi w1JNObhZllmStpCNnJrQsqE+0qU8ylZGtKCMyLuFmKM79YdE+hap9/BGUptHhUvTOKlWa/jKUrMz GLnfrDon0LVPv4I1pi0WVmbykQAAsgAAABzfh+09F3SFYZelrkLNMkjWrjMs0nl/DiHSA5zspltz dEVGel3PTlTWiIj2dqhB/wD1H9Q+R/qaP/3GhTHViw+p/pyf/wBvpsT14UujAAB9c+WAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfAzLvgPoD5pF3yDST8ovrEXgfQHhbzKC0luoS XfM8hZv1+iRvzirQ28vlvJL+5ilWLRR+qqIXpw6qv0xdfgMC9ftlR/y11UpJ945aM/7iwexXw6j5 627qfs+S5pf2GFXSGiUfqxaY+MN6NC0nE/Rh1T7olLQEFcxvwxQeii6GnVF3G2XFf/SKC8cLK/8A Zyqcn91BcP8A5DCemej4/wC9T8Jifo3jojT5/wCzVymPq2CA1ueN9HWeUW1ble8/U9SSP+Jh135z v5ph3XXe9pEhH9zGc9OaBH+O/uiqfpC1PQ2m1f4Le+Yj6y2QA1orE+83tkXC+cjvG9May/oKS73x Ve/NbLprP7+Yf/IhT17ok/p1p/8ASr94hf1JpUfq1Y/96f2mW0AGrOr2Msj/ANloMX+K15f0IfFK xjkF290Udgj7iIBmZfxMxWenKP8ADg1z8I/eqF6ehap/VjUR8Z/aJbUAamXRMSpP5ziC43+4ioT/ AHIxTOybne/PcRK07/pNCP7EKT0zjT+jR6vjMR5reqcKP1Y9Pwiqf2htwzIizMUnJkRr8pJaT86i Ian62bL22Zc9fePzT1pL+gFhTbKvy5z3/wB7LWrP6zFPWunVbsCI99f/ANV/VmhRvx5n3Uf/AGbN fuGhRizkVeI2X+Z0iGMk4k2FEPKRdtLQfeOQnMQpnCqyGFaZUFhSu+vNX9xko9k2xG/JUCCWXFmw k/7kKzp/SVX6aaI5z5LU6D0dT+qqueUea/k40YdR8/8A0+h7L9i2tz/wkYslY6Wcv8yjVaWfc1UF zb9ZELtqiU1n8jT4zf8ApaSX/IXBQ208TaS+YhScfpOrfXTHup85WjA6OpnKiqffVH7Qwy8adbsg 2Bcz3eUqMlCT/iahQdxVvZ7/ANX4ZSTz4jkTm2/+RiRajLuBqBSfT6v1Y8/CmIXtoER+XBj41VT+ 6MnfWLckv+HtKjRM/wBvLU5l9kiFJVZxrlbHJlsQyPussOrMvtGJZqT7w+agxnOjY9X6sevnb9mk Y+j0/pwaOV/rKFLhYtyz/wCIxIQwk+NEemtF/U9o8Ls255e2o4mXKo+6Ud9LJH/AiE51J94fNSfe FKujqK/11VT76p816dOmj9FNMe6mPJAl4XUeT/6zqlZn9/fE9w8/qMhWYwtsqPxUNtz96pTn/iMx ONSfeDUn3hEdF6PG+iJ9+f1TPSWP1VzHuy+iMRrLteJlvW34DWXyI6S/5DIIpcNoiJuI0ki7yCIZ fUn3h81J94a06Dg0fpoiPhDOrTMWv9Vcz8WPKOlOwkERfMPup8xfUL/Un3g1J94bRgwy23esNT5v 6BqfMMhqT7w+ak+8GyNqsNT5hnrVRoLk7OMk/wDMWOp8wy1vo0FP7OMk/wDMdOh4erjRLm0vE1sG YZkQfHIjPBa/SJBqM7aqfalxn/wzmwTga/3QNQhUzBG+JM+pFAaXQpjBSDTpaC3GlIRs7pmpSS/i PpdEi+kYcR2o+ry9Fi+PRHfH1c3bklapuCdLJURxne8iQySllkTpaelpJ83bZfOkxuTeogO5YpS4 +BdtGc8paHmnXUGlORNkbqs0efI9IbZ3n5jH0fSeNE6ZiTHGXuafiROlYkxxlhN6hvUZrefmP6h9 3n5jHDtXJtGE3r84b1Ga3nt4j+ofd5+Yw2ptGE3qG9Rmt5+Y/qH3efmMNqbRhN6hvUZrefmP6h93 n5jDam0YTeob1Ga3ns4j+ofd5+Yw2ptGE3r84b1Ga3n5j+ofd5+Yw2ptGE3qG9Rmt5+Y/qH3efmM NqbRhN6/OG9Rm95+Y/qDefmMNqbRhN6hvUZrefmP6h93n5jDam0YTeob1Ga3nt4j+ofd5+Yw2ptG E3qG9fnGa3n5j+ofd5+Yw2ptGE3qG9Rmt5+Y/qDefmP6g2ptGF3qG9Rmt5+Y/qDefmP6g2ptGF3q G9Rmt5+Y/qDefmP6g2ptGF3qG9Rmt5+Y/qA4fmP6g2ptGF3qG9Rm95+Y/qHzefmP6g2ptGF3qG9f nGa3n5j+oN57eI/qDam0YXeob1Gb3n5jHzefmP6g2ptGF3qG9fnGa3n5j+oN5+Y/qDam0YXeob1G b3n5jHzeeziP6g2ptGF3qG9fnGb3n5jHzefmP6g2ptGG3qPm9Rm95+Yx83n5j+oNqbRsOgJ0aHAT 3ozZf/KQyAs6OnRpUNPeYQX9CF4PEr/VLyav1SAACqoAAAD8yd0oZz/hXsHoU78bHZZjqaQvalJk h5RGX/eIj+ch+mw4E+ES3PmMMzEexN1NgNRnKzcNkLQUumspJTrjaHNNK0p41lkakKSW3I9gzmdT Gw8Sd0Tn8YmFra+HXRG+Yy5xKB/C6mcHFXAGrQVaFQbqUtKFJ+NkT0Qy8/GZjv7E3EV3Dey4tdZo 5VOoT5kGlQoi39Q25KlPIab1juio20EpealElRkRHkRnkR/m/bNrbqLd+7o+wcQMY8IZNhWXYDhO uNSor0cnVE4S1khL2TilOGhBZ5aJEnj7/wCoVz2pb940F+27mprc6nSCRrGlmZbUqJSVEZZGlRKS RkZGRkZEZDa00aPFM79aZ+E2+tpUrrjExb0xupiPjn9EEszGl+8aZSEx7ZQ1XJVbqFEqEFMw1tRV QJDjEx5DurI3GiU2egZoQatNBGSDMyLaQ5PuemVy16DQ7ktOn1+2bbqFTkQs6PAfdqUGloadXHUp skLe0pMskOOqUk1aLiSXlomY6Kw0l3JOsGgzLvZU1WXYTapiFJ0VE5l/iLuHllmXfzFerP73FU2r 1fj4zH3/ACkwAAJAAAAAAAAAAAAAAAAAAAABSlfmr37tX9hVFKV+avfu1f2AYmx/0LoH0XF+6SMr LlxYEV2bOktR47CDW666skoQkuMzM9hEMVY/6F0D6Li/dJGkt05cls4l27eW5vRZ143FU5dFakyU 285GaNnWKUbJGtx9tXxmi0iJJloqLP4xEYdCsvNSGkPsOJcbcSSkLSeZKI+IyMuMh7Gmtz7dNIo9 GouCaLJu+3JtvUBh5tFwalZvMpUTatF1t5zSMlmfHls4tg2pcM2TTaDUahDaN1+NFddbQX+JSUmZ F/EyETNoummNaYhkQHP2FdnUd+zbLxlql71KDcVYZj1KpyX6itTc1b7WkuFqlq1ZERnopJKSUWrL zixZ3St7MUOPdtRtmjLpNz21VLitpDLjpPtlDShZMy8zMjNbbqTzRlomkyyPMsorqjDiaqureURN c5dbo8BzdK3QmK9HjvU2rWtbLtblJoz9PTHefKOhue5oaLpqM1Gps9uaciVlxEPtb3TF3W3RV0ms 0amIupu8JFqKfiwJ0yD+KhJmm/qI6VyDI2lpRolxKzMz0SyEzMRNvvfMeExLOnEprmYid37xE/SY dIANB0DHbEW/FUejWXaMCHXF0t2rVJiuMSoqFtofUylDKVpQ4g3DSaiUtJ6JKLMjEOLdBYkWTKvO Ncr1PmS5uIa7doBIp02Y3AYRTGpa0uNxkqdcSSCPLRIu3WozyTxTadaaZ+84j915yt3+Uz9IdWgO d3MdcQb2oEKkWhbMOBXJdFqFRnlV48uIgmmVG2WoS4lDiTcPak1l2pZZkYzlrX7cFpbmSxb53r1V dZolFfqqn3FKc3sttopLxHxqWlClKLPjMtobovP3dWJvNo7/AAbsAc2XDjXJavqn3PJiRGqZFpty vUyT1QdTHkMxSjkTjqEEZK0lmZFkk1FkZJIzMTTAbGOt4oS7qpFfiREyLddiauTFp8yCh9qQ0ay/ EyyJ1JpUhZZmREosjLZtOZpmmmKp67+EzH7E1xFWrP3ldt8BxHVapJq97Uql3DSrrumnuXrdjS6Z SJqkPLS0mNq+N5otBGkrItLZpbCG0LDuq8cIaW2d1UCbTrRrlxVBNJjVaXrZ1Hib2QqMy8slrI9Z IbkZFpKNJPNJzPITNOrF57vGmKv3XrjUmI4+cx+zowBx3j9j8TtDtCk1fECh2fV4lbturVmEirtx 3nWH6kxkySVqJZtEwanHTyyyLaeRGOwWnEOtIcbWS0KSRpUR5kZH3cw1fya/fMcojzUvF4juu9gA CqwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAACOzv1h0T6Fqn38ESIR2d+sOifQtU+/ggJEAAAAAtapPRS6bKqTjTjiIjK3lIbTmpRJ SZmRF3T2CtVUUUzVVuhNNM1TFMb5XQ5rsOHS6FjITxSSbJyp1Jj8a7xETaTLj75mYl0/dK24i1na rDhON1Qj0WoMlKiJe3LMlEWRkI7hfZltYoszLyr0Be+VVF5RNpdMkkR5HkeXHxj4TpjT8DpbTNGw dAmK8SidfO8Ra8ddu59v0ToOP0Vomk42nRNGHVGplaZvMT1X3Z72/uqlM8YxeeT7Q6q0vxlF55Pt EF6zlhd2hJP53F+0Os5h/wB23mj+davaPo/Sek/ZUfPV/sfP+jdGe1r+SP8AenPValeM4nPJ9o+d V6T40ic+n2iEdZzDziO2WD/7yvaHWcw67tqxT+c1e0PSelPZUfPV/sT6P0Z7Wv5Kf96bHWqOXHVY fPp9o8nXqIXHV4fPp9ohpYPYdFxWpE/+b2j6WEOHhcVqw/qP2iPSOlfZ4fz1f7DYdF+0r+Wn/el5 3FQS/wDziHz6faPJ3Lb5cdahc+n2iKFhJh8XFasP6j9o9FhPYBcVrQ/smHpHSvs8P5qv9psOjPaV /LT/ALkmXdlst/Hr0Ev/ANen2igu+LQR8a46eX/8Qn2jBJwssRPxbXhfYFVOGtko+LbMHmw23Sk/ 4aOdX+1Gx6M7VfKn/cyS8RLHR8e6aaX/APEJ9oorxQw+R8a7qYX/APEJ9ot04e2ej4ttweaIVU2N aieK3YHMJ9gna9KT2P8AUrs+juNf+l5PFnDkv/3vpp/M+kx4PF7Dov8A96IZ/MrMXKbOtpPxaBAL 5mE+wVE2tQE/FosMv/1KfYI1+lJ66OU+aYp6Ojqr5x5McrGPDtP/AO8LR/MkzHhWNGHaf/zpSv8A Sws/+QzCbdo6fi0qKXzNF7BUTRacn4sBgvmQQX6Un/HR8s/7kx6t7FfzR/tR9WN2Hif/AMzkn/ph un/9Ipqxzw/LYmXUFH3ipz3REoTTYqfixWy+ZJD2URsuJpJfwEavSk/92j5J/wB6b9GR/wBqv54/ 2IkeN9oH+RjVd3/TT3f+ZDweNVGP8jbtfd/0wVF/cTHeyfkF9Q+73LuJINn0lO/Gp+T/AOyZxOju rBq+f/6oUeM7R/kbGuZz/TDL/moeevBPX+Rw2uU/9bCE/wD1Cb6gvkkGo/yhsdPnfj/6YU2uhRuw f9U/whPXVuNf5HDOsH/rWhP/ADH3rk3yv8hhfKP/AFzW0ia6j/KGp8wj0XTJ36RVyp8l40nQ4/8A 8ennV5oQd/4nL/I4VoLzrqzZf/SPh3hi27+TsOms5/tKjpf2SJxqPMGp8wj0LSZ36TX/AKf9qfTN Gjdo9H+v/cgaq9jU7+SoluM/vH3VZfUPG/cdHfjO2oyX+Vt9R/1MT/UeYNT5g9AxJ341c/HyhWdN wv8ADhUR8J/eZQLVY0u/lLmojH7uEpWX1mPJ0bGB342JcZj93SGlZfWYn+p8wanzCvquJ/ViV/PV +0rx0jbdh0fJTP1hr/gria7+cYsST7+rprKP+Q8KsG7nvznFKvH+70Ef2IbD1PmDU+YR6oweuap9 9dU/un1pi9UUx7qKY/Zrg8Lqi6f/ABOJV3OF3UlP0S+oiH0sIaSv88r9wSu/rai5t+oyGxtT5g1P mCehtFn9VN/fMz9UR0rpFOdNVvdaPo10nBSwjVpvU6U8rvuTn1f/AFC6awjsBrit1hX+s1L/ALmJ 3qfMGp8wmnobQqd2FTyhM9L6XVvxaucoc1hpYzG1q1KYRl3d6oM/ryF+xaVuxvzeiQm/9LCS/wCQ kWp8w+6k+8N6ej8CndRHJhOnY07655sSilQkFkiGyReZsh7KDHL4rKC/7pDJanzBqfMNI0aiN0Qp Ok1TvljyioLiQX1D7vdJcRf0F/qfMGpPvC2wiOpXbTxWOo/6yHzUF/0Qv9T5g1PmE7FG2WOo/wCs g1Bd7+gvtT5g1J94NibZY6jzf0DUF/0QvtT5g1PmDYm2WOo839A1Bd7+gvtT5g1PmDYm2WOo839A 1Bf9EL7U+YNT5g2RtljqPN/QNR/1kL/U+YfNSfeDYm2WOoLvf0DUF/0Qv9T5h81PmDYm1WOo839A 1Bf9EL7U+YNSfeDYm2WOo839A1Bf9EL7U+YNSfeDZG1WOoLul/QNR/1kL7U+YNSfeDZG1WOo839A 1H/WQvtT5g1PmDYm2WOoLvf0DUf9ZC+1PmDU+YNibZY6gu9/QNR/1kL7U+YNT5g2RtljqPN/QX9J b0FO+ci/5j5qfMLmGjQNWzjyGuFh6tcSzxcTWomF0MXc9FpVxW/UKLW6dHnQZcdbb0d9sltuJy4l JPYYygpSS0o7qe+gy/oO+mqaaomHJTM0zEw1/R7cpVv0yPRqHTY8GDERoMR47ZIbbTnnkSS2FtMz /iLzenmGZ3oXeDehd4dk401TeZzdc4szN5Yben+UN6eYZnehd4N6F3hG0RtGG3p/lDenmGZ3oXeD ehd4NobRht6f5Q3p/lGZ3oXeDehd4NobRht6f5f6BvT/ACjM70LvBvQu8G0Now29P8ob0/yjM70L vBvQu8G0Now29P8AKG9P8ozO9C7wb0LvBtDaMNvT/KG9P8ozO9C7wb0LvBtDaMNvT/KG9P8AKMzv Qu8G9C7wbQ2jDb0/yhvT/KMzvQu8G9C7wbQ2jDb0/wAob0/yjM70LvBvQu8G0Now29P8ob0/yjM7 0LvBvQu8G0Now29P8ob0/wAozO9C7wb0LvBtDaMNvT/KG9PMMzvQu8G9C7wbQ2jDb0/yhvT/ACjM 70LvBvQu8G0Now29P8ob0/yjM70LvBvQu8G0Now29P8AKG9P8ozO9C7wb0L5IbQ2jDb0/wAob08w zO9C7wb0LvBtDaMNvT/KG9P8ozO9C7wb0LvBtDaMNvT/AChvT/L/AEGZ3oXeDehd4NobRht6f5Q3 p/lGZ3oXeDehd4NobRht6f5Q3p/lGZ3oXeDehd4NobRht6f5Q3p/lGZ3oXeDehd4NobRmKcWjAjp 7zSS/oLgUoydGO2nvIIv6CqOOd7lneAACEAAAAPnGPoAPhERcREQ+gAD5kWWWRZBxD6AAAAAAAAA AAAAAAAAAAAAAAAAClK/NXv3av7CqKUr81e/dq/sAxNkfoXQPouL90kQC3NzxRLcxrqGNEe46g9K nImkUBceOltC5W99YZupbJ5ZFvZOilSzJOkrLjE/sf8AQugfRcX7pIwl4YyYfWLWkW5X6pPXVFx0 yziU2jzak62ypRpS44mK04baVGlRJNeWloqyzyPIMJ1haL17CxqKuzt+ak2zhm0zo6Wr0Py2hrdD R26vT0NLbkNoKSlaTSoiMjLIyMQ6zMXLDv6pSaNblTmdUIrRPuRKhSpdPf1RnlrEtymm1LTns0kk ZEewTEzIizMJ7xr6kYC4Y0O4kXJT6POS6zJXMjQXKtLdpsSQvPSeYgrcOMy4ZqUem22k81KPPaed CDueMJ4EqqymaBLcOrQ5NOW0/VZbzMSLIUSn2YjS3DRDbWokmpLBNkegjP4qcpTQsQrBuirTqBbV 8W/VqnTDNM2FBqbL78UyPRMnW0KNSMjIy7Yi27BIBExeLSXmJQyfg/h9UpzVRm0NTkhhEJtC99PF kmIvTYLIlZdqrb5+7mKFbwUw7r8WoxplLmsLqlY6vvSoNUlRJTc/UoYN5mQy4l1gzaQSDJtSSNJq IyyUrOcj6FonL74/VWmmKJvTFp+4+jW1R3PGFVSpFMojlHqUeNSmnI7aodbmxXn2XFaTrcl1p1K5 KFmZmtLylkozMzI8zHqbufcL5qqwsqXU4iq3NjVJ9UGtzYhsS2GiZQ/GNp1O9XDaSSFqZ0DWkiJZ qE/n1CBSobtRqk1iHFYTpOvvuE22gu+pSjIiL5xXSpKkkpJkZGWZGXEZB1/fv+q153NbztzzhTUK NSqE5RJ7LFGJ5Md6LWJkeUtDx5vIekNuk6+hw/jpcUol/wCIjEshWRbFPspjDyNTElb8enJpTcNb i1kUVLerJs1KM1H2pZZmefnzGdHwzIizM8iEzutJGUxMNf1LATCirUOm23PtVK6dSKPIoMJhMp5B NQn0oS4gjSsjNR6tBks+3IyzIyPaMjYeE1k4bSKlNtaFOTLrKY6ahKnVOTOkS9QlSWlOOyHFrWpK VaOkZmeilKTPJKSKT0+pU6rRUzqVPjTIylKSl6O6lxBmkzJREpJmWZGRkfnIXAmZndP31/VGrEof TcI7ApFcYuSn0RTVQjTZ1Qbd308rJ+WSCkK0TUZHpatGzLIsthFmYyV7WLamItCVbV50dqp01bzU g2HDMi1jSyW2rMjI8yUkj/gM4660w0t55xLbbaTUtajySlJbTMzPiIRe18WcK73qK6RZeJdqV+c2 2bq4tLrMaW8lBGRGo0NrMyIjMizyy2kI3/fDdysmZ4/f3dc3bh9Z98wGaZdFEZmR2JcSags1IUT0 Z5DzJ6STIzJK20HlnkeWRkZGZCQkRJIiIsiIUpcuLAiuzZ0lqPHYQp1151ZIQ2hJZmpSj2ERFtMz FCm1ujVnX9SKtCnb2UlD29n0O6pSkJcSStEzyM0LQoiPjSpJ8RkF8rfEXoAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOzv1h0T 6Fqn38ESIR2d+sOifQtU+/ggJEAAAD4ZEZGRlmR9wfQARe+LHp9321OoamWW1yWzJpw2iUba+MjL MRXAa0ritG3Z1IuCnIjKRNWbKiPNTqDIu2Pb9XmIbSAeXX0Ro1WnUafEWrpiYy64ni9KjpXSKNCr 0CZvRVMVZ9Uxw96nqg1YqAPS1YedrSp6r5g1YqAGrBrSp6r5g1YqAGrBrSp6r5g1YqAGrBrSp6oN WKgBqwa0qer+YNWKgBqwa0qerDVioAasGtKnqvmDVioAasGtKnqg1YqAGrBrSp6r5g1YqAGrBrSp 6oNUKgBqwa0qeq+YNWKgBqwa0qeqDVioAasGtKnqvmDVioAasGtKnqg1XzCoAasGtKnqg1QqAGrB rSp6sNX8wqAGrBrSp6oNUKgBqwa0qerDVfMKgBqwa0qerDVioAasGtKnqw1fzCoAasGtKnqw1QqA GrBrSp6sNV8wqAGrBrSp6sNV8wqAGrBrSp6sNV8wqAGrBrSp6sNUKgBqwa0qerDVfMKgBqwa0qer DVCoAasGtKnqw1XzCoAasGtKnqw1QqAGrBrSp6r5g1XzCoAasGtKnqw1QqAGrBrSp6oNUKgBqwa0 qerDVioAasGtKnqvmHpCNEzHoBMUxBeZB8UWkk098sh9AShQ3skN7EK4Cbym8qG9i/6MN7EK4BeS 8qG9iDexCuAXkvKhvYv+jDexCuAXkvKhvZP/AEYb2IVwC8l5UN7F/wBGG9iFcAvJeVDexBvYhXAL yXlQ3sX/AEYb2IVwC8l5UN7F/wBGG9iFcAvJeVDexf8ARhvYhXALyXlQ3sX/AEYb2IVwC8l5UN7F /wBGG9iFcAvJeVDexBvYhXALyXlQ3sQb2IVwC8l5UN7EG9i/6MVwC8l5UN7EG9iFcAvJeVDexBvY v+jFcAvJeVDexBvYhXALyXlQ3sQb2IVwC8l5UN7EG9i/6MVwC8l5UN7EG9i/6MVwC8l5UN7EG9i/ 6MVwC8l5UN7EG9i/6MVwC8l5fElopJPeH0AEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ABSlfmr37tX9hVFKV+avfu1f2AYmx/0LoH0XF+6SOLLrp9zx8X8R6lbdg3fc5zbgUUio0W/bmozZ GhhpKY62YLZsmptJEnSIz2Zd4dp2P+hdA+i4v3SRFq3uf8JrgrU64anbCjn1J3XynWZ0hknXMiLS NKFknPJJbcu4A5UwziXGvdI2JOuK2rqtd1luWhlNavW4a0UlKkdshCag0SEZ5Fmel3OIdwV7e3US fv1bqY+9nNappJmskaJ5mki2meXFkIbbuAmFNq1+LdFGtfV1OCSijSHZj7xtaRZHok4syLZ5hsAy IyyPaIqi8TCYmaZvDkG1a7Kw6ZtCFSlWliHTYVMlFa0yjIdg1iIaIy1kiYwS1pdJRJSha82+3/7P M9mKpmPeNy7Xrsorilk/JoEarMS6kVFeXTZS5jLWgwxDUajYUh1eyQSnEm0Xbmajy66pVl2fQ6jJ q9FtakwJ0zM5EmNDbbddzPM9JSSI1Znt2jzDsWyqcc44FpUeN1TUlc3VQm0b5UkzUk3Mi7YyMzMs +6ZiLZzM55W+vnHJniUzVTajKb7+X882nKpdeJ9rYgsYRO3vLqcyvLgzKPVZFPi69ERpRnP1iW2k NGfapSRkjYTpHxlmNZQt0BjQ7U6jUXJ0xhMrq+wcCaqjlGpu9EPmwuM02o5q3EqZQThP6SVaa1ES C0SHYjkCC7MaqDsNlcphKkNPKQRrQlXxiJXGRHkWYxqbLs9NUl1xNrUkqjPbNmVLKG3rn0HkRpWv LNRHkWwz7hC0RF7zwlNcTVTMU5ff3LUOIJV9e5Lqs+5rnlV6pVChsTn5ciOwyZKd1azQlDKEJJCT MyTmRqy41KPaIu/i3iDFvZUqPeP5ne8K0mrKKJG0X6e4ywapprNs5Ju5OrfJaXCaJCUpNGZKUfS7 1Np8iAdLkQWHYZoJs462yNvQLiTo8WRZFsFodrWyquIuZVv046u23qUTzjI3wlvIy0Scy0iLIz2Z 90Uop1cWMSrOLbvjE/x8VZomYm05/wDPnf4Oc6bjDcsKyK7iRcWMZIluxKmfBYqXDcXS1svm00pg iJt3NJaJq3wtaDNRHmlJHnrs77xAviOqlXLiRXo7Vr4lW4TEuYmjKlFHkMNLNt9cRg4poJxRrSaC 0u2IlKPakuyeBFm76qE3gpSN8VVs2p7u8m9OUg9hpcPLNZH3jzHhuwrIapyqQ1aFGRBWbZqjJgtk 0erPNvNOWXantLvdwTaZvfhZfEjW/TxcowsVb5i2UTdOvmLZDNHoVYr8d6NTICWKtLanPpTEW2to 06GTadImdW6o3DPTI9okNcxMxjfqV13fHvyRSINryLa1VvIpkRbD2/IzDklt91xpT5lm4ejoLbUk 9LMzLIk9ITLJs6osxI0+1aTJagOm/FQ7DbUlhwzzNaCMu1PPbmXdF67Q6K/vk36TDc34pC5Gkwk9 cpBESDVs7Y0kREWfFkQtiTrVTVTl9yYl64/Lllb6eXixNbQbdm3AR1dyoZxJh6a9Xm3+LV+LLVpS WSeLbmffMxzjS6ja0zCLc+R7XlU6TdLD1tqYKEptySyyUdvfhr0c1IRqNaS88syPLujqpqBCYZcj sxGUNPGpTiEoIkrNXxjMu7n3Rh6Dh9YlrS1T7as2iUqStGrU9CgNMrNGeeiZpSR5ZkWwIm03hFnJ NVxvvG6a5c9B4T1efblbta6llFnR6Y0w0uK2lKN7ojkcpGWksj3yszPYZEQp2zftUsygXLColdq9 KqFcumjxGXqUzAVIPRtinOKSldQzjN7EHma0qM+JJaRkZdfMWNZcaTImR7To7T8s3DkOohNkt03C yXpGRZq0iIiPPjIto9TLKs+oRlQ51rUmRHW8iQpp2G2pBuoSlCFmRllpJSlKSPjIkkXcFcOJoieM xEcqpq+k2azNMze3HxiLfRyVIx8xacw7tG9372kMMM0STUaq3TG6SuY+6zIWWnIjyUpJ5k228jTD W24atIk8acuyYchEqIzKb0tF5tLidJJpPIyzLMj2l8ww8ywrHqDcNmdZ9FkN05ZuREuwWlFHUZ5m aCMu1PMs9ndGd4thC97wzmM8vvP7h9AAEJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHZ36w6J9C1T7+CJEI7O/WHRPoWqffwQEiAAAA AAABZVOsU+kNpcnvmnTPJCENqcWs/wDKhJGo/wCBDGcOaF+yq3qeX7oWiiqc4hWa6YymUgAR/hzQ v2VW9Ty/dBw5oX7Krep5fuhOzr4I2lPFIAEf4c0L9lVvU8v3QcOaF+yq3qeX7oNnXwNpTxSABH+H NC/ZVb1PL90HDmhfsqt6nl+6DZ18DaU8UgAR/hzQv2VW9Ty/dBw5oX7Krep5fug2dfA2lPFIAEf4 c0L9lVvU8v3QuYF10WoyUxGXZDTrh5NpkxHo+meRnknWJTpHkRnkW3IjDZ1R1G0pnrZcAEKqeMNi 0uc9T1yqtNdjrU06qm0OdPaQtJ5KQbkdlaNIjIyMs8yMjIwow6sTKmLpqrpo/VKagIB18bF8Guz+ T6v/APbB18bF8Guz+T6v/wDbC/o+N2Z5M/SMLtJ+AgHXxsXwa7P5Pq//ANsHXxsXwa7P5Pq//wBs Ho+N2Z5G3wu0n4CAdfGxfBrs/k+r/wD2wdfGxfBrs/k+r/8A2wej43ZnkbfC7SfgIB18bF8Guz+T 6v8A/bB18bF8Guz+T6v/APbB6PjdmeRt8LtJ+AgHXxsXwa7P5Pq//wBsHXxsXwa7P5Pq/wD9sHo+ N2Z5HpGF2k/AR217/te8HHY9FmSCkMJJbkaZCfhvpQZ5ErVPoQvRzIy0sss+6JEM6qaqJtVFmlNU VRemQAAVWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKV+avfu1f2FUUpX5q9+7V /YBibH/QugfRcX7pIiuJuMcCwJ7NCiU4qlVVxeqEhLklEaPBiG5q0vSHV7EEtztEJIjUtRKyI9FR lKrH/QugfRcX7pI0vjlZkB7E+mVS4pr8K373iUq33qi1lnTavTp7k2lKVpZp0HXJElo8yyNepSfx tgbGwzxXiYguSqbJph0yqRGkSdSUhD7UiOszJL7LqNi0aRGk+IyMsjIhMKzVY1CpMyszG31sQWFy HUsNKdcNKSMzJKE5mo8i2EW0xpTc+2pS2borNftuQ9It+hsO21TpbnHOeOUuTNeLLYaSfWaE5bO1 URcQ3upKVpNKiIyMsjI+6Im9siN+aKs4n2bJYtp+HU1Siu0iVSiYaU4p1GhpmtREWaEpL4xqyIjP I9olWZd8cvpwzuW3jxdl2hAqqZcc0s24hSVEmPFe0XpbcLPIs1KNwy0T+MZEI7T5FWt2orum0KNf DGHNKuugyNQ9S6gqXpHFkNT3G4i0b6WwS3ImlkgyNSXFJIyLM6RiRMRMddvGY+l80Xve3VePfb7y dhZl3wzLvjlrDWhXHeeItEqdzUq6WqMidXKiy3ObkxkEevbVFU4lWWXa5mlKsuMyyzIyKQY32JUL zxNmrkQq7IptPsCY/CKI4+hjqmUpOrMtWZEp4k56JbTyM9gtrTEReN9vheInwvZlRixXebbpmOU2 dC5kLCj1+jXAy/IotSYmNxZT0J5TK9Im32Vmh1s+8pK0mky7hkON7ki4yTL1oEyqrqzM5yn2+5SH 00KpSnm16LZzEm4y4iMwZq0ycKTlsM8s9hD3QLOuizGazDtShXPCm1m+LmoFRJqHKNtpipyNbEqB KMtFTaEss/jUGZJJ1WkZHpZKZ1pi3XE88svF0TTEU3njHK0zM+DtTMu+Q8PvtxmHJDyskNJNajyz yIizMcqTKRf79qdV7riXEqhxa9Do1YhMsSXJTlGiJdQbrbbRG64TjuoWo0EajIj4yzFC1LPuW5JV nwatSrp4KNSLrkUyPMKS04iATrZ05MkjyWk8iM20O5LJJJIyIyMizxcSaKJmnfn9JmOaKIibTP3u j6+bqG2LmpF4UKJcdBkKegTkabLikGg1FmZcR7S2kYtL2vm3sP6OmtXE++lpx5uMwzHYU+/IfWeS Gmm0EalrM+IiLMc9bm6jXHbdLVScXqPWn3Hqe0/TJLUGUTLETfJkUVTSCPQdS5oqMzLNSVaXER5b Xx7hUiZa1O6u2/cE6BHqkeS5MoGsOfSjbzUiW220RuuaKySRpQRqyUZkR5ZHviRqzFt2X37/AN2W BVViUXq32/ZnaBizZNwRGpDdRdp7z05NMKHU464kpMpSDWhpTThEolKQlSiIy2kWYmGfnHGdQoVx 3K3b9Sr8C5rmtugX/S5cCtTqFJi1R+Nvd5K1vsJbQ+tDbqmkaxbZHltPtczGKpL+JVRxBrVbh2tc VNdmR7qiz0IplTS4hxOt3olx95RtPGokIU0qOkkZZJzz0SOtH58TZx9xZpX+TD1t/wDzHm62ufE+ 0bQq7dCrUuSma60w8lpmK46ZodkIjoPtSPZrHEkfeLMz2EYksybHgQ358leizHaU84ZFnklJGZnl 8xDjevWJd1Dp9ku29QLj32u3rdXUHktSHHt8KrENconFHmZK0NYa0nlkklZkRZi9pNj3dAdpt1t0 26FViqXxeUSoqd3ysupRu1LeqTbPtUsnkwaDyyPSTontIKbzh6079aY5TER9VtWZiao3Rb/460/S zrG3a/TLpocK4qK+b0GoMpfjrUg0mpB8R5HtIW6rtoSJdWhqmdvQ2UPz1aJ6DJKSaiI1cWlolpGX GRGk+6Q0ZuT6Ledtx+pOJEKpOVpdJjPwZiozzUVuDmZJi6Cu1adbUR6RH2ytIld3Ynpuip2velm0 BDfCK4b8mwZb7zLjjMeMZNONrdNsyNKd5EwRZqTnmRcZjo0TBjSMejCmbRVvnhHXyzVqnVme7xbZ LF6xVWK1iKipuqo8haGmDTHWbzrq1khDSWstM3FLMkknLMzMhWoOKNoV6mVGqb6kUxFISS5zNVjr hvR0KIzStbbhEZJUSVZHxHkeXENDv0av2w1cdi4hWnIqlGkT4FxR5dpxJDRU7Jzt3WSNS1rdadZQ 4baD0zSszSlWWictwlbn3A/ddNqrlUuS1DjMdT6lcdIXEnPO6b6lRlpebQ66hojb0VrRxrPIz25e /j9E6NhYVeJTMzETExN7/lm3dbWi+cTMd25hFdWtET9/eU9baVIxHs6u2InEqBWWztxUNc8pyyNC SYQRmpZ57SIiSZjBLx2sRVMtmq05NZqjV201FXpiKfS35Dq4ikoUTq0ISZoLJ1Hxstqhqi37exFL AGy7do9nRZkeM3Idq9NqE1cB09BxamG9E2lmadIyUaTIs9FJcRmIXbFHq1EwjwyrNaTf1uXfTMP4 dHpsCjQ33mVvkhk0okmhvNpZm02a0PElCczLSMyMx0YfQeiV4ldMV3/PVTEXi9ova9omeq8za1ir FqiN3HPqdLzcYrJp90tWjJfnFMUthl51MF1UaK6+Ralp54i0Glr0kkSVGRma0l3SHyHjHZU26HbR acqSJyDkIZW7T3UMSlsEZuoYcNOi6pOSsySZn2p94aLv+3rhnVddvUefdES4bsm0GZVYTNLNVMU6 y5HW/KKaSTS0SG2VEbZrSalJIiSZKzOa1WrIujHC2pNBpl0Jn0STJjVFmo051unRo2gsjfadUWpU tzNOiba1KyVkok5KIsK+idFpoiqLzeiqd+6YpiYmfy/pmq8R1Zb7m0qtMzlbx3+LdVGrNOuCmR6x SZBPxZSNNtZFlmXnI9pH5hejWGAByV2zXXVqNUJy56uqnHnmRxd9L0NH/Lx5eYbPHzMxa3uiecXb 9cwAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR2 d+sOifQtU+/giRCOzv1h0T6Fqn38EBIgAAAAABgIR669qoTpEre0CITWZfE01O6WXz6CfqIZ7Iu8 MBTv03rf/wADA/8AE+JAL4m+PdH0Uo6/e+ZF3gyLvDCXDLmrlQaJT5Bx3Jylm4+n4zbSSzVo5909 heYRSJUXkRXarQn5yXolNbqjjMmSbqJDZrcJTZ5lsVkyeSi7qiF6cGaovdWrF1Zs2NkXeDIu8PEd 9uTHaktHmh1BLT8xlmQjNRrdyrrlRp1GRTiap0Zp8ykIWanDWSj0SMlESfi8eR8YpThzXMxHUtVX FMXSnIu8GRd4R6NfVCchQJct16Oc9lt4iNhxSG9PiJbiUmlO35RkMo5W6W1HnS3JaSap2e+laJ/i 8kko+5t2GR7MwnDrjfCYrpndK9yLvBkXeGKdumiMz26aqS6p9zRy1cd1aE6XxdJaUmlGf+YyHw7r oJVIqUc4yfNzUkrUuao3Pka3R0NLuaOlnnsyDUq4GvTxZbIu8MDfnaWdV5KSInYsRyS0rLahxstN Ci85KSR/wGfGAv8A/Qev/Rsj7sww/wBce8q/TK2xOqEulYZ3XVID6mZUSiTX2XEnkaFpYWaVF5yM iMZCz4ESm2rSIUGO2yy1BYShCEkREWgXcIYfF/8AVHef/wCj1Q//AGZYz9u/o/TP/g2f/AQ0nLBj 3z9IZU54vwj92QyLvBkXeH0aviRrkxSqVZqCroqNEoNMqMqkwY9Nd1LshyOtTTzzrhFpZa5C0pQW RZIIzz0hXDw9e8zNohfEr1LREXmWz8i7wZF3hqvCeHe1u3ZcFAv+82qxMltMzadHQ2rSjw0Gbea1 8SlKVxnkR7BPLyrci27Uq9wRWm3XqdCekoQ5noqUhBqIjy25bBONg7LE1Im+7OO8wa9rTrWszGRd 4Mi7w1LZmJd6uVygU29yt9xi4qKusNOU5DrKoSUJQpWuJxayNJkvIlZp2pMSBrGvD+ZFqL9NqUyQ 5T4TlQJnqXLbXKjo43IxKaI5KCM05qZJZFpp+UWdq9FxaKtW1/dyUwtIw8WmKom1+KdZF3gyLvDX 1u432bW7Gpt8y+qNPYqWihqK5TJapK3TTpGhpomtY9kWZ6SEGWRGeeQvpOMWHkejwK4VbfkRqkp1 MdESnSpMgzaPJ0lMNNqdbNtXar00FoK7VWR7BWdHxqZtNM8Ny0Y2HVF4qhM8i7wZF3hr6l41W1V8 RTw7iQaqp5VPZqDMzqbKJlaXNIyI1G0SUFknPSUoiMz0eMshsIUrw68O2vFr5rUYlFczFM3t/wAo BiQe9Lqw9nR0pQ+9cKoK3CLtjYcgyVrRn3jUy2Zl/lIT8QDFD9IMOP8A9LE//wCvmifjTF/6dHun 6yph/rr9/wC0IXipilQcK7eVWauo3X3DNEWKg8lvLy4i7xd8+4OPbo3UeLNwTXHoVZRSIxn2jERp Pal3M1qI1Gf8SLzC93WlxTKtio/SnXVHGpTCGWkdwjMtJR/WYkVs7l+FiBZ1tXfbdZRFOXGaOoRn VaxK1keTikqT8UzyPtT4j2bB+ndDdG9E9CaBhab0nTerF3TMXiMrxFvd1vwX+pemun/6o6Xx+jOh appowcrRNpqztM37p6uCOWZurcTrdmtnXJrdcg5kTjT7aUuaPd0VpIjz+fMdjWDflBxFtyPclvv6 bLvarbV8dpZcaFF3DIc8bpXC7DXD7D+JNoVvMRqk8+3EbcSoyM05aSlGX+I+1Is/8wwe4vuKXFvC qW0bqjizYm+NDuE4gy2/UZ/0HJ0v0f0f0z0VV0toGHs5onduvEb9z0P6b6X6X/prp+j+n+lsba04 kRbO80zMZZz9O+7sVa0tpNa1ElKSzMzPIiIcQ7oHd41Kn1iVamDRRibiqU09WXmyd01keR6lJ9rl /mUR59wu6N97ry7p9m4BXNPpbymZUxtuntuJ2GknlklZ59ztNMv4j8qYsdcyUzEbUklvuJbSajyI jUeRZn3CHz/9PdF4Wk01aRjxeIyiH6z0lpdeFMYWHk29F3X26JiTt/pxJmOLzzNt1hlbR+bQNGiX 8CHWu5l3ZsfFGoM2RiFGjU64He1iyWe1YmH8nRM+1X5s8j7mXENa4hYY1LCzcr06LRqfaLkiZHkO XDOccbdfczUgkFGXlmoyNRkeWWRZDjulVOZRqlFq1PeU1JhvIfaWk8jSpJ5kf9B686FofSuDXs6I ptMxExvyccY+Nolca1V774ftsIxdN1TafNj23bcJqdXpranWmnVmhphojIlPOqIjMkkZkREW1R7C 75XViVxdy2XQ6+5npz4DD68/lKQRn/XMR/C1fViTdN2vpJb02vS4DKzLtkx4a97E382saeV86zHw 1OHqTVNcfp+r3a69bVpp6xzDCpVjJ+6sRrpkuqIjWzTp6qawhXeRvbQc0f8AUtR98zDghelptnMt S8KjW0tnmqmVx9LqHEd0kP6OtSvvGpSy75Fxi3xivhm3qKdJptZVCrbkulPNIIjSpyOupR2XdBRl krtVmlREZmRLLPLSLOZUC46Pc0V6bQ5e+o7EhyKp5KFEhTjZ5L0FGWSyJWZaScyzIyz2GNJqxow4 xKv0zNt2WVvNnFOFNc0Rv96nbFywbpphVGGlbS0OLYkMOFk4w8g8ltqLuGRl/wAxlxAmF9RcaHac wkm49x0FU9SElsOREfQ244fnNElkv+4QnowxqIpmJp3TF22FVNUTE74yAABk0AAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCLwuqswm6y9RzQzEoDSFS3 jQSnHXlJJZNIzzIskKQozMj+MQzVBqlTVOl0Ktk0uXEQh5D7SdFL7KsyJWj3DIyMj7mwBnQGkY+L V2Ha1zJeej9W2ai81SFmyRI1BvutIM08SjQcdwz82QzMLHOlNVCk0SoFEXIkbyjSlnObaf18hCTS bcc+2WjSUkjURllnxHkIidaL/fEmLTZtUBrEsboZTalBXSIrjsGM/JS1FqrUl1BNOpQaZCWyMmFd sR8asiI+8MxSMSUVJcFpymx850aZKQ7EqCJTCkxzQXauJLJRK0+8WWXEF8rncmwDWRY1slAdrDtv GzTo1IhVR99yYSdA5STNtoiNOR5GWRqMyIi25D1SsZ2K801CodIizqu9NchkxGqjbsbtGtYpwn0p MjLRNOzRzzPLZxiZyuRm2WAgdtX1U14WQr0rcdl2Ytg3H0rfbjNpVpmnNS1HooSWW09v8Ri7exVq l13VRINKgQOp0k6i1NcYnpkINbBt6KmnEoyWnt/NnpebaiL1asIvldtABprEDFev2rekiAc2LEix HYCI0F1tJuVND6zS6tCj29psLteLujN3veF+MMU1iiWzVYbsiqusvrisNS17ybaWrWlpGTaNJWhk SzI+MizPYIibxEpnKbNlAND1HGK4nKnRlW3WmJcCXHgPNm9GQnfRPOmh031ZZRzTlkRZpJR5kWkJ vfOIlbty3ai4zbymaw7Jdg0VlbyHClmSDVvkyTtS2lJKWoj2kSfOQTNo1p+/u5Gc2hsEBoKoYvX0 3TrZlMTYaHZ9Eh1BxOpSaZD7i0pWTp8TDeRmZKM0kZ7M89gnmLN33LQrfplPszUHctemNxIJOJJa EESTcdWZHxpJtCvrITP5d6IztDYIDQ14Y33JBotg3HQ1MIjVotZV21sko0pRkl5JZ7UmlWl9QzmE mJ1w33fN0Q5jrKqJHQ0/SSS0SValTjqNJSi+Nnq8yCM/HwJm0X93i26KUr81e/dq/sKopSvzV792 r+wJYmx/0LoH0XF+6SPd3Wlbt923ULRuymN1Ck1Nk2JMdwzIlpPvGRkaVEeRkojIyMiMjIyHix/0 LoH0XF+6SOer33bDNqYgXBY8Sz7fdKgTt4OSKldyIC3F6JmatUcdZkksuPSP4ye/sDpC37fo9q0S DblvwGoVNprCI8aO2XattpLIi75/Oe0z2mMgOe7G3WMe7L9odjyKVaKlVxx1pt2iXeVSdaUhBqzU 1vZvtTyyz0v4De1blz6fR5s6lU0qhMjsLcYim9qifcJJmlGnkejmezPI8u8ImYiLyRF8l6GRd4ax o2O1DuMrXboVNU/JrrD0yoMvSCa6jsMZpfU+ZlxodI28tmZkZ5kRCW0PEbD656fHq1t3zb9WgypZ 09iTBqbL7TsoiMzYQtCjSpwiIz0CPSyLiEk5b0hyH0R2XiLh/T3mI8++bfiuypO8mEPVNlCnZGlo 6lBGrtl5nloltz2ZCOX9jFFsW6itZyhOzHVWrVroJ1L5ILRguxWzZy0T2rOUR6Xc0D2HmEZxMx1I vERMtiZF3gyIamszGi6arX7col84dRreRd8Bc6jyIdb6oJc0EIcU26RsNG2rQcSZGWkR7S2d2c1n ESwLcr9PtS4b4oFLrdXMip9NmVJliVMzVolqWlqJbmatnake3YG+InilIAGu7rxxsm272oGHsWsU up16s1VFMkU+PUmjlQCWw66l51kjNZJMmTIsyLPPj2C2k7oXDVGIEexYN10CclEKpyqrPYrDCm6S uEthK2ZJEZ6pZ744lmky0DzLvOqKuqcuSbb+5s3Ih9EV662F+nSW+uPa+nXnFM0pPVePnUHEq0VI YLT/ABqiPYZIzPPYLtjECw5NzzLJjXrQXbip7O+JlIRUWVTY7WilWm4wStYhOSknmZEWSi75Ai7P ZF3gyLvCOUXErDq5IL1Tt2/bdqkONKTAekQqow+03JUokpZUpCjInDUZESDPMzMiyGKxJxGqNmSq FQbcthNfr9xyXI8GG5NKGzottKddW49oL0SJCTyIkGZmZFs2mUX3d5dOAGjbq3T7dCobdbpdkLqB QqHJuKuNO1JMc4MOOtSHyaUaFJfdJSHMkZoI8k5qTpbJ7iBiUmzbYp9ap1Ddqs+tSo0CmQFO7210 h8yJCXHDSrVpLPNR6JmWR7DPYJveLxxt8b2+pMW35df7/RNhDbowbwrveoO1K87AodeedJvSKpQ0 SWyUglElZIcI0kvJRlpEWZlkRnkRZROsY1XdAsideEewqMk7eVMRcjVQuQ4zVOOOnSWpDqYzmuSa czIzSg9nEM8rFOZScGkYr3lZ8qiyU0tFRk0XfBPPR1LIjSypzRSWkWkklHlsPPjyFqa6sKdembTH DvI/NMU8Vl2MW5x8g9g/y9E6AdjFucssusRYP8vRegLGj4+lwduap3bZNRgVS1pLUWRTaSpVVOS4 60l1pLC0No0jNKi0jUlCUHmalEkjUJbh/iJCvzCq38VUQVwIleoUaulGccJSmG3mEvaBqIiIzIlZ Z5dwb+laRa+vNsuuevOETTETaY4+G9gOxi3OPkIsH+XovQDsYdzj5B7B/l6J0Bhyx3uun2A9iFc2 GceDDmuwYlAjxq5vh+oyZklMeM24RsITHJTjjWas15EozyPLI5xYF7T7sbqUCv0BFErlFklGnwm5 hS2k6SEuNrbd0UGtKkrLjQkyUSiyyIjOI0vSJi8Yk85JpiIvMI/2MW5x8hFg/wAvRegLmm7nXAai zmqpRMHbOpk+OZqYmQqNHYkMqyy0m3EJJSFbdikmRkNiAInSseYtNc85LQs6PSKbQKZHo9IiIjQ4 qCbaaRxJSX9/nMXgAMEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAjs79YdE+hap9/BEiEdnfrDon0LVPv4ICRAAAAAACP079N63/8AAwP/ABPiQCPM KRCvScuU4lsqhCjIjmo8icU2p3TSR98iWk8uPLPvDP6aflENMSM490fRnRMRe/Fi67SZE8402nvp ZnQlmtlSyM0KIyyUhWXcMvq4xH2rVqcxo6aunRaVEejIhSnGpK3XHY6VKVqkZ5aJHrFkaj25K+Yy mmmn5RBpp+UQmnEqpiyJppmb3EpShBIQkiSksiIu4QisizWqrdNSqNVTJOHIjsNIQ1McbQ7o6Wml aEKIlltLYojLaYlWmn5RBpp+UQrTXVRe3WtVFNVrtfXZbVxVN6ZBjRJLsXRaTAJibveOyhOWklaE mRrPZszIy+YVaxR7oTAuKjU+kIkprLRmy+b6UobUbJIUlRGeeeadhkWW0uITzTT8og00/KIbRpFc REWj7sz2VF5m6GLo9cZrzEilQZEMzNopb5SEKjyG0pIjJTZ5mSi4iNJEfnyFlS7NejzkwqlSKhJb bnHKRJKrOlGy1mmlRs6eWkR9zRyzIbA00/KINNPyiCdIrnq+psqOL0MBf/6D1/6NkfdmM7pp+UQw F9ONvWvUKU24k5VSjuQ4zWfbOOLSZERFxnlxn3iIzPYRmMcOPzw0qqjVlYYvfqjvP/8AR6of/syx n7d/R+mf/Bs/+AhjMRaRNr2HlzUKnN6cuoUeZFYTnlpOLZUlJfWZCpY9dpdbtanSafMbcJuOhl1O eS2nUJJK21pPahaVEZGkyIyMjIyGtr4OXGfpDKJinFvPCP3SAa6lWnftqVyp1TDmXSpVPrUg5sml VVTjaWJSiycdZdQSjIlmRKUg0mWlmZGWkZDYWtb/AGifrDWt/LT9Yzw66sO9o3rV6le+d3eidmWh V6ZU6hdd2VRmfXKmlDKt7tmhiKwjallojMzMszMzUe0z7hcQyF/UiZXrJrtFp7SXJM6nvx2UKMiJ S1IMiIzPYW0xnNa38tP1hrW/lp+sTViV11a87/JNE0YcWiXP5YB1C2bbaolg0SBSmbnt1VEuONFN LLbUg45pRMSSciNRKM0rNJZqIyPuDK4e4ZSWpLcit2XX6fU4FJfhtTqndcmpsE46hKFkw04+skpP LPM0pPIk/wAN161v5afrDWt/LT9Y6atOxq4mKt89ed/r9XPh6PgYU0zTP6fd99TnuThleku2rGVO terG/Z6JFOkwqdX1QH5LSkJSl9p5h1GzNBHoLUWw+LMhc1bDOpUy36U7ZVgXFTa7rJ0xqczcaXpc GQ84gzKQuQ4spKHCQlS0K1ic0FkWeRjfetb+Wn6w1rfy0/WHp2Llluvx67zx4z9wej4O+/0ayodu XvSMS4NxVent1JFQt2LTajNjuIQhiU0a1LWaFGRmlRq2aJbO8Q2ePOtb+Wn6w1rfy0/WObExKsW1 43ed/wB22FTRhXtVv7+6I/ZA8UP0gw4//SxP/wDr5on419frrFZvSxqLTn235lOrSqvKaQrSUzFT EkNaa8vika3kEWeWe3LPI8tgi2LFsOiJ4T9ZThTequY4/tDi3dgWNPpV7t3i0wpUGrNJQtZFsQ6n ZkfzlkY8YJboS3MKrYdo0yPW5ynFm6mOSWtS0s+M0qzJW3Lu7PMOv7nteiXhRn6DcEFuXDkJyUhZ cR9wy7xl3xzPc+4pkHMcetK6kJjKPNLMxrNSfNppPaX8B+g9FdO9GdI9HUdGdLzNOpunqmI3Z9T8 Z/qD+k+nOhuma+m/6eiKtpe8dcTO/Lrid7TWMOMNcxbrTc2c0USBEI0xIiVaRNkfGoz7qjyLaNx7 jCxp6ZtUv2WwpuMbW8opqL8oozI1qLzFkRfxPvC9szcXR401uXetx77ZbMlHFitmhK/MpRnnl82Q 6XpNJp1CpzFJpMNqLEjIJDTTackpIu8Qn+of6k6Po6P9VdEx+WcpnqiP3meuVf6N/orpfF6X9fdP zauM4id8z1TNt0R1QgO6Mw8l4oYN3HaVNRpT3Y5SIaflPNKJaU/97RNP/eH5GyosmDJdhzGHGH2F m2424k0qQojyMjI+IyMft4OeMd9xpY+L9QduWlS1W/Xntr0hlslNSFd9xGzM/ORkY+Z6C6Xo0G+F jfpnO/B+t9IaHVpFq6N8OJcSsRrZuTA7DayaVOdcqturnnUWlNKSlBOm3oZKPYr4p8Q19Ylm1i/7 sptpUKKt+VUX0tESSz0EmfbKPvERZmOo4vwcF7rnauXiBSm4hH+VRFWpZl/p0iIvrHUOBe5nsLAy KqRSULqFZfTov1KSRawy+Sgi2IT838R7WN01oehYE06PVrTN5+M5uHD0HHx8SJxItHk2XbVFZty3 qbQGMtXT4rUYsuI9BJFn/QRWyNXa91XDZsxRtnUJ71cpuZZJcYeJBvJSfdUl43FGXecSffE9GFua 1addEVtqUt6PIjr1kaXHWaHo6/lIUXF5y4j7o+JoxImaoxJyq+vF7ldE5TTvhAMXbFurEthVu1Kx LWqtGjymZcR6TWpMWShxtRKJRG2wZoPYaT0VbSMy7omNis3ZCgdTLhtygUaLDbbZhMUmW482ltJZ aOSmmySRERERFmMUteM1GyZjxbcuJlBElLjzzsF9XnWZJcSZ/MkiDqHiTdSDiXbVKdR6cs83Y9HU 4b7qe6hT6jLJJ93RSk/OOiq9WFGHVVTqx3/tf9mFMRGJNcRN57o+ti3tC6MSqneUU1Lp1KgFQojh l2rj2uNclSD7qc0soz77ahPRa02mwaPBZptNjIYjR0khttBZERC6HLi1xXVlujKHRh0TRGe+QAAZ NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABG6rb9TT UpdSoi4jiKk0ludDmEeqdNJaKVkoszSejkk9hkZEniy21LVtl2hpdkTZKXpTyUNESNLVstI+K2jS MzMizPaZ/UJAACDFg/a2+okxTs1TkNE9CM3SyPfbi1rMyyyM0m4skn3CM+MXEXDKmQJ0aXT61Vor LOoN6Ky8lLclTSNFCnDJOnxEWZJUSVZFmRiYgItlY67oBTMHqTSEMohXJXWyiRHIMM0vtpOKytSV aKDSgs8jSW1WkZlsMzFZ/CelPNtK6u1ZuYlUg35ja2kOyEvkROoWRI0CIySnalKTLLYZGJyAWIyQ 6JhbbkSkyKMTstbMiBDp5qU4WklEVJk0tJkRZK25mfFmRbB8Xhsw5FYJy6q4qoxpSpTNSN1s30Gp BoUgk6GqJBpPLRJGWZEfHtEyATOeckZIorDmjcDY9ktS5rUSIpK2HycSp5Ckr00qzURkoyP5RHn3 cxQo+GVNo1UiVhis1R2VGfkyFrdW2euN8kE4SyJBERZoSZaOWRl3tgmQBGU3hFupFq7h/AuKtN1W pVeprjINpSqbriOItbajUlRpNJmk8z26JkR5FnmPMyw3ZLOgxetyRXd9vSidamEoyS4kyNrRWlSD bLPtSNJmkyIyMhKwEWysnva3TgPZjBRo8CRUocJpmMy/DaeTqpZMKNTZuZpNWekZmZpNOee0Zuo4 ZWtXI8yNckU62mS888wdSSiQcHWJJJpj6ST1aSyLIi7oloBMXixuza06wVmNwolOgyqjCjMwG6bJ ajrbSmawhemRO9pxmrMzNOiZ5mM/XsMbSuit06s3DT0VFulRHIsaDKbQ7GTpmkzc0FEea8kkRHnx dwSwBM57yMmtiwEslLCYbbk5uG27MdZioWhLTJSU6K0IIk9qkuNJdwZiycLbcsGQUihuSjMqdHpu i6pJlq2TUaVbCLtjNZ5n3RMQD7++Za/398AUpX5q9+7V/YVRTkJNbDiE8akKIvqAYix/0LoH0XF+ 6SNP2reCMOLkvul3Hh9eEtdQuiVUYsin0B6Ww7Hcba0VJcQRkfEZZdzIbdsh1rgtTIGsTvinxGok hvPtm3W0ElRGXGW0v4kZHxGM8A0TUrqLETEewioFhXbBbpFSflzJNSoTsNlts2FJLt1kRGZmZFkN 7AADQFRwHqj7eMR0imQqfKvZ+O/DeSpJb6JCEG42vLalKzQaFeZRmI1Lw0xSlXDKxWh4cpgPtXDQ JjVsonxyektQoz8d+QbhK1JOKTJSSSNWZojIIzLMiLqQBSMOIiI4W8LeWaIi1++Z8XO+FOEt707E Gl3pd1tRYaW3a5IUg5Dby4xy3W1tpzL/ABaKTJWWzMuM9hjO4wYZXZd+ISa9RYTbsHre3Fb5rN8k KKZLkQFsoyzzyNMd3tuIsi75DdYC8WpjVjda3wiIj6Qzpwoppqpif1TM85u1fhTgXalgxaJWnW63 MuCDSWYRvVe4J1U3oZtpJ1DBSXnEskak5HqySRkRFxEQ1jjZhhjPeOJdSdoMF47fecoUmMqK7AYY kJiv6x5EpS2zlrdSeZtkhxLeRkR8as+ngEat7RwaTGVocwPYQYiKvSiUzgXGVFpN7TbkVdBS2dNU eRFfbLRRnrNalS0JMjLRySnLMQ+bgDitWLToloLw3p8N+1LDqlorqW/mVFVXnVxNW42WkaibXvdx Z63JRKV85n2eAtEzFNFPVTN4+Fo/aFr2iYjr87/u5cxmwOxGrt2THrZcrrlIuCkQaUtilSaXGahG yrabi5Ud11KCM9MjYPSJRbCzyMXCsJMRUYlzCp1tym7ffqNQnS250+HJp0gpEZxtTkZw2ynRX3DW nTJKtUkzdyIyVmfTYCtv38SZu0HgPaGJllS6mqv0KpqpJMQYMGNU3ac9Ob0FGlRpkR0oNyO2g06O uzd7U9pmeQl+OloquikUl9jD+Vc8qmTt8MdT62ulToajbWnWMSELbUWelorTppzQpRdt8U9mgJqi KoiJVpjVme9yCvc7X5bdDpdK4FsXW2uhvswo6aghlFu1p191wpyFLMj0kk6gtc3m6WqMy4xum+bS rFew0atW5LOevGbTG6e4t1qpFT35clvI3JEZ5CkqZeSpOkk9JG0yyUQ2qAVfmvM9ad8xM9WX08nO NuYHXPEw6TbT9HVHK6L2j1ytxHqgcl2NAQ8l423HlqNT61Gw0hZmpRq1is8xtHGCi3bdFj1m1rQa eYmSYWkzJTJJlLiiWnSj6RHpJNadItLLLbxiegIqjW393gRFtzS+EFiXHQ6ddmdmtWdRqqltNJtl EhpxENaWdF1wiaM2m9YvNWSD2/GPaZjI4VWZclq7nqyMLbgt1EioQbNh0aptb8JDLb7UJDa21OIP SyNRGnSQR5cY2uAtM3iaeNvC/miKbTEx1X8f+HKlv4BNw6bccak7nin21bztFiwHLYjVZpnqxMak E5vtDrJ/i320p/FPqUl01kk1KRokotl7nzDSp2Ud03LWaRMpUq6Ki28iDOqa6jMZjsspabORKWtZ vOq0VKMzWrJJoTn2uzcACIym8FUa2/jcAABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOzv1h0T6Fqn38ESIRxSkT79iPxFpdbplLmR5KknmSH H3YykIM+LS0WVmZcZEaTP4xZhIwAAAAABbT6bT6pHOJUoTEplW023myWk/4GMR1v7F5HUb0Fv2CQ AJiqY3SiaYnfCP8AW/sXkdRvQW/YHW/sXkdRvQW/YJAAnXq4o1aeCP8AW/sXkdRvQW/YHW/sXkdR vQW/YJAAa9XE1aeCP9b+xeR1G9Bb9gdb+xeR1G9Bb9gkABr1cTVp4I/1v7F5HUb0Fv2B1v7F5HUb 0Fv2CQAGvVxNWngj/W/sXkdRvQW/YL2mWzblFdU/SKFAhOKLI1x46GzMvnIhkwDWqnrTqxwBEq/h HhZddQVVrmw5turTVlkqRNpjLzhl51KSZiWgIpqqp/TNkTTFW+EA7H7AvyO2Z6kjdAOx+wL8jtme pI3QE/AX2uJ2p5o2dHCEA7H7AvyO2Z6kjdAOx+wL8jtmepI3QE/ANridqeZs6OEIB2P2Bfkdsz1J G6Adj9gX5HbM9SRugJ+AbXE7U8zZ0cIQDsfsC/I7ZnqSN0A7H7AvyO2Z6kjdAT8A2uJ2p5mzo4Qg HY/YF+R2zPUkboB2P2Bfkesz1JG6An4BtcTtTzNnRwhhbZsu0LMjLhWjbFLosdxWktqBEQwhR98y QREYzQAKTM1TeVoiKYtAAAISAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxVTt S2ay9vmr29TprpFlpvxkOKy+cyFn1vbD5G0X0Fv2CQgAj3W9sPkZRfQW/YHW9sPkZRfQW/YJCACP db2w+RlF9Bb9gdb2w+RlF9Bb9gkIAI91vbD5GUX0Fv2B1vbD5GUX0Fv2CQgAj3W9sPkZRfQW/YHW 9sPkZRfQW/YJCACPdb2w+RlF9Bb9gdb2w+RlF9Bb9gkIAI91vbD5GUX0Fv2B1vbD5GUX0Fv2CQgA j3W9sPkZRfQW/YHW9sPkZRfQW/YJCACPdb2w+RlF9Bb9gdb2w+RlF9Bb9gkIAI91vbD5GUX0Fv2B 1vbD5GUX0Fv2CQgAj3W9sPkZRfQW/YHW9sPkZRfQW/YJCACPdb2w+RlF9Bb9gdb2w+RlF9Bb9gkI AI91vbD5GUX0Fv2B1vbD5GUX0Fv2CQgAj3W9sPkZRfQW/YHW9sPkZRfQW/YJCACPdb2w+RlF9Bb9 gdb2w+RlF9Bb9gkIAI91vbD5GUX0Fv2B1vbD5GUX0Fv2CQgAj3W9sPkZRfQW/YHW9sPkZRfQW/YJ CACPdb2w+RlF9Bb9gdb2w+RlF9Bb9gkIAI91vbD5GUX0Fv2B1vbD5GUX0Fv2CQgAj3W9sPkZRfQW /YHW9sPkZRfQW/YJCACPdb2w+RlF9Bb9gdb2w+RlF9Bb9gkIAI91vbD5GUX0Fv2B1vbD5GUX0Fv2 CQgAj3W9sPkZRfQW/YHW9sPkZRfQW/YJCACPdb2w+RlF9Bb9gdb2w+RlF9Bb9gkIAI91vbD5GUX0 Fv2B1vbD5GUX0Fv2CQgAj3W9sPkZRfQW/YHW9sPkZRfQW/YJCACPdb2w+RlF9Bb9gdb2w+RlF9Bb 9gkIAI91vbD5GUX0Fv2B1vbD5GUX0Fv2CQgAj3W9sPkZRfQW/YHW9sPkZRfQW/YJCACPdb2w+RlF 9Bb9gdb2w+RlF9Bb9gkIAI91vbD5GUX0Fv2B1vbD5GUX0Fv2CQgAj3W9sPkZRfQW/YHW9sPkZRfQ W/YJCACPdb2w+RlF9Bb9gdb2w+RlF9Bb9gkIAI91vbD5GUX0Fv2B1vbD5GUX0Fv2CQgAj3W9sPkZ RfQW/YHW9sPkZRfQW/YJCACPdb2w+RlF9Bb9gzMGnwKZGTDpsNmKwj4rbLZISXzEWwXAAAAAAKUu XFgRXp06S1HjR21OvPOrJCG0JLNSlKPYRERGZmewiIVRYV+hUi6KFUbZuCAzOpdXiPQJ0V5Obb8d 1BocbUXdSpKjI/MYDC9dXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d 11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0w66u F/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kb yB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+h kA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0 w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPY K7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8g dp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3 riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfp jWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu 5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8A KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1v XEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZ B2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XV wv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+ Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIH afoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQD Z3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDr q4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gru RvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n 6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI /TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY 9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kb yB2n6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pF reuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR +mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHY K7kbyB2n6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVw v8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SL W9cR+mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+ hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ 3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurh f5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8 gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6 GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9M Ourhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2C u5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kby B2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt6 4j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y 1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK 7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/y kWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1 xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+h kHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANndd XC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/l Itb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8g dp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZA NnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66 uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu 5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHa foZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP 0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1 j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruR vIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa 3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0w66uF/lItb1x H6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQd gruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL /KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0w66uF/lI tb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n 6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d 11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0w66u F/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPYK7kb yB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8gdp+h kA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3riP0 w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfpjWPY K7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu5G8g dp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8AKRa3 riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1vXEfp jWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZB2Cu 5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8A KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+Ui1v XEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIHafoZ B2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XV wv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDrq4X+ Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gruRvIH afoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQD Z3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI/TDr q4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY9gru RvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n 6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pFreuI /TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR+mNY 9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kb yB2n6GQDZ3XVwv8AKRa3riP0w66uF/lItb1xH6Y1j2Cu5G8gdp+hkHYK7kbyB2n6GQDZ3XVwv8pF reuI/TDrq4X+Ui1vXEfpjWPYK7kbyB2n6GQdgruRvIHafoZANnddXC/ykWt64j9MOurhf5SLW9cR +mNY9gruRvIHafoZB2Cu5G8gdp+hkA2d11cL/KRa3riP0xf0W9bNuOUuDb120aqSUNm6pmFPafWl BGRGo0oUZkWaiLPizMu+NRdgtuRvIHafoZCW4abm3AvB2uv3NhjhlQ7cqkqIqA9KgxyQ4uOpaFqb M+8am0H86SAbKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAB8AfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAeXFGlClF3CHoeHizaURd4ZY0zGHVMb7SmN785LL3Tvwj2LiLqufCewsOqpbVu3BU KOWvStqS4cZe1JJN3ao0KRt7pmOnMEd17Zt/4AScbMRNTZxW+87AuOPKWejBmNKJCkEfGekZlolx npEOIty9u+8KdzBb+IOHF5WhetTr0m+q3UYpUunMuR3CcWlDaDWt5KiM1Nnnkg8iMss+IZKoYG4w z9xdUsQ6hYFWXUbixNj4h1a0WWFqlPUonCSbGpyzNWjoOGnRzyI9g1vEU2p/TanOeqZmI+OUzM+5 WY/Ned95y4xETPwztF+921hzuzMDsTzq0e36lWIs6kU5dWXAqlKehypERKTUp1htwiN1JEn/AA98 gru7QwCtvD+y8TKvc0lmhX7MTBo7pxVaanTPI9YjjbJJ/GM+LMsxz3Gv6yt1rutsK7rwDjzajbtj 0mcd0VdVLfiMMNyEEluCo3UJ01noq7UiMuPIzLMxzg9gPd2Jt9YkbmeoUp1dKwTpN01y3nlZ5PTZ riHYRZEnZ8U8sj4i2BM2mLxbyiYvPxjOPd1pndNuEc5ibRztzfo9iTuusFsKa5cVv3dV6g3LtWlM Vmqb3grdQzHec0G+2LYajP8Aw8eQtcPN2dgNihiHEwxtSv1BVaqcNc6mnLprsdie0hJKVqHFkROG Scz2dxKu8Pz7I7mxS3EeOO6UvGnrarF9zqdT2GjRmaY0FDTWaTyI9Fa8zPuZkY6IxSprMHdO7i4o EBLCG4VWbVqm9Ekp6mt5JPLubT2ecxNFM3tX2tXnTFXhMornK9PCZ5TbxbdwR3TVQuer42ycUZ1H pFAwyuRdNjzEoNokREpUek8o1HpK2FtIi+YSLCTdjYHYz3QmzbSrNTjVaQwcmCxVqY7C6oNJzNS4 xuERPERFmZp7hkY4nq+H97Yg4bbreh2TS5lQqDeIjM5VOjoM3KhHaWpTjCS/xGpJcW3PLiMTOp4i 2pupsZdzvTdzzTKk5Mw0nHVrqlqpT8NuhRUNISqC6txCUmp021IJKcyMy2H8YypRN4pvwo8abzPM qi01W41+ExaPjfwdHVrd47nOg3s/ZE64qqbsWplR5FTapLy6YxM0tE2lyiLQJRK7Uyz4xLMZN1Fh FgZLotLvSqz36ncCVOQKdSoLk6U40ks1PapsjUTZZfGy/wCY/KjGO7EX7h/fp4n1m95WKFIvdx7g nHp8hik2/CS+lO/FE2jU5KTkWmtZmZmRlx6R9a31eVv4A7tG08c8YUzI9hXJhk3b1MrbcB2YxFqS Vtum0omkrWlSkIXlkk89Z3iUZWt+SJvneY/060eORNVsSYiMrX/1W+mbdW5K3TFY3Q924rx3Haa/ QbSr7VPociIwttbsdTalGbukZ5qJScuIstuwaqxn3bmKeGG7Vp2CbFKortgtIpT1Ykrjq33HZlvN Rzc1mmSSInX2v8PEZit8HPVoVw4i7om4KXQ51Jg1G82pEaNNhqiupbU25kpTSiI0Gr42RkR9ttGs N0DhrOxJ3ZePNKiQVOvN4L74grNJmSZrUiI9Hy7pnpskeziyCr8mJhTMZasTMf8ApEz8f3TaKoxY v12jnFmxt0du4sTsN91baeCth0uiP23MqNOpdZlymFuOpkSVaRtoUlZEkybyPaR8Y3ziLuzMCMLr ydsW569UHKhB1XVR2BTXpUalafxd9vII0s7O2PSPYRGfcH50U+Ldd82RgrjzeMH/ANPX1i81NlLZ bVoky020w3nnmafiK2ZjLXjQ7aw6xgx4s3HrGHFuyX7srz1Uo9GtWHr2Lsp8olE2hvSaWlbhfk8l rQgsyTnmSsppp1cOmn/Feq/+nLxRVnVNcfpmItzqiZ8PF+ieKm6rwbwhZoa7jrE6e/ckfflMiUWA 7PkSI2RHrkttEZ6vaXbecUC3XmBCsG2cdUXYtVsSJG8mtGKs5a5ngqWMtM3s/wDARZjjLFupMYdX phBhXiJdOItnYUostTMeU1Tz6s1SSrIk02S5EStSFmkyRq0ZZGZbSPaINhFa2GVQ3Dtw0/E6j4h0 WkW9i1KmNTKFF1tStlxDTZNyZTTpksm0pUpKz0FqI1Z6OZZlFX6apid273a1uaYnOiJ69/xiZ5dT 9B8P91rg1iTb9zXBQKnU4/BCIufV4FRprsSaxHSg16zUOESjSZJPI+7kK1S3VOEFKwotjGiZVJ5W xd8qNDpbxQlG4tx9SktkpHGkjNJ7T4hxjubbkxVxBbxjsSgYlTcZbRfsuYiDd0q3XqfIXUXGnEoh E4+knHTIsthnkWeZEWY1TcmOFoXFuOMFMELfaq8m6rTuqkxrmiqo8lDdJU26+SUuvKQTRKWou0Il KMyJWZEZGL6sTXTTHXqcpmYqUmZiiZ4a3hETH1s/Q6/t2fgjhziBPwurkqvSbmp7cd1yBTaO9LcU h74qk6sjzIu6fczIUrm3bm59tO9nLGq1yVA5MR5uLUJ0emvO0+nPrPLUyZKSNDSyzLNJns0i741d hXSmZHwjuL1QfiEpxm0aUhl1Sfi6Rq0iI/4EOPmLVtS0J+KuC+PmLGNFt3DWrxluxLNteCmQzdEW U4nUyWNNpSFqWZGR6biSySnLaRkWeHOtNEVRviZ/1TFuWa1XXbqtHOL3/Z+kWJ+69wUwju5ixrtq 1TXWZdL6rxY1PprstUljMiLV6sj0lbc8i7hGYirXwhu5dfptErDF4T3YdadJhTyKW8pFOWburSmY oiyjmas8iUeZkRmNU2zbDNG+EBw6oy4tQdZpOExx2lVRDZyUGg2klrTRmgnCLYrRPLPPLYNJU624 ED4P/dEOxKUlt5/Eqo8TW3RbkxUoIu8RFxZd8xnOJqU605/qn4U16tuWa1P5qopnK9o5038Jd84u bqnB7BeVT6bdVVqE2o1OPvxiBRqe7Pk73/bKQ0Rmlv8AzHsFG791zgPZOHlsYq1i8Scta75yKfTK jFYU8hbyiWeSiLanLVrI8y2GWQ4QxUpjGH26Do9/4r4u4gYZWnc2HlJj0q4rZYU6l2QwwjWxHTS0 6ZGeekREku+ZkQvrwsG17f3OW5+p1qxb5kW/WMXGKpHavSIw1UDaeS6alKaZzSlpaiUtOe0yXnxG Q2mmYnVv/it/qmPpmpTVrRE2/wAN/wDTf65O07J3ZWCWIKLuRbU+tOTLKgrqVRgSKS8zLXGSRnrG WlESnSPR2ZFtzLvjW+BvwieGWI+F1zYoXzCn2tDoM5xvVuQnVocZU6bcdtpzLJ59eWZoRtSasu5m LGLA0PhK6siNFJtD+GqUqNKMkqVrEEWeXGOZcJKhg5U9xNc+CGLcO+G6zYt2Sp9dYtummqo0P/jl aqYonNFCm0K2L0dNScjM05bRnFV/zR1x9KtWfCLrxGdp4xymm/1y+7P0JwX3T+E+O9RqdFsmdU2K tSEIdlU2r052DKS0v4rpNukSjQfFpd8Tm6bzp1rahh2PImTpZKUxEjJ0nFpT8ZZ9xKU5lmo9hZkO F9wlfl/1jHes27QsXpmMeHrdGW89ds+3H4D8GXrEkzCN58icdPV5maS7XZmRF3ewL7kHbF1OXTUq VImUqfRV0tbzDZrVEeJZqTpEWZpQ4R5GviI0JzyLaW+JTERE09cM6ZmZmJ6mftbEGm3NKKnLhyaf MWzvhlqQRZPtZ5GttRbFkRmWeXFmQlI07h5MfuuRaTcKmvoathmQc2asj1ZqWnQQw2vLJ3Mj0lGn Mi0UlnnsLcQzXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAB5cUaG1KLjIsx6HlxOmhSO+WQrXfVmyY35tA7kfHW8scaViFNvCPTmnLXvaqW9CKG0psl Ro7mig15qPNeXGZZfMIJg9u34beBV0Y1Y/PxqdT6HeMq223KVCWrtCcShk1I0jMz2nmeeXmHP+He 6you4PvbF3CvGfDS8lSazeFSuOhS6bDbdZmx5KzUg9Ja0ESctHtk6eRmojIjTkIbf1r3Ha3wYk2t 3lacukyrlxBZuBNNlNGh84703SbJSdiiNSCLLiPIyEa95iqN0xRHxmqmJ+Nrk02iaZ360z8Iirwv qv0Gwz3XOCeLd5ysP7Qrs5NaaYXJjNT6e7ETOYTxuxjcItaju6RdwyMQzc9bqt67ML8Q8TcaKnRq JS7LuufR99NNqabTFZ1ZN6WalGpZmvLZxmZERDUB4j2fuj91zg69gnRqs2nDuJMfuqU9R34PUtCm yQVPeJ1tOSyUWRkWZZp2GY0s1h/e17bjvExNpUKfWVUHGt2u1KjRWlLeqdPZWjWtJQW1eWklzIiP PV7CM8haJ33y6v8AVTGtymeUs73mPhP+mqbc4jm78wd3W2DON9Yet60KpU4lVajlMRBrFNdgPSI+ X5VpLpFrEF3TLviORt3vucJV5xrNauOqkcypnSI9WVSXypbsvNRatMoy1Zmakmnj4yGhJ2JVC3UG 6Vw0vjczU6bU4uHlFqEmt1FdMehssrcYyZpyzdQklLUsvipzLYeR5bRyRfN0U2+8L6LWrvuG+a1i jRr+bcrdIdgSY1Is+IuW4k+1S2mO3rVEySc1GrSzy0dpHeiIrrpics8/mmmJ5Rf4pqmYoqnr+n5b 2n45P1XxX3WWDWDt2xLEuysVByty2SkqjU6nuzDiMGeRPP6sj1SOM9I+4RmI/uJMfbp3R2FFTv26 000n49xz6ZGVAaU22uM0aNWoyUoz0jJW0/6DRcrEK1dzfu0MULjxsjVJum4i0iDwVmsUp+emaaGy QqE2TKFnrDXxJMiLtizMsxLvgrF63c7VyQUF6Gh69as4hh5s21tpM2zJJpPiMuLLzCMH81EzO+3K da1vfYxZtNMR2o+Mal+V8vgw1Z3bGKNA3dDmAU+lUU7BZlRIT0wo6ilMuyWjNo1OGvRyNwsvi90W mIm7mxQpG7ht7AG1KXQ12POrrFuy5r0da5DktLbLkpLayWSUmgpLScjSeR5jUWNdlVmu4/7p+56L BNdStWiUOvUxxSDURSYjqHdhFt+KlXEI3bdu3DUKtuRMUrihGivYg3/cFzVNxpCjQlyW/FNrMz2p /FNoyIz7h8Yrov5owYr7r9+ta3/5R8IX0mLTixh8Jt3WiZm3hzl3xcu7Z3Ptp349h9VrnmnKhyUw ptQYpzrtNhSFbCaflJLVtqzyIyM9hmQymMW6xwcwQrMC3LvqNVmVeowjqTUCjUx2fIREzNJPrQ0R mls1EZEo9mZGPzTjWlZ9vysS8E8dcUsa6FcNYu+W5Hsi2KemQzcMeQ/psyGNY0ba8yyMzW6ktmzi Mbi3Q9xJou6IpmFeMt0X3buHzeHTEags0eA4c265pmhC4Uh6IhS1LzzI0JNKUqyPNJLzXEzaiJ69 /he3v6k2jaTT1fzaJ/f93Y9X3XmBNHwro+MK7qdlUGvuExTEQ4q3pcp7utIYSWma091OWzIfLU3X OCl5YeXViTSKzUG6fZLK369DlwHGJ8FCUmsjXHWRLLSSkzT38h+fWHlv4Zv7iSx52Jj2IVoHbN61 JcG4qBD3w5bMrSIknObM9YlGeiR6KFKzLLYZiY4L1jGHFHBrdHWNBu6Viva6LVNm370dt52myKxP cZdU7HLXETr5o0tDtjPR0EZZEsiO2L+ScWI/w3t4ffV1K4X54w5nrtfnMeXi7oq26Vwqolv2Hc8+ pTUwMR5UeHQVJiKNTrrxEaCWX+AtvGYjNwbtbA63cSaxhI/KuCbdFDmxoUyDAoz0k0KfQSkrzQRl qyI0kpR5ERqIu6OF6njpZeI9n7lHD6zCq0yoWpdFLjV83KRJZap8ls0p1KnVoJBrPaeSTVs7w6K3 ONDKbu2N1lLTGJMtR0ONGfUn4pLiLMyI/nSgz+YhaqNWapiLxE1274pim3O8qUTMxEVZTMU/CZmY nlZt+Zu2tz5Cv/revXPN3ymammuVNNOdVS25ZnkTCpZFqyXpdrlnxnkPGIm7cwFwwva4cOrmqlZX cFsx48qbDg0l6Us2nkIWlaNWR6REl1BqPYREY/OO1rKsuNQK3uf8aMU8c6feUm7JDScPragNvN1D Tf1jMxk3WtVonkSzUp4siLPiI8uo7DobSd3XujESojkg2MP6RHQ7JbI1mXU+OSszLZmeiWeWzMhS cqYnumffaLrx/iv1W8aop+k3bupe713NFards0WmXlKfK7HGo8CcmnPbyTIc2IYdfMtBDpnkWgZ5 5mQkWL26zwZwUuFi07wqtSkVh2OUt6HSaa7OciRzPInnyaI9Ug9uRq7w4CVQY1O+DvwbXCpuqecx Kpshw0t5K0jluZq75cRDMY90qmYbbsTE+4cZsYMScNrevqi06Rb1StaObzVYSzGbZegrMmnPxiVk eST0SLSzUZEpOc1cKf8AnKJiPGy006szE9/hVa/7u5753WuBWHtIs24biu//ANFX44puiTozC32X zIiPaaSMyz0iItnGeQwtt7tbBa87Nve7bXerj7tgxd9ValSKU8xPQg0aSDJhRaZkrv5DlCr2Db9t HuO7eosC7nKId1zZkdm7orLdQbbWhLiNc21mhO3IyLj4hsmmUeRL3eG6EgU+EZrnYbQUIShGROuq ZbIuLjPuCtc21ojjVEf+sXjmpTM2pmeFMz8atWfNMMIfhC8LrxwWdxcvyNUre1dQTAKEVPecVJed WZMtRdn/ABKzSWZ6HEeY3Fgruj8LseyqzNh1CeifQ3EIqFNqcFyFMYJaSUhamXCJRIUR7Fd3Ifnn ZVcwKujcR2jZmJE2/KZUsNbla6qVS2aYpUm1puvVqpMgnCLNnPjU2lwyMiLIlGRHuj4Pi+sSbhxO vCiKxNdxasOLTGXW76k269TXnKka06UPTfLWu6DZ55GZknZllmWe1FMVTMd0THKEV3oj4zHjMOz7 rvumWq4mIuNInTVMqkHHjpIzbZTnpOuGexCCyPaY+2vfNOuWQ5TziSafPbaTI3tJSRG4yridbMti 0bS2lxCHX9IK2KzcM+sUmRKptxUlERiU0g1JaeSlSTZcUX5NKiVpEs8k56RGZHln5w9mSrtqNr1J invts25RziTpriTSl+SpCEG00oy/GpLRNZrT2ueiRGZ55ZrNrgAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0XudMarsxVvfFu3rkYgNxrH ufqPTTjNKQpTGrJWbhmo9JWfdLISTGvdH4X4BJo7d/VCeqdXnXG6dTqZBcmzJJNp0nFpZbI1GlJZ Zn3MyHC9hbuDCfcpY6Y7W5iPbt4zZNavJcyMujU5l9sm0tkk9I3HmzI8+8RjJboHdPUnFS+MGbyn 1+9MPsE7optSfersKmmmpOT21OtHBdWxrltoWlCC0UbVE5n/AITNGOFNVeDh1R1xF/fq3/ZMRq11 xV1TNvde0fVv3Fvd/wCGVpbneZjnh/FnXF/xiqUxDciOsqjzUnkaJRGWbOXHt49hCXvbs7B2j4X2 xiTccmsxeFROIp1JTSH1VOS40rReNuKRaw0JMjPSyy0cjH58WzbLsjcM7o2g2zbtajN068ymMUyo MO9UI8PWEpButrzcJWr0VGatvGZmJ7ugrjti9MRMDt0hAxQvG2sKDtiVbj932zCeS/R6i2txKycQ tlS0JcUZN5k2eloHlmWQ23TVE8aLd0TTMz45fedaZ1qb8Nb42qtHhm7bmbr/AALhYPO45OXLIVa0 aWmBKWmGvfEWSatE2nWTyUhRHxkfEKeG27GwMxWxFPC2067UOrrkRc6GibTnYrU+OnjcjrcIidTk RmRlsMkmfcHCN+2lY6NxNiDdGH1dxIuSkXZelPkLqd5RGWVVNaHdBciMlsiWppfylpSZmXFsMb9x fpLcbdv7l9umQkRy4OV9jSab0SSkoREhJmXcI1HkXnMXppia7Tuvb3fkir65K1zq05b4i/8Aqt9G 37l3c+5ztO+12DV7rmFJYmop0qotU91ymxZSuJl2URatC89hkZ7BO7Ox7w3vm5r3tCh1N8qph662 3XGpDBtapLiFLbcQZ/HQpKDMlFsyy744Pwgxkw73PNmXXgJjRhfWLlxEexBfqEK2eo7jrlXaflEt mWw6aFNLJKc1FpKLMyy2bTLM7uqdeWBmMcPEzDeiyUqxwtF6wpkdBEk2KoRpOI+oizI3CQs0fM2r aM85ppinfVEW98xExHwnKWk2iqq+Vr8onPwzdzYSYu2bjdZjd+2DIlSKNIfejsPyI5s6021aKlJI +NOfEfdHJODu7gxSuzdp3ZgPeFMojdmU2uz7fp0yPGUiQUtBPOR0OLNZkZqbjPcSSzMiHV2BWGkL B7B+1MNYKGyTQqWzGdNsu1W9o5uqL51mo/4j8wLioNw0N7dV40WrTjXX7AxYplepy1oUoj1EiWlw siMj0SbkLMzLuC9U0UYs9mI/emL/AAiZlFF8TA/8pmLcpm3g6Rs7dw4oXfu41YDx6XQ27AckT48W ZqFnKeOK2emonNPRy1hGXxe4N5Urdubnqs383h/Buiap5+d1Nj1VVOdKlSJfFqW5eWrUvSzTkR/G Iy7g4fsjDOv0/GjABrRUzXrsw+r8+S+klEgps0nnCVpHtI83E90QfCC0rAqFm2xgHidiljuxf9Nu Q2JGGlGgNLYiSG5Knm5STeaS0TOiaXFLN7SLSUZEacjNhU2poor3xeJ75vETyzY1VVTiV1Rum0x7 rT9bRd+j+L+7LwQwTud6z7uqFalVWJEKdNZpFJem7yYPPJb5tkZNkZEZ7e4QyF97rPBHD+0LavWp 3JIqEK8WyeoTNJhOTJU9vIlKW2ygjWaUkZaR5bMxwzunbrcrmNuL+HOMlYviC2m3UsWNbVvQHzRc 7mpUaHXlxkGpw0LLSMlKSkkpUR58QxrtMwwXuSdzleN63pfmH9ZodOqUejX1QIBzINIkKfcSpial szdLSUhJESEZmaTLSTtGcT/biq/XHKb5e/J0VxbE1I4Tzi3hN3d6N2Fga5g1VcdUV+Yds0J5Mapp OEtMyG8pxKCbdYPJaVZrTsPuHmJRcePGHdq3XY1l1edKRVMRNYdCQiMpSXdBKFK01f4NjieMfngu XjLiruDccqTMlyb5pdNmRXaBdBUNdPkV+Iy604/INtZaxzRJKz01Znkk9uwSqr492Bjrul9ys5ho /U6lAoW+o8+a7SpEZhqWbEfTjEt1CSW4gkkaiRmkiWjtjzGmreuKY7vpM/WGVVU04dVfC/O8RHhL rC392rgddV/Lw2t+ZXp1bYqrtHkpZo7ymYrzZZqU86RaDaMiPtlHlsMLc3bW57um+2LBpF0TFPzZ h0+DU3Kc8imTZJbNUzKMtW4rMlFkR8aT7w0NuRrLn1+x907TKA1vauV66K1BiyFZpMnVRzQ0ZH3C JSiPMhzRgXa2HdatzD3BK+8VseSxAoteS1Iw6ptOaOPSJTD63CkGbzSW0MaOSzUTpqIlmeWW0UwJ 15pirrppmf8A2jPl+/Uvi/lmrV6pqjl5/t1u/b03fG51sOt3NblcrFccqNoS96VdiHRn5Bxz0TUb hmgjImyyyNZmRZjMW7u1Nz3dd+UbD6gXe/KmXClJ0ucUF1MCY4ac9U3IMiQpwuI0ltI9hjlu3KLH e7Ol2TT0uuuMz2icW1mpaSp7hkRH3du3Z3RgalRY9LwK3DaKdA1J8IKU+5oIyMluRVrcM/nUozPz mGDOtqRV16vjf6WTjRNMVTT1X8IifG9nYmJO7MwHwqvF2x7or9Qcnw9WdSdp9NelRqWSz2HKdbI0 skRdselxFtF7iVutsEMKKvbNGu25HydvGA5UaKuHEXJbmMoSlXaG2R5molp0SItuY/PS/qJbWH2N OOlqY8YtYt2Pwwqi5tIpVqwt8M3bCkI1ZNN5tLSt0zzb0VqQnaRZ555bnKxafa26Y3I1psU+uqp9 Gs6qIjN3Cw0U9hCWmjaRIS1m2l1BZJMknsNInDjXiiJ3zbxiZ8EYsxRrW6r/AFj6t8Vnd2YPngRd +N9noq9YYtJa4kqmLgOMS2pej2iHm1FpNIM8s1mWRFmYsLI3euFE/A62sWL3Kr0yZXFNQupTNJfc kyJpsoccTFay0n2k6exxOwyIc+M23Va2nd40Cg0p6RJlokFFistGannN6unooSRdso8siIuM8hHq 1d+5+xE3KOBlwVS9L9tedYcSLR03lbtIcdZtyrtw2krbmJMtYaDPLJTSFEoyyJRGIpm9Gvx1cuF7 39+cLVU2qmjhM5/CJj6v0Cwax2w5x4oUuvYe1SQ+mnyVQ50WXGXGlRHiLPQdaWRKQeRkZZ9wZe6s QqZbErqeUSTPmIaJ95qORZMNGeRLcUexBGeZFnx5Dlv4Oi9cSbrj33FuC7FX1aVPmsN0G9naGumO 1pZpVr80uFrHNAySWmszPMzLPZkW68QZKrYlXc1VKS+6zcrEddPmoI9WTraNE2XV8TWRkS0mrIj0 lFnnsPSumKZi3XETzZUTM3ieqWxLXvGn3OciM3HkQp0TRORDkp0XEJV8VZdxSTyPJRbDyMZ8a5sS W9ddzN3ZGp78anw6M3TDfebNtUt/TJSzSRkRqbRlkS+IzWrLMtp7GFFwAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFudPgKMzOEwZntP8A Fl7BXyLLRyLLiyH0A7hTajx2M9Qw23nx6CSLP6h9JlklqcJpBKXsUoklmfz98ewAUt6xia1G929X 8jQLR+oejZZUpKjaQakfFM0lmn5u8PYAPCGWmzUbbSEms81ZFln848tRo7Bmplhts1cZpSRZiqAC kcSKZqUcZozX8Y9Au2+fvj65HjupJDrDa0p2kSkkZEKgBbqHhDLTZqU20hJq2maUkWfzhqWdYbuq RpqLRNWiWZl3sx7ABS3rG0Uo3u3ooPNJaBZEffIHIsV5ZOOx2lqLiUpBGZCqACm4ww8aTdZQs07U 6SSPL5g3vH0VI1Deis81Folko/P3xUALCm0wwwRkyyhsj4ySkiz+oeChQyIyKIz2x5n2hbT74rgA 8E00lw3UtpJaiyNRFtP+I8qixluE8uO2pwuJRpIzL+IqgA8alrWa7VI1hFlpZbcvnHne0YkKb3u3 oKPNSdEsjPvmQqgFhScixnUpS7HbWlOwiUgjIvmH1TDC0pSplBkj4pGku1+YVAAs8alrWa3VI08s tLLbl848FEikazKM1m58ftC7b5++KwBYU2o7DGZMMttkfHoJIs/qHsyIyyMiMu8PoAPiUpSWSUkR eYh9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAABSdiRX1ab0ZpxWWWakEZ/1Gp91BufIW6VwscwxmXE7QmV1CJP30zHJ1RGw4SyTomZFkeWXGNu gItF4nhMT8Ym8F1CPEYjJLVtIJWWSlEkiNXziohllsjS20hJKPMySkizMewE70RERuU2o8djPUMN t58egkiz+oed5xO2/wCFa7c81doXbH5++KwAlTcjR3TSp1htZo+KakkeXzD62y0yRpZaQgjPMySW W0ewAU97sZqVqW81lko9Eu2Lz98fN7R8kFqG8m/idqXa/N3hVABSVFjLcJ5Uds3C4lGgs/rH1bDD q0uOMtrUj4pqSRmXzCoAWFLe0fQNve7ego8zToFkZ9/IfW2GWUmhllCEnxklJEQqAAophQ07ExWS yPS2ILj749pZaQtTiGkJUv4yiLIz+cewAUjjRjc1xx2zcL/HoFpfWPuoYJanSZRprLJStEszLzio AClvWNqya3u3oJPMk6JZEfzA7FjP5a+O25o8Wkkjy+sVQAeFMsqNJqaQZo+Lmku1+bvATLJOG6TS CWosjVolmZfOPYAKJQ4hEpJRWSJfxi0CyV8/fHtphlgjSyyhsjPMySkiL+g9gA+GlKiyURGXeMCS lJZJIiLvEPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAKCoMJajUuGwpR7TM2yMzH04cQ0JbOK0aEHmlJoLIvmIVgC3UKe94/blqG+3+ N2pdt8/fHzekU2tScZrVkeehoFo5/MKoCLQKRxo5tEybDerLiRolkX8B6Nlk1pcNpBqR8VRpLMvm HsBIpKixluE8qO2bhbSWaCz+saLvTcvysR8e7fxcvnEqo1O3rRlFUaDaRxG0RYk7VIRrzcLt3D0k msiVnkajIjIsyPfIBGUxVHUb4mni+EREWRCnvWMRLLe7eTm1ZaJdt8/fFUAFPe7Gklepb0kFkk9E s0l3i7w+b1jE7ryjt6zPPT0S0vrFUAFNUeOtwnVsNqWWwlGkjMv4j4cWKbZMnGa1ZbSRoFkX8BVA RaB4Swyhs2ktIJB7NEkll9Q8IhxG9HVxWk6J5pyQRZH3yFYBJ3PCGWms9W0lGkeZ6JZZmPJRYyXd cmO0Th/4yQWl9YqgAp73YLTyZb/GfH7Uu2+fvhvdg0oSbDeTfxC0S7X5u8KgAKTkWM8olux21qLi NSCMyHpTTSlpcU2k1p4lGW0v4j2ACmlhlKlKSygjX8YySWavn7487ziE2bRRWSQZ5mnQLLP5hWAL Dw0y0ynQZbShPeSWRD0pKVFkpJGXnIfQAfCIiLIiIi8w+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoy5UeDFemynCbYjtqdcWfElCSzM z+YiFYR3EbZh7dBl4mm/cLAeinXhMQmTBplOZZcLSQiU6snSLuaRJIyI8u53A1t+eB0PnneiJAAC P62/PBKHzzvRDW354HQ+ed6I+t35aD16OYeM16K5cbMDqm7T0KNTrUXTJBOLy2JI1HkWZkZ7ci2G MJDxuw0qF4psWJX3V1RyQ5DaWdPkphvSW0mpyO3LNso7jyUpUZtJcNZaC9nankJ/LvZrW354HQ+e d6Ia2/PA6HzzvRGEPG7DQrx4C8IHTqm+t4mooEk4ZStHS3ucvV73J7IyPVazT2ls2iQ21eFu3e1P et6oFLRS579MlmTa0auSyrRcR2xFnkossyzI+4ZiLk5KOtvzwOh8870Q1t+eB0PnneiIZJ3TWEES dUIT1VrmhSZrlPnTU2xVFQYz6FaK0rllHNhJJM9qjXol3TGz2H2ZLLcmO6l1p1JLQtB5pUkyzIyP ukJjONaNyL52YPW354HQ+ed6Ia2/PA6HzzvRFeXd9vQbng2bKqBIrFSjuyosbVrPWNNmRLVpEWiW WkWwzI9uwZkIzi8F87I/rb88DofPO9ENbfngdD553oiQACUf1t+eB0PnneiGtvzwOh8870Rdxrno cu4plpx5xLqsCO3KkR9WotBpwzJCtIy0TzNJ7CPPYMqEZiP62/PA6HzzvRDW354HQ+ed6IkAws28 rcp110yx5lRJutVmJKnQourWeuYjKaS8rSItEtE32thmRnpbCPI8lxR1t+eCUPnneiGtvzwOh887 0ReyLkocWvRbYfqTKKrNZckMRc+3W0gyJS8u4RGoizPvjJhGcXL52R/W354HQ+ed6Ia2/PBKHzzv RGckSGIkd2XKeQ0yyhTjji1ESUJIszMzPiIiFpQq5Srlo0G4aHMTLp9Sjtyor6SMkutLSSkqLMiP IyMj2gMdrb88DofPO9ENbfngdD553ojOm60STUbiSJJ5GZnxGPK5MdtxDLj7aXHPiINREavmLuh3 DCa2/PA6HzzvRDW354HQ+ed6IzpvMp0zU6gtWWa8z+KXn7w8uSozJoS7IbQbh5IJSiLSPvF3wGE1 t+eCUPnneiGtvzwOh8870RnkrQrMkqI8jyPI+Ix9AYDW354HQ+ed6Ia2/PA6HzzvREgABH9bfngd D553ohrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6HzzvREgAB H9bfngdD553ohrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6Hz zvREgABH9bfngdD553ohrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia 2/PA6HzzvREgABH9bfngdD553ohrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354H Q+ed6Ia2/PA6HzzvREgABH9bfngdD553ohrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAA R/W354HQ+ed6Ia2/PA6HzzvREgABH9bfngdD553ohrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8 870RIAAR/W354HQ+ed6Ia2/PA6HzzvREgABH9bfngdD553ohrb88DofPO9ESAAEf1t+eB0PnneiG tvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6HzzvREgABH9bfngdD553oi+pVUeluvwJ0dLE2KSVOIS rNKkKz0VpPvHkf8AEjGSEfjfp9UfoeF99JASAUZcpiDEemynCbZjtqdcWfElKSzM/qIVhH8Qv0Cu X6ImfcrACm3jLSmTBplOZZcLSQiU6snCLuaRJLIjy7ncDW354JQ+ed6IkAAI/rb88EofPO9ENbfn gdD553oiod72pwvTYRVyMq4FQ1VDeCVGbqY5KJJuKItiSzMi25Z9wR9OOGGa7xRYqa+71UcmnTUO dT5O8lzCQajjFM1e9zfIkq/FE5p5pMssyMhEfm3E5b2c1t+eB0PnneiGtvzwOh8870RhahjdhpS7 uKyJtfdTU98Nw1qTT5K4jUhws0MOSktmw26ZZGTa3CUeZbNpCQWzeVuXgipLt6olLKkVB+lzDJta NVKZVouN9sRZ5H3SzI+4Zieq5OW9R1t+eB0PnneiGtvzwSh8870RDJ26awgp02pQ5VVrpIo0tUGo TUWvVHIMV5JkSyclpjmwkk5lpKNeiRbTMiGz48hiWw3JjOodadSS21oPNKkmWZGR90shEZxrRuO5 g9bfngdD553ohrb88DofPO9ESAeHnm47Lkh5Wi22k1qPLPIiLMzEjBa2/PA6HzzvRDW354HQ+ed6 IvrduGj3ZRIdx0CYUqnVBono7xIUjTQfdyURGXF3SGSAR/W354HQ+ed6Ia2/PA6HzzvREgGFtS8r cvenSKtbFRKbEizpdOdcJtaNGRGeWy+jJZEfauNrTnxHlmRmW0BR1t+eB0PnneiGtvzwSh8870Re 0K5KHczEiTQakzNZiyXIbq2jzSl5s8loz7pkew8hkwRe6P62/PA6HzzvRDW354HQ+ed6IvatclDo cymU+q1FqPJrEk4kFpRnpPukhSzSki7yUqPPi2DIqUlCTUtRJSXGZnsBLA62/PA6HzzvRDW354HQ +ed6IzaZUZTyoyZDZupLNSCUWkRech8XMiIWhtcppKnDNKEmsiNRkeRkXfCMxhdbfnglD553ohrb 88DofPO9EZ5KkKz0FEeR5HkfEY9AI/rb88DofPO9ENbfngdD553oiQAAj+tvzwOh8870Q1t+eB0P nneiJAACP62/PA6HzzvRDW354HQ+ed6IkAAI/rb88DofPO9ENbfngdD553oiQAAj+tvzwOh8870Q 1t+eB0PnneiJAACP62/PA6HzzvRDW354HQ+ed6IkAAI/rb88DofPO9EfUu31t0olE4tmTzvH9kZ8 AEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6HzzvREgABH9bfngdD553ohrb88Do fPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6HzzvREgABH9bfngdD553o hrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6HzzvREgABH9bfn gdD553ohrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6HzzvREg ABH9bfngdD553ohrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6 HzzvREgABH9bfngdD553ohrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6 Ia2/PA6HzzvREgABH9bfngdD553oi6ptVmLmqpNXjNsTCaN9GqUam3WyMiUaTPbsNREZH3y74ywj 839PqN9EVL76EAkA+KUSSNSjyIizMfRSlfmr37tX9gGDbqty1RtM2hwYBQ3NrS5TqyU4nuLIkkeR H3PMPutvzwOh8870RVsj9C6B9FxfukjNGeW0BgNbfnglD553ohrb88DofPO9EVLdvS2rrgTqnQak UqNTZT8KSvVrRq32TycRkoiM8jLjLMj7hmKtpXZQL5tyn3ba08p1JqrCZMSQTa0E62riVorIlF8x kRhGcXRdba2/PA6HzzvRDW354HQ+ed6IunrooUe5I9ouziTVpUZcxqPq1dsylRJUrSy0SyMyLIzz 2jLCImJi8J7kf1t+eCUPnneiGtvzwOh8870RIBhq7d9u21UaJSq1USjSrimnTqa2ba1a+QTTjxoz SRkn8W04rNWRdrlnmZEJFDW354HQ+ed6Ia2/PA6HzzvREgGFum8bcsuJEnXLUShszp0amR1G2ten JkOJbZRkkjMtJaklmews9pkQb5tBPFR1t+eB0PnneiGtvzwSh8870RcV27bftqXSINbqBRn67NKn U9BtrVrpBtrc0M0kZJ7RtZ5qyLZx8QzAWm1xH9bfngdD553ohrb88DofPO9EXtDuSh3K1KfoVRam twpTkJ9bRmZIfbPJaM+6ZGfc2DJgI/rb88DofPO9ENbfngdD553oiQAAj+tvzwOh8870Q1t+eB0P nneiJAKL0uLGI1SJLTRJyzNaySRZ8XGAwutvzwSh8870Q1t+eB0PnneiM0uXEbShbklpCXDIkGpZ ESjPiy74+uyY7CTU++22kizM1qIiIu/tEXgYTW354HQ+ed6Ia2/PA6HzzvRGZXOhIZTJXLZSyv4r huEST+Y+IVSWhRmklEZltMs9pCRgdbfngdD553ohrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh88 70RIAAR/W354HQ+ed6Ia2/PA6HzzvREgABH9bfngdD553ohrb88DofPO9ESAAEf1t+eB0PnneiGt vzwOh8870RIAAR/W354HQ+ed6Ia2/PA6HzzvREgABH9bfngdD553ohrb88DofPO9ESAAEf1t+eB0 PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6HzzvREgABH9bfngdD553ohrb88DofPO9ESAAE f1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6HzzvREgABH9bfngdD553ohrb88DofP O9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6HzzvREgABH9bfngdD553ohr b88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6HzzvREgABH9bfngd D553ohrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6HzzvREgAB H9bfngdD553ohrb88DofPO9ESAAEf1t+eB0PnneiGtvzwOh8870RIAAR/W354HQ+ed6Ia2/PA6Hz zvREgABH9bfngdD553oi7ptVlrmqpFXjtsTSa16NUo1NutkZEpSTPbsNREZH3y74yojs79YVE+hq p9/BASIAAAEdxH/V5dH0LN+4WJEI7iP+ry6PoWb9wsBIgAAHOVAsW17M3X9QdtmkoiyKzZMydPfN SluyX1Tmu2WtRmpWWeSSM8klkRZEWQhKXDkbmjDyk0V1HCEsRqCybSFET5S2q425MLLj0ksIkKX/ AJCXnszHWJ25QjuArqOlRuq5RTglN1Za4o5qJRt6XHo6REeXfIYaLhXhzCvBy/4lmUlq4ndLTqSI ySfPSIiM9LLPMyLIz4wibU008ImP9UymapzmOMT/AKbOadNatzdOpMF5pNydcmewpsjIn9+Krzji Sy49M2DSov8AKZHxDBYYVu5nMZpNpXg/MotiTsQLgVTJdPmKa6p1tt/WNxpak5Kbb0ScNCCPJxSD JWZZJPrQ8K8OlXgV/nZlJO4i4qlvZOvzyyz0ss88tmYqSsNLBm052ky7SpbsN+pprTjK46TSqeTp OlIMsvymsIlaXHmWYmatavWqjfMzzimPDVvHeicqNSO7w1vPk5VhW5iRUcJ8Z5lHxApdPoiLiuJb 1Nk0gnDeQlZmts39YRp0yI05knMtLYN131elft/cqz72teGul1OLahSoyNE1qhHqC7bI+PVlmrI+ PREhf3PWCUmtv3G/hlQF1OTKOa9JOGjTcfM8zcUeW1RntzE+dixn4y4TzDa2HEG2ppSSNJoMsjSZ d7IZ00zThxR3U/6Yt4ot+aZ76p+abuOL9psLCjEin1vD67qpVam1hzWqmw3NqDtRUtxLaFIlp1il GRKPbopySfcIX9wW/UKfGw6peHuItwzahinSanCrDy609INbXUp6QmotEajJhTUlLKCNrRT/AMQS TL4uXRNs4LYU2bUeq1rWDRaZM1bjWvjxEJXoL+OnPL4p5FmXELm1cKcOLIqcus2lZlJpU6cWjIfi xkoW4WZnkZkXFmZnkLREamp7/GZm3irTE01zXHXbwiIv4XcjTcf7weVT8SkV+YmDXKEVktwWzUbc a4lNINajSR7XCeWSM+MtFQn0+xp9dvW/qBcF7XUqPa1jUNyE1FrMiNq5xtztOSZtrI1LPVpzJRmk 8tpHkWW/W8LcOmYUamt2ZSExYlTVWmGSio0G56lGpUgiy2OGpSj0uPMzGWO2LfVPqNUVSIpy6vHb iTntWWlIZb09BCz/AMSU6xzIj+UffEx+rWnfn8L8PjM+CaqYmYiN0Wv32nyiPFxm1iDdVQt2LdUm vvU+dc9p2ezWKsyZIWw1KUZPukriQZ6RlpdzSz2CW3rXH8GLhv207Uu6vOUHgPHrDpOVFc6TTKk7 K3swpp6QpWhr0mo8lK0UmxpERZnn0bHw0sCJTXaPGtGltwnqe1SXGExk6CobZaLbBllloJIzIi4i FrRsIcMrft6o2pRrHo8SkVdJpnQ24qSbkpMsjJZZdsWWzaM9SY1s98zPOLW+E5+9MXtGfDwm9/jG Tkld34k4WXde9ChyXKKsrJOrN0ty4X6zIgq30lrfbinzUSFk2a15I7UyTtIT2hWjbdpbqrDBqg3b VKoufYdflvsTqq5OM9J+mkUpJuKUpBObSyIyQer7UiyPPedt4K4UWhKObbVgUSnSDjuRTdYiISs2 XDI1tmeWZpPIsy4h9tXBfCmyKuiv2lYNFpVRabeaRKjREodSh00G4klEWZEo2m8y4u1IWim0xMzu /nz8Fr5THG/7fS3i03jJSkUzdG06+qXGnyq3SLDrM6FHRNfJt19kiNtBtJVoqIzPIyy2nlxmRCEY cVTElKcObnjyqhSZV4JeKrVaqXUU+PVCchuurW3E2pZU24lLhaBIJKUmlXHkOtaxZVqXBWaXcNao EKZUqKpa6fKdaJTkY1Fko0K4yzLYYxVCwhwytmuS7loFj0iDU5xOFIksxUpW4Th5rIzIu6fH3xFF M00xTM8f/lM+N7T7kVfmqmr3f/GI8LXj3uZ7YiVWhQZtkYnR7g6sXPalUWisQbrenUytalvTVIQg 16UZRkpKi1einJRp2lkNy7n+PHs3ct2e9SykOFFtSPNST8hx5RrOOThlpLMzy0jPIs8iLIiIiIiE xtnB3C6zanKrFr2LR6ZNmoU1IfjxUoU4hR5qSZ5cRme0hl7asq1LOt9Nq2tQYdLpCNPRhxWiQ0nT MzVkkthZmZias+SabbSK53X/AOXO2JtDfq+5ft+601+pxHnpFGrctqK/oJmSJU6KpRPHlpKSnWGR FmRbCzzyFPFeHBk4g3xc84iXcNsItVFtLWRayIl15w1GxtzLWu6aF5fGJsknmRZDflFw9pkO0OBF eTHrNKZf0o7MhgsktIdJxlCiMzJRtqSnI9nxU7NguaxhzYtwXFT7trVq02bWaUnQhTXmEqdYLPPJ Kj2ltMz/AIhVTeq8T138FZi+FqdbnvG+hybu3PuMd5lXKjTkyY9TkNHAe1W+o8WOttlC1ZZ6GklR mSTLPLIzyzI/uNlNotars566FpPg9hwip0I3FZb3mKlZOyWtpGTqdXHSSi2kTmWZaW3o+TaNszLb k2fKocN2iS2HYz8BTRGy405npoUniMlaSsy7uZixuPDaxLvkUuVc9qU2pu0VWnT1yY6VnGPZ8TPi +Kn6iFpzo1Y4xPKLc+sm9U3nhP8ACGWVVp0HF2dbjiDJqq2xArslPFoSzWppw8u5pEgjPzkNsCN0 WzkU27K1eEuYUmbVUtR28m9Eo8Zoj0Gy2nntNSjPZmZ8RCSB1Qmd8zH3/wA7wAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHHuNeOG6qwqvtu2odFotUg VaQaKPJZpy1a8jPY2rJexZFxl/EdLYYKxBdtCJJxOcgdXXy1jzUJo0NskfEjaZ5mXdMSd6LGkKbW /HbcU0rSbNSSM0n3y7xiqACPxv0+qP0PC++kiQCPxv0+qP0PC++kgJAI/iF+gNy/REz7lYkAj+IX 6A3L9ETPuVgJAPnGPoAOeIFiWvaG6+an29SUR5ldtKoTajJNanHZLxymSI1LUZmZEWxKc8klsIiI QSoPMu7l+LSaW60VwdcanxdUnInuqqbiacdLLj1hJStZn8kjVxZmOsV29Q3K61c66XGVVmYyobcw 2y1qWFKJSmyVx6JmRHl5hhE4UYcIvLrgosyklcZqNfVIoydfpGjQ0tLLPPR2Z8eQpRRa1+Fv9V/4 Wmq863Xv8Lfu50uJ6F1hMUqU04yVfO+3WlNZFrjlrmx1R9nGaja0DSfeLzCIYXVu6uu3LtS8pEyi WFUMRa6iLNgTFNLqNcS4lxmLKWnJTTRklzRSR/jHEkk9hklXXczCvDmoXc1fs2zaS9cDOjq6iuMk 30mkjJJ6WWeZEZ5GKsrDSwZtMlUaXaVMehTakVYkMLjpNDk4nCdKQZZbXNNKVaXHmWYmmm1WtPf4 6vll8Cav7OxjjE368onz+rlyHbeJNUw0xrlUXESk0uiFcFeN6BLpBOaxCW0m4k39YRpJZZpz0dmY 6DjVeTJ3P6K3GiO0t9drb4bZSoyXGVvbMiI+PMu/xj1L3PGCM+tSLjmYZUB6pSpO/X5K4aDW6/mR 6xWzarMi2n3hsA47CmDim0k2jToaGWzRyyyy7wYcbPCinrtTHyxZnFP5rzuvPjN3IOIGIlY4KYWq pV5TCk1LDSs1N/UzVEt9aKShSH1ZHmoycMzJR7SV5xkbWbctdrB6t2tftbuGRfsCW3Xzl1NyY1Pi lS3XzmE2tRpZNt9DKc2ySX47RMjzLLcNU3OeFh2/W6Zalm0Sg1GrU+bCbqEeCnTjqktKbWsiLI+J W0iMs8shfYYYH2BhfS47NGtylIqhwGoM6osQ0tOSySkiUauMyJR5mZZnx90XjLLu+s1T+8QvVbZx THf9KYifCZaAwmpzOIarfsa7Lnq9No1IslmoQYkCqPU83nXHHEuyFLaUlS9WSUlkZmks8zIY+Fd9 74nW7Ydsqk1K4KlwdqVUcMq2ukRn47c1MaNUpDzJpeczbJStWjtfxhqP/AOnq5g1hZclOptIrth0 abDo6TRAZdipNMdJ8ZILLYXmFS58IsMryaprN0WRSKkijoNqAT8VKt7IPLNKNmwu1TsLZsIYRh1R hxRf7vM35ZF7V60feVrfv73LuCVxVrGCNYdmX1elQdo506sSUvU+rPMHUn485bLad8IUl1xLbREo u2zURkasxtTcaxYacFqjEh1h2qxeFl0IbnKd0lyUdV5ZE4a08ZmW3SLv5jYszBHCSfb7Nqy8PaG5 SI8lyYzD3mgmm31mZrWlJFsMzM88uMSC1rQtiyaSVBtKhQqTTkuuvlGiMk22TjqzccVolszUtSlG fdMzG8zemqnjfxm/huRPVbu8It4zm4fteNWbZhUGw7Tp1dm0m6L2uI6mw1cb0R2SqMotSwmS4s1N 55qUZIMlL0O7kYm0SLjBc1nTrZg1VpxqhX8uGxb0i6VonTaamC2tdP6oN5LU6y84tzMlGeg2SVmZ kodHTMGcK6hFqsKbYdGeYrksp1QbVFSZSZBcTqtm1Xn4xUlYQ4ZTrTj2LLsikO0CK4TrNPVGTqW1 keekSe4eZ8fGIj9EUz1REcoiP2RF4mZ4zM85mf3t8HMqY1t3vX8H21x7qhSbdveo0uREqVbeedjP NRnHNXrkLyeSR6OSlGZmk9EzyzIdBYszlu1yw7NdSZwbkrxsTNuxTTER+USD75KUwlJl3SMxmSwi wyKg022CsikFSqPLTPgxSjJ1ceQkzMnUFlsURme3jF9eNpldEWCcaYUKfSpjU+DJNvTJtxB5GRpz IzSpJqQoiMsyUe0Ov43+mf8ABEREzPdMR42cp0Ws0e076h4yVVlpmBLrdfjtzWv/AFnKNtlxamZe XGwgo6tAtpkZp2Fntxd62ktDtSXV2o78607PpFVq8qUvQkU+ZKlzJL8mmmfxHXHTUS1GZFkhtJGe WQ6wPB7DBVbn3IqxqMdTqiFImSTiI030qy0iUeW3PIsxcXFhfh5dtZp9xXLZ9LqVSpZEmHKkR0rc ZIlaRERn3MyIww/yRTffFvC37x4k3mapjdN/GZ87fBGLFqio+LFz29E1h0+bS4FebSostU69pIWW XcNWgSj85jaAjVuWciiXDXrmkzClTq482ZmSDQllhtOi20kjM+IszM9mZnnkQkomZvYiJi9wAAQk AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcq7 pLGPdJYN3CmTb9No9Stmouk3CfKAtbjSz4mnMlfGz4j7o3NghPxZrFoIrWLrdOjVKcZOsQ4jBtnH aMthOZmeaj48u4J/IjRpSCblMNupJRKIlpJREZcR7RVABH5v6fUb6IqX30ISAR+b+n1G+iKl99CA SAUpX5q9+7V/YVRSlfmr37tX9gGJsj9C6B9FxfukjMqLtT+YYax/0LoH0XF+6SM2ImLxYaJwQmwr fsTEgqvMYjHS7mrb0zWOEWoQpRuJNefxSNCiMs+4Y1XhLZdSrpYQWFcVbr9OpTWFUyfLpkGoPQtd JTKgk0tamlJURoJassjLjyPMsyPpa4sGMKrtribluSw6NUamg0GUqRFSpeaTzTmZlty84kZ27Qjq 7Nf6lRuqMaGunsydWWsRGWpKlNEfGSTU2gzLizSXeCI/tRR1xERyiykU2nuvM85v+7jGg35eUK0I 94RqjInV6g2PdDMOU+RvOq3pOcaZWvPa4oktpMzPaZlt4xL6tUWcIpWHdyWnftcqiLupNTer6pNT cnlIis01ySVRbbcUaWzQ+lpBaskoPfBJMvi5dH0nD6yaEtlyj2vTYimG32mzajpTooecNx1JbOJa 1Goy7pmLC3MIcMbQlT5ts2NR6c/VEG1LWxFQk3kGZmaVbOI8z2cQV50zFMWn81vjMz+60Rnee7wi I/ZyTbl14j2Tf1oVGKcqOu6LWqtRRT51yvVKVVnGoiXmn1smo2WSU4ewmiLLMy4iIZKfSaXTpu55 xChXzVq1X7iqz9Rktyqo5IbqLx0eY4txDKlGlrVrVo5NEkiJzRMj7XLpm3sCsH7UqUasW5h1QqfO hOKdjyGIaEuNKUnRUaTyzLNOzZ3B7pmCGEdHuFN2UvDyhxqw3KVNRMbhoJ1D6krSpxKsthmTjhGZ fKMVqp1t2W/4X6mlFerVec93x4uYsK7lxQnpsHEN+HVIdTuatm1Vpc26d8RZja9ZrIqIO1LSm9Es tFKTLQPSPaYsazAi3Lhdhti1cV51Zy67gxDo5VCK7U3FR9eVUSlcBMU1atvUE3l2qSX+JM1Geas+ tqXhNhtRbofvWk2VSYtckqUp2c1GSl1Rq+MekRcZ90xZyMDsIpdyLu+Th5QnKy5KbmqmqhoN05Da kqQ7nl8clISZHx5kQ1w6tTEpr4TE8pjL42ZTF6ZjjFvr5otjwZFduEJnxFeqP/2CYOcajd94KnWV ipTqnUYlPua+otPbqtRuR7W1eO/PcZUwzT0K1DTaI6csjLTIkkrPTIzHcFUt+i1qRAlVamR5btLk 78hLdQSjjvaKkaxBnxK0VqLMu4oxDywAwXTVnq6WGlv7/kSimuP7yRpHI1pO6zi2K1hErPjz2iaa rUxTPVM+NvJMxfON9vPzco0tirWha0K1bQj1p+DdmJ9WiVVDdedjOvttEpbcdElxRmzpqIszSZKV o5Z7RIJ83EBuhVSypNdq9DpzGI9t02HHar5zZ9OYkKYOTEclF2yknpaZEpSlEl7IzyIh09Lwhwyn RazCl2PSHWLhkpmVRtUVJplvpyycWWW1RZFt49gr0vC7D2i0OHbVKs+lxqXT5qKlGitxkk21KQvW JeIsvjksiMlceZCmD/bqias7THhbyVmmdTVieqfG7mau1atWLc914V0i6q5GtmRdtvU1yVIqTz8i nxJrJqfSiQ6pTiCcWlDZHpZpN3tTI8hP8Srdi4S22q57FvOtuItCqwq9VKTJrLs1SYJkpt9Jk4tT mi42a1ESzNOk3mkiyMbkn2FZlTOsKqFs0+QdwNoaqhuMJVvtKE6KCczLtsi2FnxCJVnBKiQrEqti YXQ6HaUavqNuprTTDd1rKk6DmiSXEZOGjYlStIk/JMUiKop/8v56+6zWrVmrdl/ERzvmsNzpVare Fu1vEyoVGTIjXXWJEultOOqUhmAg9WwSEmeSSUlGkeXHpZiEa/Du4rBqd9Yn2yzctQq92VeJT6O4 k3zmPxZciDFjpZV2qtFpglZKLRQpTi9h5mN+WrbVJs22qZadDY1NPpERqHGR3SbbSSU5+fIhC5uA eH9fdnxbyt+l3BSXKq5WqbCmw0r6nSnknvlTajPicWanOLMlOObTIyJOtUxe1OUbvhlly+jOi8Re rfvn35/u5/uLD1ukWpFtPFZ5tXB3Dms1eC249pIgTNYpRONKMyPWR0EylCy2p7hlmJ9JmWfczNUu zGGE3UabQaTSKQqC8g1b4qTjSJL7OqLY6pZuRSJBkZZkZH3RteXgxhVPo9Lt+dYdGkU6iOa2nxnY qVIjKMyMzQRls2kX1C6ubCvDq8qU9Q7ps2lVOA/NKpOx5MdK0LlERETxkf8AjIklt49hDOYzmfDl 4wtGc3lzhTMNIqZlk2PibQY0a1asm6K63b8kkriwDyY3swZH2pG0y6+aSLYk9Iy4syl2DNfrrcTA +r1SRIfn3jZLcarrdz033Gobb7bzme01kemWZ/tVDaL+BmEUq12rKk4fUV2hsyDltwFxUm0l4yMj WST4jMlGX8RlG7Ij8OI94OyEG3TaYdNpsNDeiiOS1Ebq+PIzMkNpLIi0SJRbdLZpExF4++vzt8Cq Zmnv/n7lJwABUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAHKW6Pxk3SmDlyJdoNNo9Stuouk3BfTT1rcbWfE05kr42fEfdG7MEp2LFWs9us4uop0 eqTTJ1mHDYNve7RlsJzMzzUfH5hPH40aUkkSWG3UpUSiJaSURGXEe3uiqACOzv1h0T6Fqn38ESIR 2d+sOifQtU+/ggJEAAACO4j/AKvLo+hZv3CxIhHcR/1eXR9CzfuFgJEAAAALWZU6dTlx2585iOqU 6TDBOLJJuOHxJTnxmeXELoAAAAAAAAB84hFZOKNjxJC4r9dZJxs1EoiSo9qTyPaRdwY42k4OjxE4 tUU34y2wtHxcebYVM1e6LpWAwlBvK3LleWxRqm3IcbQTikkRkeifd2lxDNi2FjYePTr4c3juUxMK vBq1cSJie8AAGigApP7CR/rIVQAAAAAAAAAAAAFKUZlHcMu8AqgPhcQ+gAAAAAAAAAAAD4fEfzCn F/Nms/kJ/sAqgAAAAAAAAAAAAAClG/Jn/qV/cVQAAAAAAAAAAAAFFn8o7/q/5AKwAAAAAAAAAAAA AAol+dq/dl/cxWAAAAAAAAAAAAAAAR+N+n1R+h4X30kSAR+N+n1R+h4X30kBIBH8Qv0BuX6Imfcr EgEfxC/QG5foiZ9ysBIAAAABazKnTqe5HanTmI65bpMsJccJJuuGWZJTnxnsPYQugAAAAAAAAAAA AAAAAAAAAABRb/Lvbfk/2FYAAAAAAAAAAAAY64bgo9q0eTX6/ObhwIiSU8+vPRQRmRFnl5zIv4iE dkTg9yzjc070Rth6Pi4sa2HTMx3Q1owMTFi9FMy2QA1t2RODvLONzTvRFNjdEYPpbMlXnGz01n+S d+Uf+UX9C0n2c8pX9Ex+xPJs0BrfsicHeWcbmneiHZE4Pcs43NO9EPQtJ9nPKT0TH7E8myAGt+yJ wd5Zxuad6IdkTg9yzjc070Q9C0n2c8pPRMfsTybIAa37InB3lnG5p3oh2ROD3LONzTvRD0LSfZzy k9Ex+xPJsgBrfsicHuWcbmneiHZE4O8s43NO9EPQtJ9nPKT0TH7E8myAGt+yJwe5Zxuad6I8Pboj B5TSyK9I2ZpPL8U73v8ASHoWk+znlJ6Jj9ieTZYDWqN0Tg8SE/8A4zjcRf8AZO9EeuyJwd5Zxuad 6IehaT7OeUnomP2J5NkANZu7pHBZg0JevqG2biiSglIcLSMzIsi7XvmX1ip2ROD3LONzTvRE+haT 7OeUnomP2J5NkANb9kTg9yzjc070Q7InB3lnG5p3oiPQtJ9nPKT0TH7E8myAGt+yJwe5Zxuad6Id kTg7yzjc070Q9C0n2c8pPRMfsTybIAa37InB7lnG5p3oh2RODvLONzTvRD0LSfZzyk9Ex+xPJsgB rJ/dEYPqSnRvSN8dJ/kne+X+UVeyJwe5Zxuad6IehaT7OeUnomP2J5NkANb9kTg7yzjc070Q7InB 3lnG5p3oh6FpPs55SeiY/Ynk2QA1v2ROD3LONzTvRHzsicHuWcbmneiHoWk+znlJ6Jj9ieTZIDFW zc9CvGisXDbdQbnU+Sa0tPt55KNC1IUW3bsUlRfOQyo56qZpm072ExNM2kAAEIAAUV/nLRf5V/8A IBWAAAAAAAAAAAAAAAAAR+b+n1G+iKl99CEgEfm/p9RvoipffQgEgFKV+avfu1f2FUUpX5q9+7V/ YBibH/QugfRcX7pIzYwlj/oXQPouL90kZsAAAAAAAAAAAAAAAAAAB5c+Ir5jHlj8g3/oL+wCoAAA AAAAAAAACIXhihYuH09mNd1wM092a3px21JUpS0pPJRkSSPYRqTt85C+HhV41WphxMzwhSvEpw6d aubQl4DWXZJ4L8tWfR3ugPB7pjBMnSZO+I+mojUSdQ9mZF3fiecdPq7S5/7VXKWPpuj9uObaADV6 90xgm2pCF3xHSpw9FBGw7mo8s8i7XvEY9HulMFiI1HezBEW0zNh7Iv8A5Qno7S4/7VXKT03R+3HN s4BbwJ0SpwmKjAkIfjSW0utOIPNK0mWZGQuByTExNpdETExeAAFKRn+Ly/aEISqgAAAAAAAAAAAA AClF/N0bc9gqgAAAAAAAAAAAClme+ss9mr/5iqAAAAAAAAAAAAKMnMmjy75f3FYAAAAAAAAAAAAB SjbWzz+Ur+4CqAAAAAAAAAAI7O/WHRPoWqffwRIhHZ36w6J9C1T7+CAkQAAAI7iP+ry6PoWb9wsS IR3Ef9Xl0fQs37hYCRAAANSboRyK1Hs9c2vlRWCuONrJ5uoa1BZK7bTX2qfnMQRGIFbfq1sUar4p O0qgTJNfaTWlvMMqqDEdbG9lk6stAz7dXbJLtiz2bR0fLhQ57epmxWZDZHnouoJRZ/MYxFRsa1qr VqXWp9IZdk0Vp9mER7G2kPaGsLQ+KeerTxlsy2cZisRMRbvv9PJPXfut9fNoNzEq8kxbWqFdux5l p2IglRokpmPNlGco0NvqjuINTyXGkpVooyMtIx0wg9JCVbdpEe0W7lLprrrT7tPjrcZIibWpojNB FxZH3BdC98lYiwLOsFLOkzSgZ751C9To8enonll/ERt+q36nERmls0VhVtKjaTksz7cnNuzj+bZl 3eMZe8K9Jti3J1ciUt2ouxG9NMZo8lObSLvHxZ5ns4iMcM6Vh4mFiVVXpim8TNp6o3xx7nZGjV0Y mHTFpmq0xnHXO6eHxY+AjEHeMfXu0onNUjTJZL0s8izz840LNJwlr15JNzVzdLRyyz008We0dCUO uVO4rRarjVKXBnSYynG4r5/Ec26JGezZnl/Axo6ulV7YoUZ+6cL4U+4KtLfQ3qUZoQgjSeaiRnma jM8iIy2FmPj/AOo8CivBw8SmqqaYiZvOtMf4bcbTPCz6z+nseujGxMOaadaZiLRNMTlrX64vEcbs zhcmsHXUdRVRUudSk6evIzLLSLiyG3bSTW00oyuD883w/nlxaOsVo5ebRyyGjcNblvigXJGYqOGj UKLMbWh15iGttwkpIzLaZmWWZZZbOMbiw9vpu/qXKqbdIk08o0pcY0PltVokR6Rebb9ZGOr+mMfR 9nTha1UV5/lmJiN0dUub+pMHHnEqxdWmaMvzRMT1z1xKVAAD7N8ipSOJv/WQqilI4m/9ZCqAAAAA AAAAAACjL/NnP9IrCjL/ADdz5gFUuIfR8LiH0AAAAAAAAAAB8PiP5hTi/mzP7tP9hUPiP5hTi/mz P7tP9gFUAAAAAAAAAAAABSjfkz/1K/uKopRvyZ/6lf3MVQAAAAAAAAAAAUWfyj3+ov7CsKLP5R7/ AFF/YBWAAAAAAAAAAAAAUS/O1fuy/uYrCiX52r92X9zFYAAAAAAAAAAAAAABH436fVH6HhffSRIB H436fVH6HhffSQEgEfxC/QG5foiZ9ysSAR/EL9Abl+iJn3KwEgAAAai3QTkVrgWubcBURjhEzrJ+ tQ1qC1a9pLX2qT85iCJxCrr9VtajVnFJ2kUKa5caEVlbzDKqixGdjlFcJxZaJmZLVtSXbFnkW3Md Iy4MKe2TU2IzIQR5kl1BKLPv5GMRULGtaq1ilVydSGXZVFYkR4WeeraQ9q9YWh8U89UjaZbMtmWZ isRMRbvv9PInffut9fNoVeJV4pbtWfXrqeZbejMkqJElMx5slSpJoQ8uM4k1PJcbJKskZGWah0sg 9JCVFntIj2i3cpdNdebkOwI63WSIm1qaI1IIuLI+4LoXvdERYAAEJAAAAAAAAAAAAAFFr8u986f7 CsKLX5d750/2FYAABaVVU9FMlLpTaHJqWVnHSs8kqcy7Uj82eQmIvNkxF5s15a7WNx0szmSaKhW+ H9BMxDhvE3rVaGkaTy+LkMvqcY/DbY5p72iwwLn4x1C0XXsbKVCgVwpbhNoimgyNn/CZ6BmRd3u5 5cY2MO7SMarDxaqLUzbhETHwl14+LVRiTTamfdETCEanGPw22Oae9oanGPw22Oae9omq1aKTVlnk Q1lgdjWrGeHW5irLqdvdR5xwyRNPM3iyz0i2Fkezanbls2mK014tdFWJTRTam18o69yKasSqia4p i0b8o60Vx9axOLCetnW5VAVCzi64o7bpOGW+Wvi5nlx5DRegnupT9Q7cuC36PdNHk0CvwGpsCWkk vMOpzSsiMjLMvnIj/gIT2O+DfISnc2PV6P6YwtGwZw8SnO98ojhHu4PQ0LpPDwMLUrjO98ojucta CPkl9Q8NITon2pfGV3POY2yjc51Hr6LcXZ9t9bTeHatahGv3xol3ctPPSz7ujl5xsuPuecHFNmZ2 LTvjrL8n/mMepjdNaNhauczeL5dXdOe96GL0pgYds5m8Xy6vf3uXtBHyS+oNBHyS+odS9jxg3yFp 3Nh2PGDfIWnc2MfxBo/Crw82XrnA4T9/Fy1oI+SX1BoI+SX1DqXseMG+QtO5sOx4wb5CU7mw/EGj cKvDzPXOBwn7+LlrQR8kvqDQR8kvqG5cbbYwKwTs9F31TCgqs05MahpYhMkayUslHpKM+JJEk9vf Mi7omVDwNwWrtGgVpjD6E03PjNyUNutaK0JWklESi7hlntIaz01hU4cYs01as5ROXV8Wk9KYdNEY kxNpy6vNzRoI+SX1BoI+SX1DqXseMG+QlO5sOx4wb5C07mxl+ING4VeHmz9c4HCfv4uWtBHyS+oe XEJ1au1LiPuDqfseMG+QtO5seHtzzg4llwysSnZkkz/J+YPxBo/Crw8z1zgcJ+/i5cShGiXalxd4 fdBHyS+odSI3PGDhoSfAWnbSL/sx97HjBvkJTubD8QaNwq8PM9c4HCfv4uLb9JJO0IiIiI6pE+T4 Uz39v1CW6CPkl9Q6hd3OGCr5oU9h/S1m2olJ0ms9EyPMjL+JEKnY8YN8hKbzY0q/qPRpoim1WXu8 16um8CaYptOX3xctaCPkl9QaCPkl9Q6l7HfBvkLTubDseMG+QlO5sZ/iDR+FXh5qeucDhP38XLWg j5JfUGgj5JfUOpex3wb5C07mw7HjBvkJTubD8QaPwq8PM9c4HCfv4uWtBHyS+oNBHyS+odS9jxg3 yFp3Nh2PGDfIWnc2H4g0bhV4eZ65wOE/fxcruoRkXal8ZPc8496CPkl9Q2rjXZNl4cSbYYtXABu5 0VqfvaY5GQrKI2Rp2nkR7VaR5Z5F2pjZFR3PWFCKfJXTbApTktLKzYQ4jJKnNE9EjPvZ5DarpnBp oprmJtVe27qyzzya1dJ4VNNNc3tVu3dXxcxaCPkl9QaCPkl9Q27gRgSupWpMexwwuoECtIqLqIqI qEZKiaKdFStBRpz0jWXHxEWZd09kdjxg3yEp3NiMfpvR8HEnDzm3XFpj4ZoxelcDCrmjObdcWt9X LWgj5JfUGgn5BfUOpex3wb5C07mw7HjBvkJTubGX4g0fhV4ebP1zgcJ+/ige50bxJVhXDO35NCRB 6p1fVJktuG5/6yk556J5ceY2ZqcY/DbY5p72iR21bFCs+jMW/bdNZgU+Ma1NR2U5JSa1mtRkXnUp Rn5zMZQfO6Rpm1xaq6aYtM8IeLjaXtMSquKYtM8IQjU4x+G2xzT3tHzU4x+GWxzT3tE4FGY68zEe ejsG86htSkNkeWmoi2Jz7mfEMo0iqZtq08oZxjzM21Y5Qhupxj8NtjmnvaKa2cYt8N/8ZbGeirL8 U95vOMdgLf2I2IVsz6piVYarWqEaoORmY5pWnWskSTJeS9vGZlnxHlsGx1/nLX+lf/IaY2JXg1zh 1U03jhESvi114Vc0VRTeO6EO1OMfhtsc097Q1OMfhtsc097RNwGfpM9mnlDP0iezHKEI1OMfhtsc 097Q1OMfhtsc097RNwD0mezTyg9InsxyhBzZxjyP/jLY4u4097RkcN03Qmz4JXln1XyXvnPLj0zy y82WQzVafqUajzpFHjIkzmo7i4zKzyS46STNKTPvGeRCEYG3Hinc9mqqWLtsRKFWt9OITGjZ6Jsk faqMjUrI+Pu9zMXmasXAqqtTERMcInl1xxaTNWJgzVamIiY4RLYgAA43IAAAAj839PqN9EVL76EJ AI/N/T6jfRFS++hAJAKUr81e/dq/sKopSvzV792r+wDE2P8AoXQPouL90kZlZ5IUZd4Yax/0LoH0 XF+6SM2A5uoNXv6tzraU/iNWWkXLVq3BkIbJoiZajOuarVdp2qiJJEZnnsGPl4o3c5aln16p3ktl DlEU9LYhzWI86TI12gl0mnEnvgjShRatvI9LP5RDptMOIjQ0IzRas1KRkgu1M+My72YorpFKcU0p ymxVGx+SM2knobc9mzZtEReLffD+eZVaZvH3v/jkuWVk4yhws+2SR7SyPi7pD2ACUQAAAkAAAAAA Hlz4ivmMeY/5Bv8A0F/YenPiK+Yx5j/kG/8AQX9gFQAAAGtIzeMvCu7jpzlJRSTqzR0zqiThqNje MXS0NA8tDXa7j26Wl3Mhso+IcWYr7pDdeWBMqra8JIjcFFdW1TJjEdcgnILZr2KIlHtUnVmS8k/4 tncT6/Q+g4+n4lWHgal7f4piOvqvv8nm9JaVhaLRTXi61v8Axv42dM6vGvwi0/sPhq8a/CLT+w+M thvdcy+LEod3VCiv0iTVYaJDsJ/47Cj40nsL+wko5cXHrwa5w66KbxNpyjqdFGFTiUxXTVVac98o JoY1/t7T+w+Oed0Ai8OuVQSvBVKW51Fl6neKVkWWvYz0tP8AhxDf+Ot+3nhxh/Iuaw7JeumqtvtN IgtJUoyQo+2WaUdsZFl3O+LWuWXRMUrSg3Pd+HsN+vpoqJLFPnlpKiyHWiWqOpWziWRJP/SPV6L0 2dCxKNLxKadWb05Wve3hGbg07R40iirR6JnWi053tv8A4co6CPkl9QxjyU8JIqdEst5vbO1+Wjuc Y2taGGNYTghcF33vud7eK9KeUhVOpEVs8pSU/EMyJSj7+wjzMi2ZGYzm53wkot/2IdyYvYFUO262 cx5pmM3EW0aoxEk0qNC1KUnttItp7dEjy7/1mJ01gaPRXiTnFM6uU0zn3fmzjveBR0fi41VFERaZ i+cT45ZS0HX0J6t232pfnzvc/wD7Z0ZSqIT1Ml9qX5Bzuf5TF9uqXo+Gt6wrDwv3O1JqT8iKUlFR dp7knSUrMjJpCDIiNPdM8/mGNw0xGw9q2HFs1CsbnLhBXZlY6i1V2LF3uy0pSs0upIkq0u0Ms09q WZHxbB6UY2JjaHh6Xh0TNM7ovTfO83n82UdWcuKaaMPSK8CqbTHdNuqLRlm6ow2RjDwBt/eL9rlH 6nMaonEPaWjollnlszEk1eNfhFpfYf8AaNCXNinuncBerlWruHkS57UKe2xQ4tNQTe8YKErNRr1a DURaJIIjXnkZH/GaYI7pe8sYbyZpj+DFYoFvSqccxmqylKNOmRmWjnokkyMyMiy27OIfD6XoGlzR XptFOHVh5zeJpnvtxvF+D6fR9L0fWp0aqa4r3WnW58LJ/Qm8VixEjKulVPVRepEkjOnksm9865nQ 09M889HWZZdzMT2R/wBn+8SNYVPEPFKLj7ScPYWHRvWVLguPyrg7f8S6TalEWeeiXbpSjRMsz0sy 2ENnyP8As/3iR4Wl01xNFVcRF4iYtbd323T3PV0aqmdammZm02z+9ysAAOR0gAAAAAAAAAKMT83R 8wrCjE/N0fMKwAAAAAAAAAACj/7Wf7v/AJisKP8A7Wf7v/mKwAAAAAAAAAACjK/In85f3FYUZX5E /nL+4rAAAAAAAAAAAAoxvyZ/61f3FYUY35M/9av7gKwAAAAAAAAAAjs79YdE+hap9/BEiEdnfrDo n0LVPv4ICRAAAAjuI/6vLo+hZv3CxIhHcR/1eXR9CzfuFgJEAAAAAAAht1Yq2zaFTcptTZqDiYjT UioSo7BLYp7TijShx9RmWik8jPYRmRFmZEWQmQ0riZZd5TpN9Uag265UWMQKYxAbnpeaQ3TnCbUw tT5KUSzQSTJZaslmZ6RZFxnEznCYt1t0kZKLMjzIDIjLIyzIUojBRYzUYlGomkEjM+M8iyFYTKsX tm+EREWRECkpVlpJI8uLMh9ARbqS+aKc88i+ofEoQgskJJJcewsh6ALQXBErxxIpdkvKTU6JW5EZ iOUuVMiRCcYitZmWk4o1EezRUZkklGRFnltLOWjVuLp3pWahDtKFZVXqdqymTdrD9Meik9JLSMih /j3mzQhRbVrLMzSeiWWZmSb5WMutnK9ixadDqTdPktzpLaUMPSJcZglx4aHjyaU6rMjSSjMssiPz 5D4eMNkpVdaHJUhCrONPVFKmdqiUglJNrb+Mzz0dn+LZ3Szgt52Vd82TctLotpvuQ73iU9pMjXMI RStV2q0vJ09I8kn2urJZZllsLaMjT8HClza5Vq3HfRJarMqVAS28kkTWFxY6UE6RZ5pJ5lKyI8jJ TaT4uOKrxEzH3v8A495T+uInd/x/PJsy2Lip13W/T7mpBunCqcdEljWo0V6CizLMu4e0ZQRLCeh1 O2sNrboFZj6idApzDEhrSJWgtKCIyzLMj294S0XqtE5K0zMxmAACFgAABi7kuSkWlRZNfrkk2YkR Gms0pNSlH3EpSW1SjPYRFtMxE5WNFoFQaJXI0OrVBiv0xNYYZixSU61CNKVG86k1FopLTSR7TPM9 hHkYucR8OZF7rhT4l21akSaUh5TCIbUV1txxaciUpMhlxOkRbCUWRlme3aNX2zh9iLYlp2tp0Gbc M8rHK2ZrCXoqHIUjNK0ZnmhCmk5qbM0maskIPJZmahF5t3pyybZj4p2bKuRq2GqgrfD9LTWGnjRk wuMe3SJZ93Lbl3hdWDf9v4k0E7jts5JwylPxD3wybS9Yy4ptfan3NJJ5DW9GwNckSY1KuU3ihwaJ TIiJcV4kqceZ0yea7+gtKjQrMizSo+6Jfg9a9XtOi1yFV4RRVSrmrE+OglJURx35jrjSu1PZmhST y4y7on/FMdX8x9/BSJmaYnrv5/fxT0AAFgAAAGMuK4aXa9KdrFWdUhhoySSUJNS3FmeSUISW1SjM yIiGTEBxotGTeFqR4sehM1woNRjT3aW6pJJmttrI1NZr7XMy4tLIsy2mQiUwvpmJdPgUiDUptu11 qVU5Co0SlnGQcx1SSNSjJBL0SIkpNWZqLZ5zIhbQsYLHkyLagR5MglXOl5ME1M5JQtlWgtp08+0W S80Zbe2IyGvqFYt22xMpd40yzJiINOq852NbLcmPr4kOQylH4szXqSVrEEo0E4RES1ZGeWR+qBgv W57VJi3PGdiNSmq3LmLiyEk7AfmTd8tNoUX+NBKyNScyzSeR5ZCfv+ERnv8Avfm2jZuIttX5JrUW 3nX3DoU04ElbjeihTmglWaDz7ZOSi2iTjXuGdkzbOuK8TVC1FOnzozkBWmlRutoiNNqUeW0j0kq4 8s+MbCEzbqR1yAACEgAADHXFcFLtWhTrjrcjUQKcwuRIcyz0UJLM8iLjPzCMR8XrZXTanNnQqrTp FJNkpECXGJMoze2NaKUqMlaZkZFt7h55C9xUolXuTDq4aDQo7EibUILkdtl4yJDxKLJbeZkZJNSd JJGZHkZkfcGpaXhjdjVNrMmjWxUqdBal0yZTqTV6g3KmuqimemjXaxwibNJpJtKnDIjI9iSMRfOY OH3wbCfxvsim0yJUKmiowN81pNBdjvxyJ6JKU2p38cRKMkoJtJrNRGZEkyMZ2l4iW3WL1qdhQHX3 KnSY6JMk9X+KJKjItEl57VFmWZdzMhq48NrnuivtXNWbaXEjVe8iqcunSHWlORoCaO/D0nNBSkGp S1J2JUrIll3jEpsrDSTZWIW+4KZMilIoKYZzpT5OPvyNfpGbh8Zqy7uWWwiFota8ondk2cAAISAA AAj95Xxb9h09mpXA7IQzIfbjN6mOt0zcWtKEkeiWSSzUW1RkQkAgGNsWv1OyHaRbdrzq1LkyYyyb jOMI1aW323FGo3XEFxIMiyzPPL5xEzZamImbSyd3YlUKzpLEKXDqU6S9GcmrZgRydUxGQZEt5zMy 0UEaiLume3IjyPKxqWMFm0uYw0k5suM81HkPT4rJLjRW3zImVOqzI0krMssiPYe3IR27qVeKLh4Y 0azJlR6t2sqiPQifjoegPk6biFOaSySaD1iyUaFKMjQnIlZ5lFHcKb3oFv1GwoFFVU2rjpVJgOVR p5pDMFcdCUPG4S1E4ZZEZp0Uq7hHlxiY32n7zjL+VL/liev7z/htFeL9lNyrshvS5DblmIQ5UiUy fbJU2ThG1+02KIsi2kZkXdLORWvcdOu63oFzUnW7zqTKX2dajRXon3y7hjWkPB3qhWrirFdYfbdR XHJtOJp1JJmsKgRGyS6W3NGvjpXonl2zST4uOaYVUOp23h3QaFWY+omwoaWn29IlaKiM9mZGZH/A Izpi++0fyXm88M0rAABIAAAxVz3NSbQokq4a448iFERpuqZYW8oi8yUEZn9XzjFVHEKBDotKrkGh VqrNVdkpEduBFJbiWzQStJZKUkk7FF3c8xcYgnUTs2rMUmiSqtLkRVsNRYymkrUpZaOebq0JIizz PNXEWzPiEAmTMT6fhbbNAt+x61GqC47VPqa2HoSpcBpttKVLaJbxNKUvIySrSPR4zSeWQif05b05 ZfH9kjmYzWYxTKVW4DVSqjVXgqqLaYUbTW1ESZEt10jMtFKVKIj4zz4iPIxkY+KVmyblRa7VQVvl 2lprDbykZMLjHt0iWfdItpkfcGu5VpV+hJgVGz8OKgmFItZ62k0pciKl+nqJzNtx0zdNCkGWkajS tSs9E8jPPKtSMDnJMtml3KbxQ4VGpcVEuK8SVOusksnmu/q1pWaFEZFmlZ93ifz+9vpHNSZm3L9r /u2RYN/UDEi3+EttnJ3nvp+J/wAQybS9Yy4ba+1PaRaSTyEjEGwitiq2rRa3Cq0MoypVzVmoR0Et KiOO/MccaV2pnlmhSTy4y7uQnItPcsAACAAAAAAAAR+N+n1R+h4X30kSAR+N+n1R+h4X30kBIBH8 Qv0BuX6ImfcrEgEfxC/QG5foiZ9ysBIAAAAAAAENufFW2bTqrtLqTNQcKG209UJTDBLYp7bqjShb 6sy0SPIz2EZkRZmRFlnMhpXEey7ymzL6otDt1yoRsQIMWK3UEvMpapziWzZcN9KlEs0knRWnQJZm ekWSeM4mc4TFutukjIyzI8yMfRSjMlGjtRyUaibQScz4zyIVRKsXmMwAAEgAAAAAACP3nfNv2FTm qncLslDL7yY7epjLdM1qPIiPRIySXnUZF5xIBr/G6JcFTsd+kW3a86ty5jraSbiuMI1RJUSjUo3n EFl2uWzM8zLZltETNpj3x9Sd02Zqdf8AbVLvWDYsx15uqVSIqYwZt/ilISeWRrz2K2GZF3SI+8Pl h4i23iPDqM+2XJDjFMqDlOdW61oaTiEpVpI76DStJkrukYiVx4dSb/vBuo1iDPptPfoLLOubfbRK jSUyDWaCNBqyPRMyM0mZZKMiMZbCm0ajaUu80TICYkWo3EuZT0pUkyVG3pGbSZER9r2zayyPI9gR vtPf9Y/ZFU2tbu+mfinwAAlIAAADyhtDeeghKczzPIsszHoAAAABD7kxPo1qVQoFXpNZRFS6wy9U 0RSOGyt5RJQS16WfxlJIzJJkWe0Wz2MFjwuFiHpMlpVmqIqkk2TzUakEsja2/jPjEWzun8wwGI3D CuXfEosvD+s1S0IC2Jq+p7sPKoSkKJaEu659CktNqSlWiST0lEWZ5FkdqrB5VWqN112qxH25TtWl yqa228kkS2XIbCEk6XeJ1vSIjMu2QR8QpVNUUTVHetTaa4id2TaNu12Dc9Dg3BTNZvWoMIkM6xOi rRUWZZl3DGREaw2pFQoFiUOjVVjUy4cJpl5vSJWisk5GWZbD/gJKNaoiKpiNzOiZmmJq3gAAqspv x2JLZsyWUOoPaaVpIy+ox7IiIsiLIiH0AAAAAEOYxOob9fO25tKrEBx5T7cZ+XFJtmWpnPWE0ekZ nkRGe0izLaQmA1FUKHdVz4k0+vHZlUpnUpMth6TNqLT8N5k0qQg4zRLUaFqzSZq0Gzy2GahH+KIJ ypmWXVj3h43Z1NvXfM3eFUqCaZHbKMevJ81mntkZ9qksszVnlkZHtzLPYxGRkRl3RoCRgXUGsNGF xKe+q5XYdLjPQjfRqWlMyWVvOp7msU2yglKzPMmUEXdz38gjJCSPvBG7NEznaHoAASkAAAAAAAAG MuaicJbfn0DqnMpxT2FMHKhqSl5olbDNBqIyz+cjETe2Qh8vHHD1tq63ikTJLVmFHXUVsxjUk9aa tDVHs1mRoURmWzMj2mMoWKloLueiWkzKeenV+GudENtrNsmkkR9ur/CZkZZFxjUzuCF60qXfUWJV 59ZgVOlUaFTUyW4LJOmw46ay0WGmyTq0mRFsIj0zz0jIspgeEnUDEC2a1bsd9+ExKqMmc888kzjk 62km20FsPQIyVkRZ5ZmHXHBW82q7tzbAAAlYAAAAAAAAABgL1vOl2JRSrdVjTJDa5DMVtmI0S3XH XVkhCSIzItpmXdGHm4rW9SWaHJuGlVekLrs/qZFbmR0ktDhlmRr0VKJKDyLts+6XEL/Eanwqpbao VSsLhfFW82blNLUGaslZksieUlBmkyI9qi4tg1pScKa1Pptu0urUFcSjFVqo85TlyELVTYL8Z1tt rMlGWZGotiDMk57D2CM8yrK1vvvbNomIdt3Bd9bsimPPuVGgIaXMM28mvxmlkSVf4jI0qI+8ZGQk w1lYmHU2zMRKjMYRIfpS7fgwkz5LqVvS5SH5LjzjmW01qN0lqVkRGazy7w2aJjdH31k/qnh/EAAA AAAAAAAAAAAI/N/T6jfRFS++hCQCPzf0+o30RUvvoQCQClK/NXv3av7CqKUr81e/dq/sAxNj/oXQ PouL90kZsYSx/wBC6B9FxfukjNgAAACIXdihblmTt4VKPUJCmmClS3IrBOIhx9LR1rxmZaKc+9me RGeQljTrb7SHmVktDiSUlRcRkfEY1Dibal4P1a5yt+3HKqzeFCTRyfQ80hMB3tk6x0lqSo29FZq7 TSPMstHujalFgKpdIhU1TmmqLHbZNXfNKSLP+ginOMycpyXoAAkAAAAAABDq5idRrfrrVEq1IrLT D0hmJ1S3qW80vO7G0GvSz2qMk5knLMyLMeF4q2sxcvBc2Z+SJqaWqeTBbzTMUklJj6zPPTyUkthZ ZnlnnmRRy8uGFdv6FT6nYNZnWpSn2JTCoTsPVypRGRk6/rH0LJDR7SQSTzMtLbkRFhZFhXkqqP2g i33Dp0i80XQVa1zOpKPrUPqaNGlrdaS0qbItE05aJ6XGkoom8036/wCP5lFWV7fe/wDiG8QABKQe VIQssloSovOWY9AA+EREWREREXcIfQABaVWqU+i06RVarKRHiRUG466viSkv7/MW0z2EITFxqtCf bNJuylQavORXFPpiRGIf/FKJhS0uqU2oy0SSaFZ5mR8Xd2DLX9YR32zTWiueqUZVMllMbVCbjOE4 4RZJ00SGnEKJJnmXa5keR9wansrDzETDyi21VpVLqFyTqY9W2ZEInYbb6GpUha2lpMtW2ZHklSi0 sy1isuIklF+JLedCrlNuWjxK7R5BPQ5rZOtLyyzSffLuH3BfiJ4VWxPs+waTQKqaN+R2jU8SDzSl a1Go0kfm0sv4CWi0oh4U02tRKU2kzLiMy2ihEplNgIU1CgR2EKWbikttkkjUfGrZ3fOLoAiqYi1y 0TN3xSUrLRUklEfcMh8S2hBESEJSRbCIiyHoBCbPhmSSNR5FltESp+JNAqqKhNbhVFulUxtx86q6 wSYjyWzyUbStLSVkZHt0cjy2GewSmU0ciM6wlZoNxBpJRcZZlxjmy3MELiZorNsUyzG7Xfg0KRS6 lPbeZ3vXHiIktOaKDNR5qSThqcSlRGoy2iszMXsmIjrbvs/EOjXnJlQYcOowJkRtqQqNPYJpxTDm ereSRKPNCtFREfHmk8yISkaxw8ol0S74m3rcFuP0JtugwqEzFkPNOOPLZcdcceLVKUkkZuklOZkr YeZFsGzhpVEROSlMzMZgAAqsAAAAhl0Yr21adWcpE+NUX1Rmm35z8ZgltQm3FaKFvGaiMiM+8R7C MTMaExdw4uq4ryqVSp1sT5z0yDFjUmfEqCGI8RaHdNZTWlLTrm9IkqItBziMsiETM3hOVpn73tjV LFe1KNXDoLrU9bbDsePKntMEqJEefy1Tbq88yUrSQewjIiWnMyzE0IyMsyGjLksG9pD102fHoK5U W8avTqodZbdZRHhobajNvocQaicNZb1M0aKVEesSRmnIxvJBaKST3iFlc7x7noAAQkAAAfBH5l9W /Cu+DYzzknqrUGXZDKSjL1eg2RGozcMtHPti2EZn8wkI1tebdyu4pWlPp1lVSdTqYiU3KnsuxktN 68kJI9FbqVmSdEzVkni4sw64hOVp9zKs4q2s9c/B5LU8jVNXSkVFTBFDcmISalx0uZ5msslEfa5a STLPMsh6ouKls124E2/EZntqfU8iHLeYJMaYpo8nCaXmZq0T48yLu5ZjX8ewbx3/AA7KcoDiKbBv OVc3VvXNalyM7IdkpbJBK1utJbpNnmjRySZ6XEQrWfY94xq3adDqVvuxINmTKhKVU1PNG1OJ7SJs mkpUay2LM1aaU5GRZZhTnOf3v+niiZ4N2AAAAAAAMRdV00izKDLuSuuPohQkG46pmOt5eRFnsSgj P/l38hlxGsSCqbtjVuHR6HKq0yZCeiMxYy2krUpxBoI83VoSREZ5ntzy4iMRM2gUK3iDTqXRqdWW qDWqrHqbBSm0wIpOKbaNBL0l5qSRFkZd0zzGPqmM9n06nQqow3UqixMgKqit5RtYqPDT8Z50jMtF JGRlkWZ9qeRHkI1V5eJaMNLZt2jWHWmH34rcCsal6EcuEy22SFG2S3ybUpzRySrTPRJWZlmWQsan a9zUVZ1S0MPJrkeqWpwfaprkiMhynvIU4ban1G4aTbPW9saFLV2pnoqzEXnVmev/AJ/hMW+/h/Ld EKZFqMNifBfQ9HktpdacQeaVoUWaVEfeMjIxXGDsa3nLSsug2s9IJ9yj02NAU6XEs2mkoNX8dHMZ wXm0TMQpTMzTEzvAABCwPhnkWY+j4fEEjAWxfNv3fLqsOiOyFro0gosrXR1s5OZZ9qSyIzLz5Zd7 MYOPjNYLzVyvRZz7jNrOtMzHEMGaXXXctWhk/wDtDUoySWWw1GREYj9Gt+5LkrN/0qr2/cFswbhU 2UWpoehmvRQ2TajSSVuZGeRmWkjLRPbt2CJu4HXtS13gmJWp1YYORQJ1JaltwWEyzgPNPqbyYaQS DMmjbIzIk9sRnnxitMzMRrZXiP5OuY7/AAbptO86Xd7czecaZDlU94mJcOa2Tb7CzSSk6REZlkaT IyMjMZ8QHDij13hFdV51yjP0c68/GTHgSHG1vNtstmnScNtSkEajUrYSj2EXzCfC0ogAABIAAACO zv1h0T6Fqn38ESIR2d+sOifQtU+/ggJEAAACO4j/AKvLo+hZv3CxIhHcR/1eXR9CzfuFgJEADyta GkKccWlCElmpSjyIi75mA9ALPqxSfGkTn0+0OrFJ8aROfT7RGtHFTa0dqOa784+iz6sUnxpE59Pt DqxSfGkTn0+0NaOKNrR2o5rsfRZ9WKT40ic+n2h1YpPjSJz6faF44m1o7Uc14As+rFJ8aROfT7Q6 sUnxpE59PtDWjibWjtRzXgCz6sUnxpE59PtDqxSfGkTn0+0NaOJtaO1HNeALPqxSfGkTn0+0OrFJ 8aROfT7Q1o4m1o7Uc14As+rFJ8aROfT7Q6sUnxpE59PtDWjibWjtRzXgCz6sUnxpE59PtDqxSfGk Tn0+0NaOJtaO1HNeALPqxSfGkTn0+0OrFJ8aROfT7Q1o4m1o7Uc14As+rFJ8aROfT7Q6sUnxpE59 PtDWjibWjtRzXgCz6sUnxpE59PtDqxSfGkTn0+0NaOJtaO1HNeALPqxSfGkTn0+0OrFJ8aROfT7Q 1o4m1o7Uc14As+rFJ8aROfT7Q6sUnxpE59PtDWjibWjtRzXgCz6sUnxpE59PtDqxSfGkTn0+0NaO JtaO1HNeALPqxSfGkTn0+0OrFJ8aROfT7Q1o4m1o7Uc14As+rFJ8aROfT7Q6sUnxpE59PtDWjibW jtRzXgCz6sUnxpE59PtDqxSfGkTn0+0NaOJtaO1HNeALPqxSfGkTn0+0OrFJ8aROfT7Q1o4m1o7U c14As+rFJ8aROfT7Q6sUnxpE59PtDWjibWjtRzXgCz6sUnxpE59PtDqxSfGkTn0+0NaOJtaO1HNe ALPqxSfGkTn0+0OrFJ8aROfT7Q1o4m1o7Uc14As+rFJ8aROfT7Q6sUnxpE59PtDWjibWjtRzXgCz 6sUnxpE59PtDqxSfGkTn0+0NaOJtaO1HNeALPqxSfGkTn0+0OrFJ8aROfT7Q1o4m1o7Uc14PgtOr FJ8aROfT7Q6sUnxpE59PtDWjibWjtRzXgCz6sUnxpE59PtDqxSfGkTn0+0NaOJtaO1HNeALPqxSf GkTn0+0OrFJ8aROfT7Q1o4m1o7Uc14As+rFJ8aROfT7Q6sUnxpE59PtDWjibWjtRzXgCz6sUnxpE 59PtDqxSfGkTn0+0NaDa0dqOa8AWfVik+NInPp9odWKT40ic+n2hrRxNrR2oXgCz6sUnxpE59PtD qxSfGkTn0+0LxxNrR2o5rwBZ9WKT40ic+n2h1YpPjSJz6faGtHE2tHajmvAFn1YpPjSJz6faHVik +NInPp9oa0cTa0dqOa8AWfVik+NInPp9orR5sOUaiiy2XjT8bVuErL58gvEpjEombRMKwj8b9Pqj 9DwvvpIkAj8b9Pqj9DwvvpIldIBH8Qv0BuX6ImfcrEgEfxC/QG5foiZ9ysBIAAeVrQ0hTji0oQks 1KUeREXfMwHoBZ9WKT40ic+n2h1YpPjSJz6faI1o4qbWjtRzXgCz6sUnxpE59PtDqxSfGkTn0+0N aOKNrR2o5rwBZ9WKT40ic+n2h1YpPjSJz6faGtHE2tHajmvAFn1YpPjSJz6faHVik+NInPp9oa0c Ta0dqOa8AWfVik+NInPp9odWKT40ic+n2hrRxNrR2o5rwBZ9WKT40ic+n2h1YpPjSJz6faGtHE2t HajmvAFn1YpPjSJz6faHVik+NInPp9oa0cTa0dqOa8AWfVik+NInPp9odWKT40ic+n2hrRxNrR2o 5rwBZ9WKT40ic+n2h1YpPjSJz6faGtHE2tHajmvAFn1YpPjSJz6faHVik+NInPp9oa0cTa0dqOa8 AWfVik+NInPp9odWKT40ic+n2hrRxNrR2o5rwBZ9WKT40ic+n2h1YpPjSJz6faGtHE2tHajmux9F n1YpPjSJz6faHVik+NInPp9oa0G1o7Uc14As+rFJ8aROfT7Q6sUnxpE59PtDWjibWjtRzXgCz6sU nxpE59PtDqxSfGkTn0+0NaOJtaO1HNeALPqxSfGkTn0+0OrFJ8aROfT7Q1o4m1o7Uc14As+rFJ8a ROfT7Q6sUnxpE59PtDWjibWjtRzXgCz6sUnxpE59PtDqxSfGkTn0+0NaOJtaO1HNeALPqxSfGkTn 0+0OrFJ8aROfT7Q1o4m1o7Uc14As+rFJ8aROfT7Q6sUnxpE59PtDWjibWjtRzXgCz6sUnxpE59Pt DqxSfGkTn0+0NaOJtaO1HNeALPqxSfGkTn0+0OrFJ8aROfT7Q1o4m1o7Uc14As+rFJ8aROfT7Q6s UnxpE59PtDWjibWjtRzXY+iz6sUnxpE59PtDqvSfGkTn0+0NaOJtaO1HNeALPqxSfGkTn0+0OrFJ 8aROfT7Q1o4m1o7Uc14As+rFJ8aROfT7Q6sUnxpE59PtDWjibWjtRzXgCz6sUnxpE59PtDqxSfGk Tn0+0NaOJtaO1HNeALPqxSfGkTn0+0OrFJ8aROfT7Q1o4m1o7Uc12Pos+rFJ8aROfT7Q6sUnxpE5 9PtDWjibWjtRzXgCz6sUnxpE59PtDqxSfGkTn0+0NaOJtaO1HNeALPqxSfGkTn0+0OrFJ8aROfT7 Q1o4m1o7Uc14As+rFJ8aROfT7Q6sUnxpE59PtDWjibWjtRzXgCz6sUnxpE59PtDqxSfGkTn0+0Na OJtaO1HNeALPqxSfGkTn0+0VGJ8GUs2401h1ZFmaUOEo8u/kRheExiUTNomFwI/N/T6jfRFS++hC QCPzf0+o30RUvvoQldIBSlfmr37tX9hVFKV+avfu1f2AYmx/0LoH0XF+6SM2MJY/6F0D6Li/dJGa MyIszAfQFn1YpPjSJz6faHVik+NInPp9ojWjiptaO1HNeALPqxSfGkTn0+0OrFJ8aROfT7Q1o4o2 uH2o5rwBZ9WKT40ic+n2h1YpPjSJz6faGtHE2tHajmvAFn1YpPjSJz6faHVik+NInPp9oa0cTa0d qOa8AWfVik+NInPp9odWKT40ic+n2hrRxNrR2o5rwBZ9WKT40ic+n2h1YpPjSJz6faGtHE2tHajm vAFn1YpPjSJz6faHVik+NInPp9oa0cTa0dqOa8AWfVik+NInPp9odWKT40ic+n2hrRxNrR2o5rwB Z9WKT40ic+n2h1YpPjSJz6faGtHE2tHajmvAFn1YpPjSJz6faHVik+NInPp9oa0cTa0dqOa8AWfV ik+NInPp9odWKT40ic+n2hrRxNrR2o5rwBZ9WKT40ic+n2h1YpPjSJz6faGtHE2tHajmvAFn1YpP jSJz6faHVik+NInPp9oa0cTa0dqOa8AWfVik+NInPp9odWKT40ic+n2hrRxNrR2o5rwBZ9WKT40i c+n2h1YpPjSJz6faGtHE2tHajmvAFn1YpPjSJz6faHVik+NInPp9oa0cTa0dqOa8AWfVik+NInPp 9odWKT40ic+n2hrRxNrR2o5rwBZ9WKT40ic+n2h1YpPjSJz6faGtHE2tHajmvAFn1YpPjSJz6faH Vik+NInPp9oa0cTa0dqOa8AWfVik+NInPp9odWKT40ic+n2hrRxNrR2o5rwBZ9WKT40ic+n2h1Yp PjSJz6faGtHE2tHajmvAFn1YpPjSJz6faHVik+NInPp9oa0cTa0dqOa8AWfVik+NInPp9odWKT40 ic+n2hrRxNrR2o5rwBZ9WKT40ic+n2h1YpPjSJz6faGtHE2tHajmvAFn1YpPjSJz6faHVik+NInP p9oa0cTa0dqOa8AWfVik+NInPp9odWKT40ic+n2hrRxNrR2o5rwBZ9WKT40ic+n2h1YpPjSJz6fa GtHE2tHajmvAFn1YpPjSJz6faHVik+NInPp9oa0cTa0dqOa8AWfVik+NInPp9odWKT40ic+n2hrR xNrR2o5rwfBadWKT40ic+n2h1YpPjSJz6faGtHE2tHajmvAFn1YpPjSJz6faHVik+NInPp9oa0cT a0dqOa8AWfVik+NInPp9odWKT40ic+n2hrRxNrR2o5rwBZ9WKT40ic+n2h1YpPjSJz6faGtHE2tH ajmvAFn1YpPjSJz6faKrE+DKWbcaaw8oizNLbhKPLv5EF4lMYlEzaJhXEdnfrDon0LVPv4IkQjs7 9YdE+hap9/BErpEAAACO4j/q9uj6Gm/cLEiFnWaZHrdInUaUaiYnxnYrhp49BaTSeX8DAXgtanTY VYp0qk1JgnokxlbD7ZnsW2ojJRbO+RmMQmtXFDQmPMtWXMeQWS34brJNOH8oiWtKk58eW3LPLM+M feElZ5DVjnY3vQRMRVFpRvsfsIORcXnHOkHY/YQci4vOOdISThJWeQ1Y52N70OElZ5DVjnY3vRls MLsxycPqrQfY0fLHkjfY/YQci4vOOdIOx+wg5Fxecc6QknCSs8hqxzsb3ocJKzyGrHOxvehsMLsx yPVWg+xo+WPJG+x+wg5Fxecc6Qdj9hByLi8450hJOElZ5DVjnY3vQ4SVnkNWOdje9DYYXZjkeqtB 9jR8seSN9j9hByLi8450g7H7CDkXF5xzpCScJKzyGrHOxvehwkrPIasc7G96GwwuzHI9VaD7Gj5Y 8kb7H7CDkXF5xzpB2P2EHIuLzjnSEk4SVnkNWOdje9DhJWeQ1Y52N70NhhdmOR6q0H2NHyx5I32P 2EHIuLzjnSDsfsIORcXnHOkJJwkrPIasc7G96HCSs8hqxzsb3obDC7Mcj1VoPsaPljyRvsfsIORc XnHOkHY/YQci4vOOdISThJWeQ1Y52N70OElZ5DVjnY3vQ2GF2Y5HqrQfY0fLHkjfY/YQci4vOOdI Ox+wg5Fxecc6QknCSs8hqxzsb3ocJKzyGrHOxvehsMLsxyPVWg+xo+WPJG+x+wg5Fxecc6Qdj9hB yLi8450hJOElZ5DVjnY3vQ4SVnkNWOdje9DYYXZjkeqtB9jR8seSN9j9hByLi8450g7H7CDkXF5x zpCScJKzyGrHOxvehwkrPIasc7G96GwwuzHI9VaD7Gj5Y8kb7H7CDkXF5xzpB2P2EHIuLzjnSEk4 SVnkNWOdje9DhJWeQ1Y52N70NhhdmOR6q0H2NHyx5I32P2EHIuLzjnSDsfsIORcXnHOkJJwkrPIa sc7G96HCSs8hqxzsb3obDC7Mcj1VoPsaPljyRvsfsIORcXnHOkHY/YQci4vOOdISThJWeQ1Y52N7 0OElZ5DVjnY3vQ2GF2Y5HqrQfY0fLHkjfY/YQci4vOOdIOx+wg5Fxecc6QknCSs8hqxzsb3ocJKz yGrHOxvehsMLsxyPVWg+xo+WPJG+x+wg5Fxecc6Qdj9hByLi8450hJOElZ5DVjnY3vQ4SVnkNWOd je9DYYXZjkeqtB9jR8seSN9j9hByLi8450g7H7CDkXF5xzpCScJKzyGrHOxvehwkrPIasc7G96Gw wuzHI9VaD7Gj5Y8kb7H7CDkXF5xzpB2P2EHIuLzjnSEk4SVnkNWOdje9DhJWeQ1Y52N70NhhdmOR 6q0H2NHyx5I32P2EHIuLzjnSDsfsIORcXnHOkJJwkrPIasc7G96HCSs8hqxzsb3obDC7Mcj1VoPs aPljyRvsfsIORcXnHOkHY/YQci4vOOdISThJWeQ1Y52N70OElZ5DVjnY3vQ2GF2Y5HqrQfY0fLHk jfY/YQci4vOOdIOx+wg5Fxecc6QknCSs8hqxzsb3ocJKzyGrHOxvehsMLsxyPVWg+xo+WPJG+x+w g5Fxecc6Qdj9hByLi8450hJOElZ5DVjnY3vQ4SVnkNWOdje9DYYXZjkeqtB9jR8seSN9j9hByLi8 450g7H7CDkXF5xzpCScJKzyGrHOxvehwkrPIasc7G96GwwuzHI9VaD7Gj5Y8kb7H7CDkXF5xzpB2 P2EHIuLzjnSEk4SVnkNWOdje9DhJWeQ1Y52N70NhhdmOR6q0H2NHyx5I32P2EHIuLzjnSDsfsIOR cXnHOkJJwkrPIasc7G96HCSs8hqxzsb3obDC7Mcj1VoPsaPljyRvsfsIORcXnHOkHY/YQci4vOOd ISThJWeQ1Y52N70OElZ5DVjnY3vQ2GF2Y5HqrQfY0fLHkjfY/YQci4vOOdIOx+wg5Fxecc6QknCS s8hqxzsb3ocJKzyGrHOxvehsMLsxyPVWg+xo+WPJG+x+wg5Fxecc6Qdj9hByLi8450hJOElZ5DVj nY3vQ4SVnkNWOdje9DYYXZjkeqtB9jR8seSN9j9hByLi8450g7H7CDkXF5xzpCScJKzyGrHOxveh wkrPIasc7G96GwwuzHI9VaD7Gj5Y8kb7H7CDkXF5xzpB2P2EHIuLzjnSEk4SVnkNWOdje9DhJWeQ 1Y52N70NhhdmOR6q0H2NHyx5I32P2EHIuLzjnSDsfsIORcXnHOkJJwkrPIasc7G96HCSs8hqxzsb 3obDC7Mcj1VoPsaPljyRvsfsIORcXnHOkHY/YQci4vOOdISThJWeQ1Y52N70OElZ5DVjnY3vQ2GF 2Y5HqrQfY0fLHkjfY/YQci4vOOdIOx+wg5Fxecc6QknCSs8hqxzsb3ocJKzyGrHOxvehsMLsxyPV Wg+xo+WPJG+x+wg5Fxecc6Qdj9hByLi8450hJOElZ5DVjnY3vQ4SVnkNWOdje9DYYXZjkeqtB9jR 8seSN9j9hByLi8450hILSw7s2xlyXLVojUBUwkE8aFKPTJOejxmfFpH9YqcJKzyGrHOxvehwkrPI asc7G96JjCw6ZvTTHJfD6P0TBqivDwqYmOuIiJSAR+N+n1R+h4X30kOElZ5D1fnY3vRXpEKY5UpV fqMco78ppqOhglaRttNmpRaRlsNRmtR7NhZkW3LMaOxmRH8Qv0BuX6ImfcrEgFnWKaxWaTNo8kzJ mdHcjOGXGSVpNJ5fwMBeC1qdNhVmnSaTUmCfiTGVsPtmZ5LQojJRbO+RmMSmt3FDQmPLtSXLeQWi t6I6zqnDL/ERLWlRZ8eR8XFmfGHCSs8hqxzsb3oImIqi07kb7H7CDkXF5xzpB2P2EHIuLzjnSEk4 SVnkNWOdje9DhJWeQ1Y52N70ZbDC7McnD6q0H2NHyx5I32P2EHIuLzjnSDsfsIORcXnHOkJJwkrP Iasc7G96HCSs8hqxzsb3obDC7Mcj1VoPsaPljyRvsfsIORcXnHOkHY/YQci4vOOdISThJWeQ1Y52 N70OElZ5DVjnY3vQ2GF2Y5HqrQfY0fLHkjfY/YQci4vOOdIOx+wg5Fxecc6QknCSs8hqxzsb3ocJ KzyGrHOxvehsMLsxyPVWg+xo+WPJG+x+wg5Fxecc6Qdj9hByLi8450hJOElZ5DVjnY3vQ4SVnkNW Odje9DYYXZjkeqtB9jR8seSN9j9hByLi8450g7H7CDkXF5xzpCScJKzyGrHOxvehwkrPIasc7G96 GwwuzHI9VaD7Gj5Y8kb7H7CDkXF5xzpB2P2EHIuLzjnSEk4SVnkNWOdje9DhJWeQ1Y52N70Nhhdm OR6q0H2NHyx5I32P2EHIuLzjnSDsfsIORcXnHOkJJwkrPIasc7G96HCSs8hqxzsb3obDC7Mcj1Vo PsaPljyRvsfsIORcXnHOkHY/YQci4vOOdISThJWeQ1Y52N70OElZ5DVjnY3vQ2GF2Y5HqrQfY0fL HkjfY/YQci4vOOdIOx+wg5Fxecc6QknCSs8hqxzsb3ocJKzyGrHOxvehsMLsxyPVWg+xo+WPJG+x +wg5Fxecc6Qdj9hByLi8450hJOElZ5DVjnY3vQ4SVnkNWOdje9DYYXZjkeqtB9jR8seSN9j9hByL i8450g7H7CDkXF5xzpCScJKzyGrHOxvehwkrPIasc7G96GwwuzHI9VaD7Gj5Y8kb7H7CDkXF5xzp B2P2EHIuLzjnSEk4SVnkNWOdje9DhJWeQ1Y52N70NhhdmOR6q0H2NHyx5I32P2EHIuLzjnSDsfsI ORcXnHOkJJwkrPIasc7G96HCSs8hqxzsb3obDC7Mcj1VoPsaPljyRvsfsIORcXnHOkHY/YQci4vO OdISThJWeQ1Y52N70OElZ5DVjnY3vQ2GF2Y5HqrQfY0fLHkjfY/YQci4vOOdIOx+wg5Fxecc6Qkn CSs8hqxzsb3ocJKzyGrHOxvehsMLsxyPVWg+xo+WPJG+x+wg5Fxecc6Qdj9hByLi8450hJOElZ5D VjnY3vR9K46weedkVcsiz2uxtv8AuhsMLsxyPVWg+xo+WPJGux+wg5Fxecc6Qdj9hByLi8450hJO ElZ5DVjnY3vQ4SVnkNWOdje9DYYXZjkeqtB9jR8seSN9j9hByLi8450g7H7CDkXF5xzpCScJKzyG rHOxvehwkrPIasc7G96GwwuzHI9VaD7Gj5Y8kb7H7CDkXF5xzpB2P2EHIuLzjnSEk4SVnkNWOdje 9DhJWeQ1Y52N70NhhdmOR6q0H2NHyx5I32P2EHIuLzjnSDsfsIORcXnHOkJJwkrPIasc7G96HCSs 8hqxzsb3obDC7Mcj1VoPsaPljyRvsfsIORcXnHOkHY/YQci4vOOdISThJWeQ1Y52N70OElZ5DVjn Y3vQ2GF2Y5HqrQfY0fLHkjfY/YQci4vOOdIOx+wg5Fxecc6QknCSs8hqxzsb3ocJKzyGrHOxvehs MLsxyPVWg+xo+WPJG+x+wg5Fxecc6Qdj9hByLi8450hJOElZ5DVjnY3vQ4SVnkNWOdje9DYYXZjk eqtB9jR8seSN9j9hByLi8450g7H7CDkXF5xzpCScJKzyGrHOxvehwkrPIasc7G96GwwuzHI9VaD7 Gj5Y8kb7H7CDkXF5xzpB2P2EHIuLzjnSEk4SVnkNWOdje9DhJWeQ1Y52N70NhhdmOR6q0H2NHyx5 I32P2EHIuLzjnSDsfsIORcXnHOkJJwkrPIasc7G96HCSs8hqxzsb3obDC7Mcj1VoPsaPljyRvsfs IORcXnHOkHY/YQci4vOOdISThJWeQ1Y52N70OElZ5DVjnY3vQ2GF2Y5HqrQfY0fLHkjfY/YQci4v OOdIOx+wg5Fxecc6QknCSs8hqxzsb3ocJKzyGrHOxvehsMLsxyPVWg+xo+WPJG+x+wg5Fxecc6Qd j9hByLi8450hJOElZ5DVjnY3vQ4SVnkNWOdje9DYYXZjkeqtB9jR8seSN9j9hByLi8450g7H7CDk XF5xzpCScJKzyGrHOxvehwkrPIasc7G96GwwuzHI9VaD7Gj5Y8kb7H7CDkXF5xzpB2P2EHIuLzjn SEk4SVnkNWOdje9DhJWeQ1Y52N70NhhdmOR6q0H2NHyx5I32P2EHIuLzjnSDsfsIORcXnHOkJJwk rPIasc7G96HCSs8hqxzsb3obDC7Mcj1VoPsaPljyRvsfsIORcXnHOkMzauFth2VUV1a2LeZgy3GT YU4hSjM2zMjNO0z7qU/ULvhJWeQ1Y52N70OElZ5DVjnY3vRMYOHTN4pjkvh9HaHhVRXh4VMTHXFM X+iQCPzf0+o30RUvvoQcJKzyGrHOxveipT4s+oVlFwVKEcLe8VyLGYUslOETikKcUs0madptIIiI zyyM89uRaOxnBSlfmr37tX9hVHlxBOIU2riURpP+IDDWP+hdA+i4v3SRmVoS4hTayzSojIy75GI1 AfrVtwI9ETbcqoMwm0sMPRXWiJTSSyRpE4tJkoiIiPjLZn3cir8JKzyGrHOxvegWujfY+4Qci4vO OdIOx+wg5Fxecc6QknCSs8hqxzsb3ocJKzyGrHOxvejLYYXZjk4PVWg+xo+WPJG+x+wg5Fxecc6Q dj9hByLi8450hJOElZ5DVjnY3vQ4SVnkNWOdje9DYYXZjkeqtB9jR8seSN9j9hByLi8450g7H7CD kXF5xzpCScJKzyGrHOxvehwkrPIasc7G96GwwuzHI9VaD7Gj5Y8kb7H7CDkXF5xzpB2P2EHIuLzj nSEk4SVnkNWOdje9DhJWeQ1Y52N70NhhdmOR6q0H2NHyx5I32P2EHIuLzjnSDsfsIORcXnHOkJJw krPIasc7G96HCSs8hqxzsb3obDC7Mcj1VoPsaPljyRvsfsIORcXnHOkHY/YQci4vOOdISThJWeQ1 Y52N70OElZ5DVjnY3vQ2GF2Y5HqrQfY0fLHkjfY/YQci4vOOdIOx+wg5Fxecc6QknCSs8hqxzsb3 ocJKzyGrHOxvehsMLsxyPVWg+xo+WPJG+x+wg5Fxecc6Qdj9hByLi8450hJOElZ5DVjnY3vQ4SVn kNWOdje9DYYXZjkeqtB9jR8seSN9j9hByLi8450g7H7CDkXF5xzpCScJKzyGrHOxvehwkrPIasc7 G96GwwuzHI9VaD7Gj5Y8kb7H7CDkXF5xzpB2P2EHIuLzjnSEk4SVnkNWOdje9DhJWeQ1Y52N70Nh hdmOR6q0H2NHyx5I32P2EHIuLzjnSDsfsIORcXnHOkJJwkrPIasc7G96HCSs8hqxzsb3obDC7Mcj 1VoPsaPljyRvsfsIORcXnHOkHY/YQci4vOOdISThJWeQ1Y52N70OElZ5DVjnY3vQ2GF2Y5HqrQfY 0fLHkjfY/YQci4vOOdIOx+wg5Fxecc6QknCSs8hqxzsb3ocJKzyGrHOxvehsMLsxyPVWg+xo+WPJ G+x+wg5Fxecc6Qdj9hByLi8450hJOElZ5DVjnY3vQ4SVnkNWOdje9DYYXZjkeqtB9jR8seSN9j9h ByLi8450g7H7CDkXF5xzpCScJKzyGrHOxvehwkrPIasc7G96GwwuzHI9VaD7Gj5Y8kb7H7CDkXF5 xzpB2P2EHIuLzjnSEk4SVnkNWOdje9DhJWeQ1Y52N70NhhdmOR6q0H2NHyx5I32P2EHIuLzjnSDs fsIORcXnHOkJJwkrPIasc7G96HCSs8hqxzsb3obDC7Mcj1VoPsaPljyRvsfsIORcXnHOkHY/YQci 4vOOdISThJWeQ1Y52N70OElZ5DVjnY3vQ2GF2Y5HqrQfY0fLHkjfY/YQci4vOOdIOx+wg5Fxecc6 QknCSs8hqxzsb3ocJKzyGrHOxvehsMLsxyPVWg+xo+WPJG+x+wg5Fxecc6Qdj9hByLi8450hJOEl Z5DVjnY3vQ4SVnkNWOdje9DYYXZjkeqtB9jR8seSN9j9hByLi8450g7H7CDkXF5xzpCScJKzyGrH OxvehwkrPIasc7G96GwwuzHI9VaD7Gj5Y8kb7H7CDkXF5xzpB2P2EHIuLzjnSEk4SVnkNWOdje9D hJWeQ1Y52N70NhhdmOR6q0H2NHyx5I32P2EHIuLzjnSDsfsIORcXnHOkJJwkrPIasc7G96HCSs8h qxzsb3obDC7Mcj1VoPsaPljyRvsfsIORcXnHOkHY/YQci4vOOdISThJWeQ1Y52N70OElZ5DVjnY3 vQ2GF2Y5HqrQfY0fLHkjfY/YQci4vOOdIOx+wg5Fxecc6QknCSs8hqxzsb3ocJKzyGrHOxvehsML sxyPVWg+xo+WPJG+x+wg5Fxecc6Qdj9hByLi8450hJOElZ5DVjnY3vQ4SVnkNWOdje9DYYXZjkeq tB9jR8seSN9j9hByLi8450g7H7CDkXF5xzpCScJKzyGrHOxvehwkrPIasc7G96GwwuzHI9VaD7Gj 5Y8kb7H7CDkXF5xzpB2P2EHIuLzjnSEk4SVnkNWOdje9DhJWeQ1Y52N70NhhdmOR6q0H2NHyx5I3 2P2EHIuLzjnSDsfsIORcXnHOkJJwkrPIasc7G96HCSs8hqxzsb3obDC7Mcj1VoPsaPljyRvsfsIO RcXnHOkHY/YQci4vOOdISThJWeQ1Y52N70OElZ5DVjnY3vQ2GF2Y5HqrQfY0fLHkjfY/YQci4vOO dIOx+wg5Fxecc6QknCSs8hqxzsb3ocJKzyGrHOxvehsMLsxyPVWg+xo+WPJG+x+wg5Fxecc6Qdj9 hByLi8450hJOElZ5DVjnY3vQ4SVnkNWOdje9DYYXZjkeqtB9jR8seSN9j9hByLi8450g7H7CDkXF 5xzpCScJKzyGrHOxvehwkrPIasc7G96GwwuzHI9VaD7Gj5Y8kb7H7CDkXF5xzpDM2rhbYdk1FyrW xbzMGW6ycdTiFKMzbNSVGnaZ91KfqF3wkrPIasc7G96HCSs8hqxzsb3omMHDpm8UxyXw+jtDwqor w8KmJjrimL/RIBHZ36w6J9C1T7+CPXCSs8hqxzsb3oqU+JOqNaRcVShHCONFciRY6lkpwkuKbU4p ZpM07TabIiIzy0TPPbkWjsZwAAAHwzIiMzMiItpmY+iP4guuMWDcr7KzQ43R5i0KI8jIyZWZGQD6 q7m19vAoNWnsK+I/Hab1ay76TUtJmXePLI+MsyHzhZI5IV7mmfejPIQhtCW20klKSIiIi2EXeHoB H+FkjkhXuaZ96HCyRyQr3NM+9GcN9gnt7m83rTSa9DSLS0S4zy48tpbR5jTIk1s3Ycpl9CVGg1NL JREojyMsy7pH3AGF4WSOSFe5pn3ocLJHJCvc0z70ZKTXKLDYclS6xBYZZc1LjjkhCUoc+SZmeRK2 ls4x6p1ZpFYbW7SKrDnIbPRUqM+l0kn3jNJnkYDF8LJHJCvc0z70OFkjkhXuaZ96M+ZkRZmeREPD EhiUymRFfbeaWWaVtqJSVF5jLjAYPhZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehwskckK 9zTPvRnXnmo7S333UNttkalrWoiSki4zMz4iHpKkrSS0KJSVFmRkeZGQDAcLJHJCvc0z70OFkjkh XuaZ96JAPhmRFmZ5EQDAcLJHJCvc0z70OFkjkhXuaZ96M4xIYlNJfjPtutq4loUSkn3OMh6bcbdS S2lpWk+JSTzIwGB4WSOSFe5pn3ocLJHJCvc0z70SAeVONoUlC1pSpZ5JIzyNR5Z7O/sIwGB4WSOS Fe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z7 0SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3o cLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4 WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCv c0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5 pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SA AEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJ HJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSO SFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z 70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3ocLJHJCvc0z70SAAEf4WSOSFe5pn3 oylNqsWqNLWwS0LaVoOtOp0XG1d5Rf8ARH3BeDARVGV91JsjySdKhrMv8xuyCz+fIiL+ADPj4aiS RqUZERFmZn3B9GBv1xxmxrieaWaFopMtSVEeRkZMqyMB8Vdza8lwKDVpzCtqH2Gm9Wsu+nSWkzLz 5ZHxkPnCyRyQr3NM+9GeQhDaEttpJKUkRERFsIh6AR/hZI5IV7mmfehwskckK9zTPvRnDfZS6TBu oJxRGokaRaRkXdy7w8xpkSYlaokpl8m1m2s21kokqLjSeXEZd4BheFkjkhXuaZ96HCyRyQr3NM+9 GTk1uiwmXZEyrwmGmF6p1x2QhKUL+SozPIj8xj7TazSKwhbtIqsOchs9Faoz6XSSfeM0meQDF8LJ HJCvc0z70OFkjkhXuaZ96JAACP8ACyRyQr3NM+9DhZI5IV7mmfejOKkR0PIjrfbS65noINREpWXH kXdyFQBH+FkjkhXuaZ96HCyRyQr3NM+9EgFN6RHjmgn322zdWTaNNRFpKPiSWfGfmAYPhZI5IV7m mfehwskckK9zTPvRnluNt5axaU6R6JZnlmfeHoBH+FkjkhXuaZ96HCyRyQr3NM+9EgHlDjbmerWl WiZpVkeeRl3D84DA8LJHJCvc0z70OFkjkhXuaZ96JAACP8LJHJCvc0z70OFkjkhXuaZ96JAACP8A CyRyQr3NM+9DhZI5IV7mmfeiQAAj/CyRyQr3NM+9DhZI5IV7mmfeiQAAj/CyRyQr3NM+9DhZI5IV 7mmfeiQAAj/CyRyQr3NM+9DhZI5IV7mmfeiQAAj/AAskckK9zTPvQ4WSOSFe5pn3okAAI/wskckK 9zTPvQ4WSOSFe5pn3okAAI/wskckK9zTPvQ4WSOSFe5pn3okAAI/wskckK9zTPvR9Tdcg8//AMI1 0siz2tM+8GfABH+FkjkhXuaZ96HCyRyQr3NM+9EgABH+FkjkhXuaZ96HCyRyQr3NM+9EgABH+Fkj khXuaZ96HCyRyQr3NM+9EgABH+FkjkhXuaZ96HCyRyQr3NM+9EgABH+FkjkhXuaZ96HCyRyQr3NM +9EgABH+FkjkhXuaZ96HCyRyQr3NM+9EgABH+FkjkhXuaZ96HCyRyQr3NM+9EgABH+FkjkhXuaZ9 6HCyRyQr3NM+9EgABH+FkjkhXuaZ96HCyRyQr3NM+9EgABH+FkjkhXuaZ96HCyRyQr3NM+9EgABH +FkjkhXuaZ96HCyRyQr3NM+9EgABH+FkjkhXuaZ96HCyRyQr3NM+9EgABH+FkjkhXuaZ96HCyRyQ r3NM+9EgABH+FkjkhXuaZ96HCyRyQr3NM+9EgABH+FkjkhXuaZ96HCyRyQr3NM+9EgABH+FkjkhX uaZ96HCyRyQr3NM+9EgABH+FkjkhXuaZ96HCyRyQr3NM+9EgABH+FkjkhXuaZ96MhTKzGqhuNJZf jyGSI3I76SS4gj4jyIzIyPI9pGZbDLjIxkBgJijTflJSk8icpFQNZF/i0Xomjn82kr6zAZ8AFKUZ lGdMj2khX9gGIfuplLikQKPUqihCjQp2K2g0aRcZEalpzy4tmZCnwskckK9zTPvRVskzVZtCWfxl 02MtR99RtJMz/iZmM2Aj/CyRyQr3NM+9DhZI5IV7mmfejOMyY8lKlR323SSo0KNCiURKLjI8u6Kg CP8ACyRyQr3NM+9DhZI5IV7mmfejPJcbWpSULSo0HkoiPMyPzj0Aj/CyRyQr3NM+9DhZI5IV7mmf eiQAAj/CyRyQr3NM+9DhZI5IV7mmfeiQCm/IYisqkSn22WkFmpbiiSlJd8zPYQDB8LJHJCvc0z70 OFkjkhXuaZ96M+RkZZkeZGPjjjbSFOOrShCSzUpR5ERd8zAYHhZI5IV7mmfehwskckK9zTPvRnkL Q6hLja0rQsiUlSTzIyPiMjHoBH+FkjkhXuaZ96HCyRyQr3NM+9EgFNciO262w4+2l13PVoNREpeR ZnkXGeQDB8LJHJCvc0z70OFkjkhXuaZ96JAACP8ACyRyQr3NM+9DhZI5IV7mmfeiQCnr2NfvbXI1 2jp6vSLS0c8s8uPLPugMHwskckK9zTPvQ4WSOSFe5pn3okAAI/wskckK9zTPvQ4WSOSFe5pn3ozb kmO062w6+2hx7PVoUoiUvIszyLu7BVAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehws kckK9zTPvRIAAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI 5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehwskckK9zT PvRIAAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmf ehwskckK9zTPvRIAAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehwskckK9zTPvRIAAR /hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehwskck K9zTPvRIAAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV 7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehwskckK9zTPvR IAAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehwskckK9zTPvRIAAR/hZI5IV7mmfehw skckK9zTPvRIAAR/hZI5IV7mmfejI0usxqobjaGno8hnI3Y76SS4gj4jMiMyMjyPaRmWZGXGRi/E emKUnECkISeSXKNUjWRf4jS/D0c/m01ZfOYCQgAAAjuI/wCry6PoWb9wsSIR3Ef9Xl0fQs37hYCR D4PoAOb7XterW7ux6pMq131Stu1eypMhKJKiSzEbKc2TbTLae1SRJPIz41HtMa03Pt9O4PwLvVNW 8/DuONUK9R46nM9bU2qgqGuM2RnsNxbsHIi/xOH3x1ivDujrxJTigcqX1TTRl0TU6SdRqVOpdNWW WlpaSCLPPLLuCEluXsOlHZS5T1SkrsSuyq/TlOOIzcefUpam3cklpNk7q3CIsj02WzzPLbFGU036 qZp513+niriXqnLjE8qbfVy8i3ahRLDqNtPU1q6JjOOMZuRGnP6Dc99USMp3TUpKySSlqUr4pkWe WQ3fhMci3t0fUqBVMOINiLq9oNS4EClTESIk4o8tSZDy9Ftskuo18dPxdqV8Z5ZFNK9ubbeq0GpM U+77go8uoXcm80zYm9lux5yW22yShLzK2zbybLYpKjzM9okNmYUnbdyPXncd71y768uH1OYnVZuI 0cWIayWpppuKyy0klLSlSlaJqVopIzMkpItaqomq/v8ApYriar2+/wA1/oit73PiNdOI1Zw7sKvw 6CzbtEbqUx9+EmQqY6+bhNM9vsQjJpRqUXbbSyGq9z3dGI1csjDvCS0LhiUB+JZbdw1aqKiolLc0 5DjDTDSFmaSSam3FKUeZ5EkiyzMb2vvBiFeNwldVKvO4LVqj0FVLnyKOtgjnQzPPVOE824RZGZ6L iCS4nM8lFmMBTNzLQLZolqwLIvq6LcqlpUxVEjVqI7HdlSoCj0lMSEPtOMulpklZKNvSSojNJp0l Z5U3ii07/wCZt4WXqtM3j7/LafG6EUjdFX3FdbK5mIWaYNbpWi23oIk1qA8SUKQfGSHUGR6PERmZ dwYpO6LxSl4eyZ0ddMbuC1bDrtauctSlSGatHc1EVok57Em4zLUffJsi7o21Udzdh/ULXti1Ddqb Ma2KwmuNPok5vy5RrU46b7iiM1k4tRqWWzPi2EWQ8tbmywI7GJzMV2oMqxW1hVhxC0aTCVsqbNLH a5JLNbjnbErt3FH3chWvWmmYjfn8eHu3+EJwpimumqrdl/Pv3eMtS4nXnijS7VuG075uSFWI904d VWrtlHhJj7wkNs5qbQpO1aMl5Eau22cYlFFu7FG851Wtiwbmg27DsOiUxDinoKJS6jNfhokElel+ TaShSCzTkozUrbsIbDvXAu1r5W0uqVGpsm1b0y2y1DiC/wCGkoJK17Un25EWw+LzGLCt7n2mTaou rW1fdz2s/PpbFHrJUp2Po1WMynQa1pPNL1biUmtJOs6tzJWWlklOjrNU6tVNOV5y5T5wzpibRNW/ /i/O0tP3LumL5r9Bp1UtKbLp1Ret5qp9SaRQzqb65Kic09et0ksx2CNs8jU4S1EeZEJLbmLOJ2ND 8KjWjVoVrnEsil3PVXVwkyVSJNQOQTUdJL2IbSUR01KLts1JIj2GJXU9y/aripES1btuO1KPUaOx QqpS6U6xqZ0NlBttpUt1pbraiQpSTW0tCjIzzMz2j5D3MVCodLt+FaF/3Zb8yh2+1aztRhvR1yKl TGzM22pBOsrQakGazS6lKXE6xeioiWojrTEZ37reN/2JiZiPdN+cW8L81pucmq0/uW6M0VQTCqqo E9JyWkk4lp7fD+akkrMjIj4sxpXDPGa7bOwqwYw6kXtOYn3NbMqvy643br1UfZisGw2hhLDDbhmp S5Cc3FpyIkHt0lEOsMOMN6Hhlh/TcN6JJmyaZS2HI7Tkx3WPrQtalHprIi0j7c9vH39u0QWm7maj UKg23TLdv+5qXU7PTIi0OtMJhnLiU94kEuCpK2DafY/Ftnk82tWkhCtLSSSiTaLxHcUxamInfF2v ZePeLM60rfqB0uvUqAuszKTVrih2pIkPklpJHHkFAdb1qWncz0lE2eiadhZGPqbiuW/sVdz/AHNR MWIdVpVQh1xyQ5ToKUR5q2WkktRpX2za1JPQUk8jbUSsiI8yG3CwUOn0ODTLVxLu6gT4r70mRU4z 7D7s91483VyGpDTkdZmZFkeqLQyyRolsFpS9zzblDTZb9FuWtxKhZs6dPTOI463akuaZqmlJJbRo yeWo1GbaUGk9iDQWwWy6uKKqbxFmeu+45zV72/akGacRpxiTVZzpZFmyyRElBmfERqVmfmSND4WY p3tBlpuO7rsqbsOqWhPrLyamZb0my2nGFIfpeRZojpQ8olJc0FmRtmSDJJqLfl22pLnXhQLpgxEy Ux2pFMqDJqJOlFfSWatuw9FSS2d0lGIdSdzDbMA4bFSvG5azAo0Y6fQ4M51g2aXBU62tyMjQaSp1 KkstNmt83HCQkyJRaSs86b6033Tl8Ml5mbTEb9/398Gs13xifEvmIVSvKqIRSptGhzHkGRUlnXpT vliWRlpG+pbhJbNJGku10lJ4j3phhdFRqlUvK0KvIdkyrRrm8USXC7Z+M/HZlsGZ5ZGaUSCaM+6b WfGYxlcwBoFcuqVXnbmrrFMqU6LU6nQGnGd4zpcc0qZdWamzeSZKQgzShxKVGgtIjGWwys+oUGbd t1VthDFTu+uKqTzKVErUstMNRYyMy2GeojNqVl/iWoszIsxamcoirfb/AGx5omIvMxu6vH75J0AA CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABz BiJu3WMMbsmWfdOE1XYmRVmSFb9RoPt59q4g9DalX/lxkN6YZXpUsQLSi3VUrTl29v0tNmJKdJbp t/4VnkRZZ8eXGPV24YWFfdRpVWuy2YdSl0V7XwnXU7W1efL4xcR6J5lmRHlsEoSlKUklJEREWREX cAfRH436fVH6HhffSRIBH436fVH6HhffSQEgEfxC/QG5foiZ9ysSAR/EL9Abl+iJn3KwEgAAAc7U u2qxQd2Fv6q3jVKydYtSdIbYkKJLEJpMlokNNNp2FkRnmrjUe0xq7AK+nMJKtfdQqz0p6kXG5c9Z htF23/pGnVZ1l1pvM9q3W5EbRSXGbSh1lIw+pEnEWJiWuTLKpQ6U9SEMkpOpNpxxLhqMss9LNBZb csu4IJJ3LWHM2JbUOdIqj6bWvCTecRSnkEbkp5111bLmSS0mNY6StHjzabzM8jzjCiKYtPC3+q8+ CcSYr997/G3m5jet+rUm1a7Q59KZuOprxhpi5kKZI0WpkhyE046hS1JURI01Ky7UyIiIshurCzfN u7pZ+g1XDeDYR1ezd80+BSZiJESonHmEUh1zRbbJLrZPxiLtdqXldseWRTq5Nzlb9eZqxwrur9Hm 1S5mLrKbE3styPMaaS0kkJeaWg0aKCzJaVbTPaM5Z2EpW9dK75uW965eFwIgqpcSfVm4jRw4i1pc caabisstlprQ2a1Gk1q1aCNWSUkUYMattb7/ACxH1W0iYxf0/f59b6PlQvStRsbafYja2upcm25N UWk0dvr0PpQk9LvZGewaZsnFnG3FCvWhbVGual0VFYoVeqlSndT0POoXDqbMZgmkK7XalwyVn5z4 8hui/MJI16XLSrxp931y2a1S470LfdKNg1PxHTI1sLS+24nIzIjJSSJZHtJRDT7G5XqtsYn2K1h/ dlyUG3bVtOuQEVmPKjvS0y5dQiPJZWh9taHkqQmRtW2rI0pPMlklQiiJvN+HjfyZ42cU6nVv8f4R 6uYyVmPWbSv66I0eVVLMg3gxPTFPRZmOwmUdukv8OmSUmZdwzMi4hsCBiBivZdXsKoX1cNNrVMxB ceiLjMwkxypMneT0xo0OJzNxrRYcQo15mXaqI+POYM7njD9DNDiPomSY1GiVKI4y+4lZT9/pylOS DMs1LWZqPMjIs1HsyyIrWgbnag0yfTpFxXjcl0w6BGfiUCBV32VNUlt5o2XNBTbaHHl6lRtk4+px aUmoiUWmvS2qqiaKaeuL+NVU/SYLXm8/eURHKYlqC2t0tfir3td6XOm1q37gdkNTFN0A4tOjKJhx 5CYklwkPSTIm8tPQNCs8yUFdq+Kt5RsE8R7iuGnuUi5b1pc7qM1FS31PbdafUySHS7d0ySaUq0u6 ZmWWQ2PS9ynQoVTs+bUsSLxq0WwZBuW9T5T0VMeIybSmt7qJphKnkatRJzdNa8kl23HnXhbl23od SthRX7djlCsqrorNvUBb8fedPdSSyJslE0TzrZJcUlKXXF6BbE6IzpiIiI64meWVv3Z4tNVczq7s ued/2WG6fZudyvYSpt+6nqQ29e0dp9CGEOE6W931FnpdzJJllxbc+4Q19Q90/etdeTeVKmVGdGfu FdOZtVi0J60HT0yjjG9v9LBoN7RSp4+31ZGej3B0ViRhrT8R41HRJrNQpMygVRqrwJsHVG40+hKk /FdQtCkmlaiMjSfHsyPIxFIm50osKp6uNe1yotXqt1c4KJcjlTilmvWmZLJrfCWze/G6knSa0jMt DRM0iacpiOr/AIaV3ndw/efOEJpeM97Fi6/a173M5aWlW1U2BSqjb6941KOpCjZXGqCS0DeVlnoK WR5kZaJjMbkJi6EWjeL9z3W7W1nfdxstqcjobNvV1F9CtqeMj0SMi4klkRbCEqqOByK1cMao1vEi 7KjRIdURV2bflOx3IiJKD0kHrTZ3yaEq7YmzeNBGRbMiIhnsPcNIOHD1wIpFcqUmn12rSaymBKJk 2oUiQ4p2RqlJQThpW4tSsnFLy4k6JbBWiNWI93l9Trn35eLUOIeJt1SIbPUupVphi47tXQY6KQhJ zERozLi1lH0skpccW3lpKMiIs9pC1rmNE+h4YwKjbNy1moSaNFrlRqR1ZhKJ7aIJmycaSlOaTcbe fYSZkZ6ZI0iNRHmNhFhA7PZqdCfnzqQmHXVV+36xT3GzfiPupMlklDqVoPLScSaVoUkyXxZkWV5b mAto0GBU4MudU6z1ZgOQqg7PdQpchb0h6RJfM0JTouOuP5qJOSCJppKEpJBEKatU0TF/+bfd2mFV TTVE1555x3df8NZ25fVbpVh3bNau28n7gtultXI7BuFlpLkhltJuLUzoGr8Q8SFoJJ5Gk8thGQ6N pc9qqUyJU2M9XLYQ+jP5KkkZf0MajreB06LZty0aBctXuSr3XBRbzlRqy2CXCpas0KQjVNoIyQ2t wyMyUtSzI1KPaY29ToTNNgRqdGSSWYrKGW095KSIiL6iG8zTMzb73saKZpp/Nv8A+FwAAKrgAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA51xi 3X6cFrsdti5cLqqts+3iTUTEE1Kb+UntOMuIy4yGysGMUp+Ltr8LXrKm29CeXlDKW8S1yUZbXCIk lknPiM+MZq+cNrIxJgx6de1vRqqxEfTJZS6R5oWk9hkZZHl3y4jLYYkUeOxEYbixWUNMtJJCG0JI kpSXEREXEQCoI/N/T6jfRFS++hCQCPzf0+o30RUvvoQCQClK/NXv3av7CqKUr81e/dq/sAxNj/oX QPouL90kZlfxFfMYw1j/AKF0D6Li/dJGaMsyMu+ImLxYhpvcxLUdsXaalGeV5VnLM/8A+4MasuXd I4gUu6WanR6pJq1LTdkeiTYUKgn1KiRXagmEk1VB4kKcePS08mdYklkaTyLIz27QcB63adRnv2rj feNMptSqz1XepaIVJdY1jy9NxBLdhqeJBns+PmRHsMhg6ruS6DWKexbsjE29EW5ArTdwU2itSIyG IUxEopKVJcJjXOoJemRNuuLQRK2JI0oNNKIqtTE9VNMcrRP7ooiKdbvmqeczMfWGqouJ96YSniVO mXa/UZFbxHRb9PcXSlSOp5OMIWbpMsJU47ooIyJBJMsyzMtpjPS90BijGtm6qfQ5b1Ul0mfbjVKu Oq2zKpjMoqjPKO+wth5tsjW0RZ6TZZaLqM9pHntep7na2KnKuSQq4a2wm4Km1XWkMrZSdMqbaSSU uM5q9MlmSSI0rUpBlmWjkZkf1O58okum1Fq5rvuCvVer1ClzptZmKjokuJpz6XorCUMtIZbaSolZ pQ2nM3HFGeko1C9FopiJ4R4W/lpE07TW6r38b/TJAq1jJiThpPvG0K/WIVyVKCijnR5zkNEVKHJ8 go+i6hBkSkoUelmW08shJbzqmNmFtmTrtqF3QLniU2VAmyS6loYfKCTxFOQRI7UyJk9NB5aWkRkZ mWQlN0YF2XeNYuGr15c55VxwYkJ9tDxNkxvZzWsutKSRKQ4leSiVnxpIY2oWDc1q2rcUiRcd3YmV KqQU01mDUJEOO22yZqLtWmUMMEfbmpTikm6aSItIyJKRGepEz+rr785tHK2bOmJmuY6r/tH0m69w uxAq+IN1XrLZfYctikTmqXSlIb2vOobJT7mn/iTpLSRfMY0RjxdGKGJWDeK1z0i4oNNtqiTp1Bap CoaVLlNRHtTIfW+eS0LNxLmglPa6KEZ55mOgMA8MSwewlt3D9x4n5VOilvx4lqXrJCu2cPSV2yiz PIjPbkRCK31uWrdvZNyUxu/bsodv3dJKfWKHTH46YsiaRJI5BKW0p1s1ats1oQtLazSZqQZrXpWt auLboi3xyz+qcOrdM8b/AAzy+jF3DjBeNDwyxUuGC7FKXZbxM0w1MkaUpJltXbl/i2qMU6hfmJlV ujE1KK5T2LesmmxXWYJwEOqmuv04nlpdUriQlRkZZcekZHsIhm713Ltt3oq5Ijl8XVS6NdyWlVik wJDCGJL7SUpQ9pqaU6g+1TmlCyQrLtkntEwRhJb7bl5OFOnmd7MsMTu3R+KS1GTHTq+12GaEkZ55 7fNsFaYq16qp4stWqKYpjhH7NIuYk401uFdEm17opFEhWjZ1MrjLJUtDu+JDsHXLaVn8VrNORaOR lnsPYM43ixiZii5USw8q8K3OD1p0qvyCkREyd+SpzDryGD0viNoQ0Wak9sZr823YtNwPtelwbhgM VGpKbuSixqFJNS0ZoYYjHHSpGSdizSeZmeZZ9zuDU+JOEl4UWU3QsN7bu3eq7ViW27VaJVoDR1Jh gnENszkSUEpvQ0zNL0cycydcLNOwjp+aMu6Le/O/7NMSNbV1eGfh/Kc0PGas07cspxwuuG1LqkK2 X61LYjp0G3Xmm1qNCe8RmnLP+I1ndc7E+z8UcM7wxCuaDXmWqTXKk5HjQ0xt7SE083DZbNJ5rbyz IlKzVsLbtG9LFwvplDwXpOEdxxI06CzQ00eewWZtPIU3oOpLPaaT0lFme3+Ii9H3M9HiXHQrguPE O7roTbMGVS6XCqz8dTDMN9nUraXq2kKePQJJa11S3T0dqzzPPSumNrfhM/SY+sqxF8KKZz3X5x/K HtYj42QKNZV0z7ips1nEwlwocFqnoSVHlPw3ZEVaVltdSk29FZL7+ZCxp26kuV+XYdYmxIjFBqFq nLuTMi049YcZdU0wSjyIiJyJIbMu6akjZtp7nuh2xWKNOlXfcdbp1rKcXblJqTzK41INaDQZtqQ2 l10yQpSEm8tw0pMyTlmYwlQ3IWF9TtO4bNkS6zvG47sO75BpkpJbEk3ieNhk9HJDBr0+0L9ovbtC d/5fuPPO/wAIWnOIju8ePhEW96M0e9se7zuRq04l5U2gut2VDuR+R1KbfXvmQ9IJDeirtSRoIRpd 3NOzLMxD2sfK3Ii23jmVKjdV6vhQ1OKIazJhMuRNip4zPPQJa8+PPLYOm2MOaJGveffjL8lMyfRo 9EWwRp1KGGVuLSaSyzJWbqiPblkRbBCaTuW8OKba1Ns6S/VKhTaZaZWg2iQ+klLiE4hxLpqQlJk6 Sm0mSk5EXeF6ppvFoy6/mm/+nJFpmM99/wBvNH6nidiRhLXJNCv65qRXim2lU7jhTX4yYLEN+Cls 3WnlNkf4k9c2ZKyNRZK49ghVu7pS/KLdao1bfq1wUZ+3qjU25c23epLSpUVptw0RiVovrb7c0mbj ZcRGRntMbYTubbbqcCsxL9u+5bxeq9Edt1MqqPtNvQ6c4XbNMnGbaIlGZEZuqI3FGlOazyLK3h7m akyLtpl6XtiLdl31Cl02ZR0Jqi4jbDkKS2SHGltR2GkGewlaeWmZkWajIiIUmJtlvtP1m3KLQTE5 e/y/e7XxddCZjHghcV63PBqUWstVaZvZiIljeLi4GklpJltcRonxq25l5xuq7LgqcvEOh4f0epOw HH4MqsSXm0kZm00aG0p2/wDvHkGZd0kmQjdubm2k0K77Xu2ZiFdlZ4FtSY1BgTno+94cd9vVqa/F tJW5kkk5LcUpZaJFpZbBJbysuoVC8qRdlHU829vGXQ5jzDhIeYiyNFWtb0u10kONtq2kfEeRCIiI iYiMrzaPhleUYcTFc1Vb7U598Tnk0pct5XvYMjESHZ2IlUuRmiW6hEqoVVaXWKdXHnybbS2oiJJa KHNNbZZknJBHkZmQkR3Vd2H0C84D111Ott2LU6bLQ/McJ2RJiSUFrGHDItuRktRHxkRl3hJLV3OM W37NqmHdXxKua4bbqlPegLgTY1OYNBunmp8nosZp43czMyWpZ7Tz4yIx8q+Cs1mzZ9os16qXHNuu pxnq9Wqspgn1R29AvisobbLJDaUpShBFmZme0zM4tVTun/m/38N61MXxdaqfy33d1vv4tvMOofZQ +2fauJJRfMYqDw00hltLLZZJQRJSXeIh7Gk2vkU3tF94AAISAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOc8YN2EjBi7HrXubC6qrT8eJMRMQTUpv5Se0+suMh s7BnE+fi3ahXc/Zc23oj68oaZbxLXJby/KERJLJOfFnx8fEMxfOGtj4kxIsG9rdi1VmE+mSwTxHm haT2bSyPI+6XEfdzEiYYYisojRmUNNNJJCEILJKUlxERdwgFQR2d+sOifQtU+/giRCOzv1h0T6Fq n38EBIgAAAR3Ef8AV5dH0LN+4WJEI7iP+ry6PoWb9wsBIgAAAAAAAAAAAAAAAAAAAAAAABTeUpGh onxqIjFQAAAAAAAAAFN19hnLXPIbz4tJRFn9YiZiM5TETOUKgChv+D4YxzhCm/UYaGVqRNY0iLZ+ MSK7SjjC2zr4LsBblPg+GMc4Q+7/AIPhjHOEG0o4wbOvgrgKG/4PhjHOEG/4PhjHOEG0o4wjUq4K 4Chv+D4YxzhBv+D4YxzhBtKOMGpVwVwFDf8AB8NY5wg3/B8MY5wg2lHGE7OvgrgLc58HI/8AjWOc IeGKjDWw2tc1jSUgjP8AGJ48g2lHGDUq4LsBQ3/B8MY5whWIyMsyPMj7omKqat0qzTNO+H0AAWQA AAAAAAApsLUtGko8z0jL+oqAAAAAAAAAAAAAKba1KW4RnsSrIvqAVAAAAAAAAAAAAAABSJat8Kbz 7UkEeXnzMVQAAAAAAAAAAAAAAEfjfp9UfoeF99JEgEfjfp9UfoeF99JASAR/EL9Abl+iJn3KxIBH 8Qv0BuX6ImfcrASAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNC1KdcQZ7E5ZfUKgAAAAAAAAAAAAAAAA psLUts1KPM9NZfUoyAVAAAAAAAAAAAFu9Pgx16uRNYaXx6K3CSf1GY8dVqV4zic8n2i0UVTuhbVm epdgLTqtSvGcTnk+0eHqxS0tLUmpxMySZl+OT3vnDUq4GpVwXwCzRV6WaSM6nE2kR/lk+0feq1K8 ZxOeT7Q1KuBqVcF2AtOq1K8ZxOeT7Q6rUrxnE55PtDUq4GpVwXYC06rUrxnE55PtDqtSvGcTnk+0 NSrgalXBdgLTqtSvGcTnk+0Oq1K8ZxOeT7Q1KuBqVcF2AtOq1K8ZxOeT7Q6rUrxnE55PtDUq4GpV wXYCwfrNMQlJpqcTatJflk8Rn84qdVqV4zic8n2hqVcDUq4LsBadVqV4zic8n2h1WpXjOJzyfaGp VwNSrguwFp1WpXjOJzyfaHValeM4nPJ9oalXA1KuC7AWnValeM4nPJ9odVqV4zic8n2hqVcDUq4L sBadVqV4zic8n2h1WpXjOJzyfaGpVwNSrguwFp1WpXjOJzyfaKxuZutkhRGhaVK2d3iy/uImmY3w iYmN6qAAIQAAAAAAAAAAAAAAj839PqN9EVL76EJAI/N/T6jfRFS++hAJAKUr81e/dq/sKopSvzV7 92r+wDE2R+hdA+i4v3SRmxhLH/QugfRcX7pIzYAAAAAAAAAAAAAAAAAADyszJJmXcIfGVGppClHm ZpIz+oB7AAAAAAHwfQAAABTStRvOIM9iSSZfxzAVAAAAAHxSkoSalqJJFxmZ5EG4fQFDf8HwxjnC Df8AB8MY5whTaUcYX1KuCuAob/g+GMc4QpvVGGnQ0ZrG1ZEf4xPEG0o4wbOvguwFDf8AB8MY5wva G/4PhjHOEG0o4walXBXAUN/wfDGOcIN/wfDGOcINpRxg1KuCuAob/g+GMc4Q+b/g+Gsc4XtDaUcY NnXwXAChv+D4YxzhBv8Ag+Gsc4QbSjjBs6+CuAtGKjEWylS5rGkZbfxiRU3/AAfDGOcINpRxg2df BXAUN/wfDGOcIN/wfDGOcINpRxg1KuCuAob/AIPhjHOEG/4PhjHOEG0o4walXBXAUN/wfDGOcIN/ wfDGOcINpRxg1KuCuApJd03skLJSDRpEZbSPaKouoAAAAAAAAAAAKb6lIb0knkeZCoAAAAAAAAAA AAApsKUtBmo8zJRl/UBUAAAAAAAAAAEdnfrDon0LVPv4IkQjs79YdE+hap9/BASIAAAEdxH/AFeX R9CzfuFiRCO4j/q8uj6Fm/cLASIAABrHG2bX4i7PRbchpqY/cUZpOuNWqURkrYskmRqT5sxhI2L1 /VStUizqbSqE3WZMmsRJsh7WqjNrgqZLTQhKtIyWTvxTVmR5bdmR7Ku+yKDfEONDryZhJhyEyo7k Oc9EdadTnkpLjKkrI9p8RiI1bAe2p9Rtp2FUarTYVvNT0G3CqUliTJXKNs1LckocJ1R5tmatIz0j Vt4hWLxFu/y8pTle/d5+aOpx1uWU3QJXUmDS4c5pSZkyXDkyIqpKJJsOtIeZzSzkaVGSndhkafON 3JPSSSiy2lnsEKk4O2HJTAYOnzGYdOYZjtQY9QkNRFttHm2TrCFk27ke3t0mJqlJJIkpLIiLIiF7 xZWLvoAAhIAAAAAAA8uKNLalFxkRmPQtKpOKmU6TUFMOPFGaU6bbZZqVolnkRd8Vrqiimap6k00z VVFMItT71qU6nsyHLVqTpm6otYzqtBRJWoiMs1kfc7wyPCyocjqx/s+8FGybubvW32a01S5EBJvm 3qX05K2Hx/MJSODRoxMfBpxKMW8TG+2926TqYONVh14dpid19yOcLJ/I6sf7PvA4WT+R1Y/2feCR gN9jje08IYbTD7HjKOcLJ/I6sf7PvA4WT+R1Y/2feDM1OpRKPT5FUnu6qPFbU64vLiSRZmLS2bmp F3UhquUOTr4jxqJK9E0nmkzIyyPbxkYymaoxIwZxfzTF7Wi9mkRE4e1jD/LE2vna/BY8LKhyOrH+ z7wa4xMqj9Yr9JalUmbBbREkq0HzSWmem1tLQUfFt4++N1CLXhYcW7pcOa7UpMR2G242k2SSeklZ pMyPSI/kEOLpbQdJ0rRasLDq1pmYyyjdMdbu6J03A0XSqcXEptEXzznqaY3lG+Qf2jHlyFHJtR6J 8XyjGy+s1H5T1D7DXQGGu/DYrctydWY1Vqk5yK0a0sNoazWfe+IPkMXoPTcGicSvDi0Rfe+uwunN Dxq4w6a5vM23Sh+8Y/yT+0Ybxj/JP7RiZWphrwit+FWpVWqkB2U2S1R3ENaSPN8QZfrNR+U9Q+w1 0AwugtNxqIxKaItOe9GJ05oeFXNFVc3jLdLW28Y/yT+0Y8uQo5NrMkn8U/8AEY2X1mo/KeofYa6A +HgzHMjI7nqO0sviNdEXn+ntPmP+nHOFY/qHQYn/AKk8pawp8RhcJlSiMzNPHpK/5ivvGP8AJP7R iWy7FtajViFbEu+Zzc+anOOypLZqURefQGc6zcfL9J6h9hroDLB6D0yu9NNNMzTlOcZT3tMTpzRK LVVVTETnGU5w1QiM11beZPS0CitqJOkeWekrb/QX28Y/yT+0Y2IWCUIpKpfCWo6xSCbM9Fr4pGZl /h85ir1mo/KeofYa6AvR/TvSFN70Rv4wrX/UWgza1c8pa2OFG+Sf2jHlqFH1aT0VfFL/ABGJNbVs 2xddVqlGpd1VVUikLJEglstEWZmZbD0NvEYz5YQR0Qyf4SVE9FrT0Sba27M8i7UZ4PQ+laRRtcKm JpzziY6t6+N0xo2j17PFqmKsspievc109CjkysySeZJP/EfeG2LQuuoptSjJVa1WfMoEcjdI2jJz 8Wnttq89vHtEHsS0Y19RKg8c6twChyVRcpDTRGvIuMu0842NcNz0LCu1oCqgmQ5EjJahNaCdJZ6K SSRn/Ah6nQeBiaHRXpuJVFGHMb/dLy+nMejS66NCw6ZrxInd74XltXDMrk6qsSac7CTBebbQ27o6 eSmkqzPRMy41H3RIBDrPxGp1312p0eFSpsdVPJClPPN6KXSPiyMTEfXaBj0aRg69FevF5z3df7Pl NMwa9HxdTEo1ZtGXw/feAADscoAAApRvyZ/6lf3FUUo35M/9Sv7iqAAAAAAAAAAACiz+Ue/1F/YV hRZ/KO/6v+QCsAAAAAAAAAAAAAol+dq/dl/cxWFEvztX7sv7mKwAAAAAAAAAAAAAACPxv0+qP0PC ++kiQCPxv0+qP0PC++kgJAI/iF+gNy/REz7lYkAj+IX6A3L9ETPuVgJAAAA1jjVMuCLKsxu2pLTU x+4GWi15q1SiNtexZJMjUnzZjBx8YL9qlZo9oUuk0JusSnq3GnSHzdVGbcp7jKdJtKVaRpWTvEas yzLaeRkey7vsegXxFixa6maRQpCZUd2HOeiPNOkRkSkuMqSsthn3REatgNbNQqlsvwqhVKbAtyPU GdTCqMliRJXKU0aluSW3EuKPNozVpGrTNWZ8QrF4i3f5eRO+/d5o8jHS5JfUCR1JhUqFUGiKVLlw 5L8ZchMg2HGkPM5oZyNJmk3dh5pG7UnmRH3yzELk4PWJKOCg4ExqLT2mWGoLFQkNQ1oaPNsnI6Vk 27ke0tNJ7RNCIkkSSLIiLIhfJEX630AAQkAAAAAAAAAAAAAUWvy73zp/sKwotfl3vnT/AGFYAAAA AAAAAAAAAABRi/kj/eL/APEYrCjF/JH+8X/4jAVgAAAAAAAAAce45tlOxmrzUhTikMRYZITrFESc 28z2EYhfUqF8hfOq9on6FWzjpukL2syPPrdEqFBYJDzrepW1IJhZNGZEpBmnasu7tE97FSJ5Q63z Eb3Y+4o07B0DCw8HHmaatWJtbjD62nS8LQ8OjCxpmJ1Y6uLQfUqF8hfOK9o8uUqFq1doviP/ALRX tG/uxUieUOt8xG92PLu5VhpaWrrhVvYkz/IRu9+7E+u9D7c8pPWui9qeUtCJpULRLtF8X7RXtH3q VC+QvnVe0b7RuVIZpI+uHW9pfsI3ux97FSJ5Q63zEb3Yeu9D7c8pPWujdqeUtB9SoXyF84r2h1Kh fIXzivaN+dipE8odb5iN7sOxUieUOt8xG92HrvQ+3PKT1ro3anlLQfUqF8hfOK9odSoXyF86r2jf nYqRPKHW+Yje7DsVInlDrfMRvdh670Ptzyk9a6L2p5S0H1KhfIXzivaHUqF8hfOq9o352KkTyh1v mI3uw7FSJ5Q63zEb3Yeu9D7c8pPWui9qeUtB9SoXyF84r2h1KhfIXzqvaN+dipE8odb5iN7sOxTi eUOt8xG92HrvQ+3PKT1ro3anlLQDlKhERdov4xf9orv/ADj31KhfIXzqvaN8vblaGlKT64Va2rSX 5CN3/wB2PfYqRPKHW+Yje7D13ofbnlJ610btTyloPqVC+QvnFe0Y6rU+I0/TSTpp1kwkGRur2lq1 nlsPzd3YOjexUieUOt8xG92KT+5LgSFMqXiJXS1LmsTotRyzPIy25N7S2nsE09OaFE51zylNPS2i xP6p5S0R1KhfIXzivaHUqF8hfOK9o352KkTyh1vmI3uw7FSJ5Q63zEb3Yj13ofbnlKPWui9qeUtB 9SoXyF84r2h1KhfIXzivaN+dinE8odb5iN7sD3KkQiM+uFW+Yje7D13ofbnlJ610btTyloPqVC+Q vnFe0YdcFgrsaikbuqOAazRrVZaWnlnxjY+DeFlXxNn3TDrqrptpFvzyiR1yW4577TmsjUWbRZGW iRnlmXbFtGxT3ItMOempHiDW9elrUkepj5aOefFqx0YvSui6LiTh4leduF98Nq+kdH0euaK6s7e9 oCq02K3S5jjZOJUiO4aTJ1WwySfnHVNmX/cibVt8jwzuF/RpbBa0noxk5+LR2xZu57ePb3xqrFbC XDrCm2V1u/MV6zDhyNKO2go8dTjyzSZ6CCJvMzyIxvvCu47duuxLcrVqSHn6U5T0txlvI0XDSgkp 7Yu/sHkdL6Th6To1GLRTNVN5zmJiN0PO6Sx6MfR6MSmmZpvOecR1Lfrh3L5Kri52L70OuHcnkruL nYvvROci7wZF3h83tMPseMvD18Ps+KDdcO5fJVcXOxfeh1w7l8lVxc7F96JzkXeDIu8G0w+x4ya+ H2fFBuuHcnkquLnYvvQ64dy+Sq4udi+9E5yLvBkXeDaYfY8ZNfD7Pig3XDuXyVXFzsX3opUfEWuV S/afak2zp1HjyqXMnG5MW0pS1NOx0ESdWtWzJ488/NkJ9kXeGsa3jC5SMb6HhIVmVGQirRHJHVdC PxDBkhatE9nF+LyPbxmQ2waYx9aKKM4iZ38OtrhUxi3iijdEzvbPAAHG5AR+b+n1G+iKl99CEgEf m/p9RvoipffQgEgFKV+avfu1f2FUUpX5q9+7V/YBibH/AELoH0XF+6SM0o8kmfeLMYWx/wBC6B9F xfukjNGRGRkfdAaOpuL+J9Yl0lqHSbbbauCfU6fCNwnzUyqI4tOm5kvtiUSOIssjPj7g+SMeLndo Nr11mkQqbDrFLXOlz5cKVJiIfS4lBsabGeoLaatY72uXd2GNmwcObQpqqYuHTDQdIkSpcM9cs9W7 IMzdVtPbmaj2HmRZ7Mhin8FLAfgw6VvOotQIUcohQ2arKbjvsktSybfbS4SX05rVscJRZKMuIxEX i1/vd/JVa94+9/8ACctqJbaVkZGSiIyMjzIx6HlCEtoS2hJJSkiIiIthEQ9CSAAAAAAAAAAHlz4i vmMeY/5Bv/QX9h6c+Ir5jHlj8g3/AKC/sAqCN1e55tMuJqlMUeROachqfMo+jpJMlkW3SURZbRIx ETv1ssQysbqHL0zj67fuh+K4tLLP+nzjj0zFjCiiJq1ZmYiMr/B1aLhTiTVMU61omZztbvXnCyoc jqx/s+8DhZP5HVj/AGfeCRD6LbLG9p4QptMPseMo5wsn8jqx/s+8DhZP5HVj/Z94K1MvW3avcE62 IE4nKhTvzhrRMtH+PEYzoywpqx4mrDxbxE2yiN8b4aYsRgzFOJhWm1877p3I5wsn8jqx/s+8FJF1 zyfcPgfWNqU/sfP/AO8EoGKrdSepFPqNTjw1y3I0fWJZR8ZwyI9hC9dGLh0zXViZR3K0VUV1RTFG c98rHhZUOR1Y/wBn3gcLJ/I6sf7PvBUse5Jl125HrU+kPUx57SJUd3aacjMs+Ith5Z8Qz4pg7TSM OnFoxMpi8ZLY0U4GJOHXRnE2nNHOFk/kdWP9n3gjmIVz1CRaFRZ4NVWJpoJJvLNokoIzLaeiszEx ua5KXaVEk1+sOm3FikRrMizM8zIiIi75mZDGsSqLijZWvhPvIg1NtSUrItFaclGR7D85Dl0uK8aK 9DpxY2k0zNrRe26/N1aJbCqo0uvC/txVEXztffb32aW3jH+Sf2jDeMf5J/aMZLEik0zDg4C5s+uS 2ZilabjLTWTSU5Zmface0ebOg0K9K69RafUq+yTUZElL7zDSULJREeRdr5/6GPz+dFrp0n0ObbTh fj8H38aXTVo3pcTOzzztwyY/eMf5B/aMeXIUfte1V8Yv8RjZfWaj8p6h9hroCm9g5HTof/iaobVk XxGuiPS/D2n+zjnDzvxBoXtJ5S11vGN8g/tGG8Y/yD+0Y2T1mo/KeofYa6AxdyYeUW1KNIrtXuup Iixk6SzS00Z8eXESBTE6C0zBonEroiIjOZvC+H05omLXGHRXMzOURaUK3jH+Sf2jDeMf5J/aMTqh Ya0m46RFrdNuqorjTGydaUbbRHon5tAXj2EERhpbzt01BKG0mpRmhrYRFmZ/FCjoLTK6IxKaItOd 7wVdO6JRVNFVc3jK1pa53jH+Qf2jFi9GaKsR2i0tBTSzMtI9p7BP7Zsa2rviOzqBes6Syw6bDikt tlksiI8tqO8ZDJqwShKkJknc1R00JNJHoNcR/wDdGdPQWmaRRFeFTExPXEwvPTuiaPXNGLVMTHVM S13vGP8AIP7Ri1psVhyLpKzM9Y4XxldxR98Ti87Dp1mW7KuKXXKxJai6Ok2w00az0lEksu184waa XaMEqBGk3LW2HbiTrIrbjLZqTpK4ldps2mOfH6NxtHxdTFimJiInOeM2jxyb4PSWFj4WvhTVMTMx lE9UXnlGbFtQo5tpPRPi+UY9bxj/ACT+0Y2EWEMdEQ3+ElRPRSasiQ1ty/7oieHVGomIiJ+8q3Vo rtPeNpxt1DOll3D+KNsTonSMHGowK6Yiqu9ovGdt7LD6W0fFwq8eiqZpotebTlfcxO8Y/wAk/tGG 8Y/yT+0Y2T1mo/KeofYa6AdZqPynqH2GugOn8Paf7OOcOf8AEGhe0nlLW28o/wAk/tGG8o/yT+0Y k9ata1aDcNNtio3jUkT6qZFHQTLZkeZ5Fmehs2iRdZqPynqH2GugMsPoXSsWqqmimJmmbTnGU97W vprRcKmmquqYiqLxlOcNbbxj/JP7RgcKPl8U/tGNk9ZqPynqH2GugHWaj8p6h9hroDSf6e0+3/Tj nDOP6g0H2k8pecP7mqDFr0xrg1VZWrjEgnUG0ZLIlHtLNZH9Yk3Cyocjqx/s+8F7b1Fj27Ai0WK4 txuJHJtK15aStvGeQyw+30XRtIwsCiiqvOIjqfE6VpGDi49ddNGUzPXPFHOFk/kdWP8AZ94HCyfy OrH+z7wSMRGvXzIo150i1UUGVIbqaTUqWgu0ayz49nm74aRXVotMV4mJleI/TfOckYFEaRVNGHh3 m0zv6o3rvhZP5HVj/Z94HCyfyOrH+z7wSMBvscb2nhDHaYfY8ZRzhZUOR1Y/2feBwsn8jqx/s+8E jANjje08INph9jxlF37rnqby4H1ctpfsfeCrwsn8jqx/s+8FvKxAoBXgVhaTvVJTRP8AxO0y48s+ /kJWMcGqrH1tni3tNpy3THU2xaNhq7TCteLxnOcT1o5wsn8jqx/s+8DhZP5HVj/Z94JGA22ON7Tw hjtMPseMo5wsn8jqx/s+8DhZP5HVj/Z94JGAbHG9p4QbTD7HjKOcLJ/I6sf7PvA4WVDkdWP9n3gr XVetv2a3Fdr8zUJmPEw1kk1ZrP5hWuW56Za1AkXJUlr3nGQS1GhOZmRmRFkXzmQ56sXVmuJxo/JF 5yjKO9vThTVFExhfqm0b857lnwsn8jqx/s+8FJi656UGXA+sfGP9j3/3gy1u16Bc9Gi12mKUcaWj TbNScjyzy2l/AXkb8mf+tX9xrh04mLTFdGLeJzjKGddVGHVNFeHaY75YLhZP5HVj/Z94HCyfyOrH +z7wSMBfY43tPCFNph9jxlHOFk/kdWP9n3gp0+658+5mKM7RJUFpyE9IM5GhmpSFtpLLRUeztzzz 8wk4isvECiRb7iWE7HkHUZTJuocJv8WRaJqyM/mSYwx6qtH1ZxcW0TMRu3zPV8W2DR6RrRhYd5iJ nfuiN8/BKgAB6LiBHZ36w6J9C1T7+CJEI7O/WHRPoWqffwQEiAAABHcR/wBXl0fQs37hYkQjuI/6 vLo+hZv3CwEiAAAAAAAYqp3Xa9EqMKkVm46XAn1JerhRZMxtp6SrMiybQoyNZ5mRZJI+MhlRzxjE 2hqXiZSp0J16rXLRIcW29FlSlvOkhaUIaURdqpL6tPjLLSIxF84hMRd0OAoxEvIitIkq0nUoIln3 1ZbRWEyrE3i4AACQAAAGFrV6Wbbs6NSbiuujUyZOyKNGmzmmXX8zy7RC1EatuzYR7RmhpzHO47XJ 88PpbUWLULmgGzMqkmMakRYBKUkzJRJPTczUvQR3DMzPIuOtU9UJhsqo3HadGqMGhVK4KVT589Wc OG9KbaekGXHq0KMlL/gRi5TcNAUVQNFbgKKkqNM8ykoPehkklZO7fxZ6Jkrtsth5jn+/mYrD93Ug mnpM6u0+kN2y4bSlreJsy2oVl2ppVoqPMy74uoeGlVrlQvech7e0WoVh+LXmFoVnUIrcSOtok989 ZrEGfEaHXC4yLJV+WmZjq/nyRH5q4pnr/jz8G/4M6FU4jNQpsxiVFkIJxl9hwltuJPiUlRbDI++Q riDYHsOxsIrSjvsracbpMdKkLSaVJMkFsMj4hOReqLTZWmdaLqUqLHmxnYktlLrLyTQtCizJST4y MUKTSKbQoLdNpMNuLGaz0Gm05JLM8z/qZi8AZ7Omate2fFpr1aupfLgAAC6qm88zGZXIkOoaaaSa 1rWokpSkizMzM+IiLujC1S87KgUuHUqrd1FhwKrophSX57TbUo1FmkmlqUSV5ltLRM8yEWxktu87 oprFOocWlzaNq3V1SDMkrZ33kntEGaUL0kZ7TTs0siIzyzI9O2ia6FZFky79pZMR3sNOpUJsmlup RKM2zJvI0ZpcW0TZ5bMjQoszyzEdUp64+7OnUVaknUTozdSiHPQ0T5xCeTrktGeRLNGeejnszyyC lVmj12Kc6iVWHUIxOLaN6K+l1BLQo0rTpJMyzIyMjLjIyyMc+0HD276lXIC48tdLr0C1aZDdlupV mTLhLRIbzL/GSclF3loTnszE63OtFbt60a3R48FUONFuuuNxmjQaSJkp7uhkR9zRyyPvBa1U08P4 81IqvTFXf5+TagAAlZiJ1q0CpVqJcM2msu1CCRkw+pPbILzfWMuAClGFRhzM0xaZznvlerErriIq m9t3cClJkxoUdyXMkNsMMpNbjriySlCSLMzMz2ERd8VRrTH+HJm2Qw0UyZFgpqkNdSeiNJdcbik6 RrVoKSpKiLYZkaTLLuC0zZWIukUS68ModFfvSFdFts0iQ5ovVVucwUZa88sjeJWhnnsyz4xlo9ft 9R06IzXIDjlSY1sBCZKDVLaJJGa2iz7dOiZHmnMsjzGioFcnnVLcr91VByqWnRa5UGY1Wfgpb1iV xtFl5xttCU7FG62SySkj0i74xNt2TX6ydqKpra6dMjlcFSoT8hpWhFbcqOsjEouMkm0ou0+SeQim mmiLUxaPvxJqmub1Tn9+GTo+m1WiVF2ZGpFShSXYLxsS247yFqYeyIzQ4ST7VWRkeR5HtFxLgw57 epmxWn2yPPRcQSiz7+RjVWB9sqtS5L/pptOdtVozinlJP8e4qGybiyM/jZqz2jbgmqimY1ZjIiqY qvCk1FjMKUtlhttSiIjNKSIzy4hVAAimKYtBMzM3kAAEoU332YzK5Eh1DTTaTWta1ElKUkWZmZnx ERDE029bNrNIfuCj3ZRp1Li6RPzo05p2O1olmrScSo0pyI8zzPYMDjfGXNwjuyGiFIlHIpjzJtx8 9ZkosjURFnnokZqyyPPRy7o0rFaqM+HctRdlJuGC3MojkyrRICozEqOypWmjUbSNSNilmWw9LYRZ ZCL74JjdP31Oh4V4WdIp0KqQ7so8iDU5JRYUluc0pqU+ozyaaWSslrM0qySkzPYfeF+3WaQ9U3aI zVYa6jHbS87ES+k3m21HklakZ6RJMyPIzLIxzbVLdYvmuJXBjP8AB6s4hpfgPNtKQlOhQpCFSEbO 0IpCcyVs7cs+MTXDu1Kzb2Mc6bcK0S6tUbdQ9UZrLaktOP68iJKM+IiSRZF8590WiLxeUTNovGbd IAAhIAAAChMnQqdHVLqEtmMwk0pU484SEEajIiIzPZtMyIvOZCuNUbpFFscAUP1+JGeksVCG9AU5 HN1bbiZDZqUjIjNJkglZmXczETNlqY1ps2FXLqti2W47tyXHTKSiW4TMdU6W2wTznyEGsy0leYto 8zrntejVWNRqpclMh1GpnnEiSJbbb0jL9mhRkpf8CMalxBqdFZu5Vw1xs5NGq1kvQqS7qFOIVJU9 pONpLRM0rcQbJlnlnq/MINJp1VpNr1W2rmiSFXPV6JQWKMS2lOOG80lBKJKiLtTQss1be4ZiYjOY +9+73qRP5Yq+/f7nTaK/QnFz2261BUulGRT0lIQZxDNOkRO7fxfamSu2y2HnxCvAqECqwmajTJrE yJIQTjL7DhONuJPiUlSTMjLzkNBM4aVSv3Df89p0osafV1Qa404hWdQgpp0RbaU98ycJxGfFovO9 3IbNwSjuRcJ7XjPMqZW3AQk21JNJp2nsyPiERnTE90eJ1zHv+qcAACUgAADw88zHZXIkOobabSa1 rWoiSlJcZmZ8RDEVm9bNtynx6tcN2UamQZeW95Myc0y09mWZaC1qIlbNuw+IYbGFm2pGHFdZuyHF kwFRV/i5LGtQbuX4vtcjzPT0ctnHkIG5iJbVu4SWbNbgxp1RlQGqdAXKjq1Ud0mUE6bqtEzQhORZ llmeREQid0zCbbu+/g2rVLttGhNRKlW7ppNOj1E0tQ3Zc1plEhRlmkm1KURLMy2kRZ5kL5NXpS6k qjoqcVU9DRPqik8k3ktGeRLNGekSTMjLPLIc7HAtmzoNHjvTV1agFY8mjUqYcdSkuzdaWmhKdHtF LyLRLZsRl3BcUPD27qlX4jkeY5S69BtelwnpjqVZky4laJDZGX+MiyUnvLQnPZmHXz8L+XipM2i/ u8beboGlVmkV2Kc6iVWHUIxOLaN6K+l1GmhRpUnSSZlmRkZGXGRlkLwav3PNFat6z61Ro0FUONEu yutxmTQaSSyU90kZEfc0csj7w2gLTFlgAAQAAAAAAACPxv0+qP0PC++kiQCPxv0+qP0PC++kgJAI /iF+gNy/REz7lYkAj+IX6A3L9ETPuVgJAAAAAAAAxVTuu16LUoVGrFx0uDUKkrQhRJMxtp6SrMiy bQoyUs8zIu1I+MhlRzzi4hDU/EykzobztYuWlU9i29FlSlvLShaUoaWRdqaHzNZ7Sy0yMRfOILXd DAKUVLyIzSZCtJ0kESz755bRVEoibxcAABIAAAAAAAoTJ0KnR1S6hLZjMIy0nXnCQhOZ5FmZ7C2i uNT7pNFrnh/rrhiRnpLMtlynKdjm6tt8lkek3kRmlRJ0tpZbMxEzaY98R4nVMtlHVKSzVk0hdUip qMhrXtxFPJJ5bSdhrSjPSNJHsM8sh9ptao9ZKQqj1WHOKI+uLIOM+l3Uvo+O2vRM9FZZlmk9pZjT 94W9UrwxRgV60JqI0+Lbjb1NqDjajaLSkKJaVd8jQZno98kn3BlcALcatUr7okWK6zGYupwmTcSZ G4neUTNeZ/GM1EozV3TzExvmJ7/rEfuiqbW77eMXbYAABIAAAAAAAAADDTL0s6n1xi2J910eNWJW Wop705pEl3Pi0WjVpKzy7hCs1XrfQioEVdgGVJWrf575R/whmWnk7t/F9qZH22WwyMalxdr9nVS5 W8OZpx6Yp6RCqVXqbkdRL0GXUONNtKJJ6TijbSWln2ic+7kMHLw2qNeqeI9SjOaiBPq0lirx1tqz nx24MdbOj38l6Sc+8tfdFKqpiia/emIvXFHudBQ5sOoxWp1PlsyYz6SW08yslocSfEpKi2GR98hX EPwhYcjYZ22w60ppbdOZSaFJ0TT2pbMj4hMBrVGrVMKUVa1MVSAACqwAAAjtIw9s2g3NU7xpFvxI tZrBZTZjbZE4+WefbH85EYkQALV11VzeqbrVV1VzeqbgwkS8rOq9TmW9Tbso8upQkq33DYnNOPxy LYem2SjUnLzkQzQ0ZVZtKrWKVERbLjT0alnUUyIMWAth2K8pKyceecPYtKlcSSIszPPMxWM6ojir OVMzwbd4WWq3SWK4q5aWVNfcSyzMOY3qHHFK0UpS5nomo1bCIjzM9gyxHntHKEnDCqx8GqZPcI3K VHOl1KBTCaVrI9SdlMokOmWXESNMy7ub7pn3B1c38RPzCIzhEzabPQAAlIAAAAAAAAMZcyK+5QJ7 drOxm6uphSYa5OeqS6ZbDVkR7C+YxEzaLm94nXJbMXfyJ1xU2OdJ1Tk7Wy20b1Je1Bu5n2hKItml ln3BcOVyitTotMdq0NEya2p2NHU+knX0FxqQnPNRFmWZkQ5XXZVz0t3Fei1u2oaU1GlUNct6NIdk rmyDde03FKU2nTUojUaj/wAOSSLZxTxrD+r23izZM6qSeqC2eqUOI8hCjKPAS0jUtqPuHtPPv5EG cTEcVb5VTw/5b6AAErAAAAAAA8pQhJmaUkWe08i4x6AAEHxYtHCu6KFHexaapPUmmyUyG3qm+hll p0+1IzWsyIs88tp7cxkLcuHDhFLpbdqXJb6qa6tUGnlBmsqZdcIszaaNCslKIkmeinbsMY/GCmW1 VrSTGuquzKPEbmxn0TYraVraebcJSDyUhactIizzSZDVcml1vEKnWdCqMt6Tqq/UupdX3ollaktx nTiy1IQlKUqJZJP4pEeXFtF5xcSrD1JmbU7o6v8AlevEr1KaJnJ0AxWaRKqMmjxqpEdnw0oXJioe Sp5lKvimtBHpJI8jyMy2i8GmMMLXqlu4xXHIrRJeqVSt+nS6lLaQomXZan5WmlBn/hQnQQkj2khK cxucUjOIn73zCn+KY+90T+4AAAAAAA8G00bhOm2k1lxKy2kPYAAAAAI/N/T6jfRFS++hCQCPzf0+ o30RUvvoQCQClK/NXv3av7CqKUr81e/dq/sAxNj/AKF0D6Li/dJGbGEsf9C6B9FxfukjNgAAADF1 e6bYt+TEh164qZTZFQc1URqXLbZXIX8ltKjI1ntLYWZjKDQmMhMRa3eTNWiOPP1y2EwaDkypZuSc 1Fq0GRdqrTNCuMuLPuDddAZlsUOnsTzM5LcZpLufHpkks/6iIzi5OU2ZAAASAAAAAAAwsi9LNYry LSkXZRmq2+WbdNXOaTKWRkZ5paNWmewjPYXEQqFdFrs1tu0lXJTCrRsk6mmnLbKUpvL45NZ6ZpyI 9uWWwxqnEavWhXL9hWG+cemHEqEKp1CeuOonHnW1kpllpRJ2mZkRKVnkScy7uyOymHOrcu2jivcK 3cRWqshWpVpqgEttSXtZlkbZR06vj/wGnzCKPzzTE9f8R+/giv8ALE/fHy8XRw8apvWa3Vp08stL LbkPYBMRO9IAAJGNh25RYFUlVqHTmWpsz8u8lOSl/OYyQAKUYdGFFqIsvXiVYk3rm4MDKvSyYFJT c0676KxSZKiabnPT2kRlqJRp0UuGrRM8yMss+MjIYjFKh3lcVIi0m1N4LjPP/wDpRiVJXH3xGyPN onEIWaSUeRK2ZmnMsyzGjcNmV2ra9kTb4ocenUOnO3FEQyy0t1lha5LpNZp0CNOadYhOzLI09/IT e91Jys6jjusPMtvRloW04kloUgyNKkmWZGRlxkKgg2CcGp03DCgxKs060+mOZk278ZCDWo0Eef8A lMhORa1skRN1jWqLTLhpr1IrENuVEfy1jSyzJWRkZf1IhUptNg0iCzTabGRHjR06DbaCySkvMLoB nsqNfaW/Na1+u3BptK9TZ3/Le9uq/FRlQ4k5o2ZkZp9s+NLiCUX1GPjEKHFPONFaaMkkntEEWwuI tncFcBOzp1ta2aNeq2rfIGHZui1qhWJNvQ7lpb9UpxE7KgtTG1SGE7DzcbI9JJbS2mRcYyUsnjiv FHMicNCtDP5WWwcr2qm70WUdo0KtVOrzJVAmcIYMuC007BnEWbmi4hpKlmtw3C7c1molZ5iZm1+5 EReHTVBui2bpYek2zcVMq7Md02HnIEtuQltwiIzQo0GZEoiMth7dovZsGHUorkKfHbfYdLJba0ka VF8xjUeFT8Gr4j1GtWwypFFbtimU99SWTaQc5tx9SkZGRZqQ2tBGfnIbjFsSiLas5xKtFcx+aMp+ ijFiRoMduJDYQyy0kkoQgskpIu4RCo42h1tTTiSUlZGlRH3SMegERTERqxGS15mb9bGUG26JbMZy HQqczDZdcN5aG05Eaz4z/oMmACuHh0YVMUURaI6k111YlU11zeZeHmWpDZtPtJcQrjSosyP+Aj9c q+H9Kq1Mg3HV6FCqTx6NNYmSWmnnDzyyaSoyUraeXakJGOacb25qb4uBMeSqOc2lwWW6e5CW8qsa L2kaY7pfkFllome342eWzMRVRTXMRVET/GaaaqqYmaZt/OTfz9z2tTavEtWdclLYq8xvWRqe9MbR JfRt7ZDRnpKLtVbSLuH3h7o9sUGgPy5NHprMV2c4bshTacjcUfdMaCu1l1Mi9LcdhPJueuV+jTKG k2lLcOOhqISVIcyyJLbjUgz27MlH3R0gjMkER8eQmvCoqqiqqLzTOU+StOLXTE0UzaJjP+XoAAXQ sZdDpM+dGqcyAy7Khnmw6pBGpv5j7gvgAVpoppmZpjfvWmuqqIiZ3AoOz4TElmE/MZbkSSUbLSnC JbhJy0tFJ7VZZlnlxZiuNP3vKs+mY72XPcZjM1dyNNjSJKY5600LS2TSFOEniM88iM++J64hXqme ENkoue13LjXbLdyUxVbbZJa6aUts5SW+PTNrPTIsjLblltHqFdVsVKryrfp1x0yVVIO2VBZltrkM F3NY2R6Sf4kQ0NEjvHVYFsNRXSu2PiLOqslepUSyhLfeWl83MsjbOKptBbe8nuZCtYTSnLjsejRY rqK5Qp1XcrxmypKkNOGrR015EStMzbMuP4vmE05z99/0tmVZff3v6nRA8mhClEo0kZlxGZbSHoAm LgAAACm++zFZckyXkNMtJNbji1ElKEkWZmZnsIiLuioIRjUxbUnC+4mbrhxZUJUF4kNyGNak39A9 VknI+209HLZx5CJm0XGSr9fw9t8o1w3HcFApW/CJuLOmy2WCeIy0iJC1mRKzLbsPiF9VrwtOgtQ3 65c9Jp7dRUSIa5U1tpMlR5ZE2ajLTM8yyIs+Mhqer4g2xS8KbRU3GjS51VprdNhvyY6jajKJkkvK cPRM0knI8y41GREQjlSiWxa8XUT3XKvQpVhrpNJfOOpwpMjTd1rSE6OaVLJTZEWzMiIu4KREURMx H87/ABWmaq7Xnq/ePOeTpIBHcOodXp1gW3AuBSzqcakxGpprPNRvpZSTmZ909IjEiGtUWmzOmdam JAABCzH1egUevJZRV6ezKTHcJ1snEkeiouIyF1JhxZkZcOVHbdYWnRU2tJGky72QrD4eWR58QznC oiZqtF539/vX2ldoi82jd3e5aQHaUjTplNdjZwtFDjDKk5s5lmRKSXxcy27RSTW6Cx1QbVWoJHSy 1k8jkIziJNOnm7t7QtHbmrLZtGnbGep7dcxNomFZUyDU35Lb8RJx1Msa7VElxw8k5GennmeR9tx5 iAN2beFDbxGg1G3IqGN/23Pqa4khySuc03IZclqUam06w1MpcNff2pyMTRujqi0ffwVmZmqb77y6 jolfoVywEVW3K1AqsJwzSiTCkofaUZcZEtBmR5fOL8aywodZqV2XxcNGSfUKozIhw3CbNDbzqGNF 1aCMi2fELPLjT5hs0XlWJuCgqDCVKTOVEZOQhOil00FpkXeI+MVwETTFW+FoqmndIAAJQCOzv1h0 T6Fqn38ESIR2d+sOifQtU+/ggJEAAACO4j/q8uj6Fm/cLEiEdxH/AFeXR9CzfuFgJEAAAAAAA8qQ hSiUpCTNPEZlxD0AAAAAAAAAAAAPC2WnD0ltIUffNJGPYAPJttmZGaEmaeI8uIfSIizyItvGPoAP hERFkRERF3h9AAAAAAAAAB4NptRElTaTJPERlxD2AD5kWeeRZgREniIi7uwfQAAAAAAAAHxSSUWi oiMj4yMfQAeNU3oavVp0fk5bB6JKSyySRZFkWziH0AHwiIjMyIiM+Pzj6AAAAAAAAA+GRGWRkRkY 8pabSk0JbSST4yItg9gA8khCSJKUJIiPMiIuIfciz0siz74+gAAAAAAAAPK20OFk4hKi85Zj0ADw bTaiJKm0mSeIjLiH00IUolKQkzLiMy2kPQAPhJIs9hbePZxgRERZEREXmH0AAAAAAAAeVJSstFaS UXeMsx5Nhk0kg2kZFxFolkQqAA8alo0kk2kZJ2kWiWRD1kWeeRZ98fQAfCIi4iIs9uwfQAAAAAAA AAAAAEfjfp9UfoeF99JEgEfjfp9UfoeF99JASAR/EL9Abl+iJn3KxIBH8Qv0BuX6ImfcrASAAAAA AAB5NCFKJSkJM08RmW0h6AAAAAAAAAAAAAAAB5W224WTiEqLzlmPQAPhJSWWSSLIsi2dwCIizyIi z2mPoAAAAAAAAAAAAAADwpllatJbSFH3zSRj1okWeRFt4/OPoAPhERbCLIh9AAAAAAAAAAAAAeSa bSo1JbSRnxmRbTHoAHzRTlo6JZd7IfQAAAAAAAAAAAAAAAfDSk8zNJbePZxgZEZkZkWZcQ+gAAAA AAAAAAAAAAPKkJWWitJKLvGWYEhBEREkiJPEWXEPQAPmRZ6WRZ98fQAAAAAAAAAAAAAAABH5v6fU b6IqX30ISAR+b+n1G+iKl99CASAUpf5q9+7V/YVR4dRrG1t55aSTT9YDD2P+hdA+i4v3SRmxFqZV V2xS4lCnUioOKgMojIcjMG6hxCEklKsy4jMiLMj7uYuOGcTxLW/QFgJCAj3DOJ4lrfoCw4ZxPEtb 9AWAz6kIWZGpCTMuLMuIehHuGcTxLW/QFhwzieJa36AsBIQEe4ZxPEtb9AWHDOJ4lrfoCwEhAR7h nE8S1v0BYcM4niWt+gLASEBHuGcTxLW/QFhwzieJa36AsBnlMtKVpqaQau+aSzH3Vo09ZoJ0uLPL b9YwHDOJ4lrfoCw4ZxPEtb9AWAkICPcM4niWt+gLDhnE8S1v0BYCQgI9wzieJa36AsOGcTxLW/QF gJCAj3DOJ4lrfoCw4ZxPEtb9AWAkI8m22pOibaTTx5GWwYDhnE8S1v0BYcM4niWt+gLASAtmwh9E e4ZxPEtb9AWHDOJ4lrfoCwEhAR7hnE8S1v0BYcM4niWt+gLASEBHuGcTxLW/QFhwzieJa36AsBIR 5S22kzUlCSNXGZFxjAcM4niWt+gLDhnE8S1v0BYDPobQ2WSEJSR7TyLIehHuGcTxLW/QFhwzieJa 36AsBIQEe4ZxPEtb9AWHDOJ4lrfoCwEhAR7hnE8S1v0BYcM4niWt+gLASEeVNtqMlKQkzLiMy4hg OGcTxLW/QFhwzieJa36AsBnzbQaiWaEmouI8tpD0I9wzieJa36AsOGcTxLW/QFgJCAj3DOJ4lrfo Cw4ZxPEtb9AWAkICPcM4niWt+gLDhnE8S1v0BYCQjwbTSlEtTaTUXEZltGB4ZxPEtb9AWHDOJ4lr foCwGf1aNPWaCdLizy2gSEEo1khJKPjMi2mMBwzieJa36AsOGcTxLW/QFgJCAj3DOJ4lrfoCw4Zx PEtb9AWAkICPcM4niWt+gLDhnE8S1v0BYCQjypCVlorSSi7xlmMBwzieJa36AsOGcTxLW/QFgM6b DJpJJsoMi4i0SyIfTaaNJJ1SMk8RaJZEMDwzieJa36AsOGcTxLW/QFgJCAj3DOJ4lrfoCw4ZxPEt b9AWAkICPcM4niWt+gLDhnE8S1v0BYCQgI9wzieJa36AsOGcTxLW/QFgM8lptCjUhtKTPjMiyMet FJ59qXbcezjEf4ZxPEtb9AWHDOJ4lrfoCwGfShKC0UJJKe8RZD0I9wzieJa36AsOGcTxLW/QFgJC Aj3DOJ4lrfoCw4ZxPEtb9AWAkICPcM4niWt+gLDhnE8S1v0BYCQiOzv1h0T6Fqn38EfeGcTxLW/Q Fj7AbfrFws3E5DeisQ4b0NhLydFxw3ltLWo09wi1KCLu7VeYBIAAAAR3Ef8AV5dH0LN+4WJEMZdF KXXbaq1EaWSF1GC/ESo+JJuNqSR/1AZMWlXhPVKlzKfHnPQnZLDjKJLJkTjKlJMiWnPZpFnmXnIY tF6URpCU1N5yFJIvxjDrSjNCu6WZEZGXnLjH3hzavjZPNOdEETEVRaUK6zt1+Wa7Oca6AdZ26/LN dnONdATXhzavjZPNOdEOHNq+Nk8050RlsaPuZef6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE 14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42Tz TnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavj ZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR 9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhP OfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7df lmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugH WduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZz jXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r 42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDh zavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOd ENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q 0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCu s7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuzn GugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvy zXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE1 4c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzT nRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZ PNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9 zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPO fNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dfl muznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHW duvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzj XQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r4 2TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhz avjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdE NjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0 bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus 7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznG ugJPZFmVe1HJa6ne1XrxSSQSEz1IMmdHPM06KS48yz+YhfcObV8bJ5pzohw5tXxsnmnOiJpwqaZv DTC6PwMGuK6Im8d8+bPCPxv0+qP0PC++kj1w5tXxsnmnOiPlGI6jcE64Wm1ojOxWIbJrTom5q1uK NZEe3LNzIvmGjtZ8R/EL9Abl+iJn3KxIBjLmpblbtuq0ZpZIXPhPxkqPuGts0kf9QGTFnV4L1Spc unx5z0J2SwtpElkyJxlSkmRLTns0izzLzkMYi9aG0hKak+uFJIvxjDrStJCu6WZEZH84+8ObV8bJ 5pzogiqIqi0oV1nbr8s12c410A6zt1+Wa7Oca6AmvDm1fGyeac6IcObV8bJ5pzojLY0fcy8/1Vo3 Cec+aFdZ26/LNdnONdAOs7dflmuznGugJrw5tXxsnmnOiHDm1fGyeac6IbGj7mT1Vo3Cec+aFdZ2 6/LNdnONdAOs7dflmuznGugJrw5tXxsnmnOiHDm1fGyeac6IbGj7mT1Vo3Cec+aFdZ26/LNdnONd AOs7dflmuznGugJrw5tXxsnmnOiHDm1fGyeac6IbGj7mT1Vo3Cec+aFdZ26/LNdnONdAOs7dflmu znGugJrw5tXxsnmnOiHDm1fGyeac6IbGj7mT1Vo3Cec+aFdZ26/LNdnONdAOs7dflmuznGugJrw5 tXxsnmnOiHDm1fGyeac6IbGj7mT1Vo3Cec+aFdZ26/LNdnONdAOs7dflmuznGugJrw5tXxsnmnOi HDm1fGyeac6IbGj7mT1Vo3Cec+aFdZ26/LNdnONdAOs7dflmuznGugJrw5tXxsnmnOiHDm1fGyea c6IbGj7mT1Vo3Cec+aFdZ26/LNdnONdAOs7dflmuznGugJrw5tXxsnmnOiHDm1fGyeac6IbGj7mT 1Vo3Cec+aFdZ26/LNdnONdAOs7dflmuznGugJrw5tXxsnmnOiHDm1fGyeac6IbGj7mT1Vo3Cec+a FdZ26/LNdnONdAOs7dflmuznGugJrw5tXxsnmnOiHDm1fGyeac6IbGj7mT1Vo3Cec+aFdZ26/LNd nONdAOs7dflmuznGugJrw5tXxsnmnOiHDm1fGyeac6IbGj7mT1Vo3Cec+aFdZ26/LNdnONdAOs7d flmuznGugJrw5tXxsnmnOiHDm1fGyeac6IbGj7mT1Vo3Cec+aFdZ26/LNdnONdAOs7dflmuznGug Jrw5tXxsnmnOiHDm1fGyeac6IbGj7mT1Vo3Cec+aFdZ26/LNdnONdAOs7dflmuznGugJrw5tXxsn mnOiHDm1fGyeac6IbGj7mT1Vo3Cec+aFdZ26/LNdnONdAOs7dflmuznGugJrw5tXxsnmnOiHDm1f Gyeac6IbGj7mT1Vo3Cec+aFdZ26/LNdnONdAOs7dflmuznGugJrw5tXxsnmnOiPpXvays8qqnYWZ /il9ENjR9zJ6q0bhPOfNCes7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9 zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPO fNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dfl muznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHW duvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzj XQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r4 2TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhz avjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdE NjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0 bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus 7dflmuznGugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznG ugHWduvyzXZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyz XZzjXQE14c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14 c2r42TzTnRDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugHWduvyzXZzjXQE14c2r42TzTn RDhzavjZPNOdENjR9zJ6q0bhPOfNCus7dflmuznGugM9Zlg1u16q5UKliBXK40thTJRpy0G2lRqS emWikjzLRMvmUYy/Dm1fGyeac6IcObV8bJ5pzoiYwqaZvC+H0dgYVcV0xN47582eEfm/p9Rvoip/ fQh64c2r42TzTnRFOG6iu3PHrkJKzhwYEiKTqkmknVvOMq7Uj25JJnj/AM3mGjuSIAFKSo0x3VJP IyQoy+oBi513UOnyFxXXZbrjZ6KyiwH5BIPvGbSFER+YzzFvw7t/9nWPUk33QrWSRHaFFe0SJb8B h9wyL4y1oJSlH5zUZn/EZsBHuHdA/Z1j1JN90HDu3/2dY9STfdCQZl3x9AR7h3b/AOzrHqSb7oOH dv8A7OsepJvuhIB9AR7h3b/7OsepJvug4d2/+zrHqSb7oSEAEe4d2/8As6x6km+6Dh3b/wCzrHqS b7oSEAEe4d2/+zrHqSb7oOHdv/s6x6km+6EgH0BHuHdv/s6x6km+6Dh3b/7OsepJvuhIQAR7h3b/ AOzrHqSb7oOHdv8A7OsepJvuhIQAR7h3b/7OsepJvug4d2/+zrHqSb7oSEAEe4d2/wDs6x6km+6D h3b/AOzrHqSb7oSEAEe4d2/+zrHqSb7oOHdv/s6x6km+6EgzH0BHuHdv/s6x6km+6Dh3b/7OsepJ vuhIQAR7h3b/AOzrHqSb7oOHdv8A7OsepJvuhIQAR7h3b/7OsepJvug4d2/+zrHqSb7oSEAEe4d2 /wDs6x6km+6Dh3b/AOzrHqSb7oSEAEe4d2/+zrHqSb7oOHdv/s6x6km+6EhABHuHdv8A7OsepJvu g4d2/wDs6x6km+6EhABHuHdv/s6x6km+6Dh3b/7OsepJvuhIQAR7h3b/AOzrHqSb7oOHdv8A7Ose pJvuhIQAR7h3b/7OsepJvug4d2/+zrHqSb7oSEAEe4d2/wDs6x6km+6Dh3b/AOzrHqSb7oSEAEe4 d2/+zrHqSb7oOHdv/s6x6km+6EhABHuHdv8A7OsepJvug4d2/wDs6x6km+6EhABHuHdv/s6x6km+ 6Dh3b/7OsepJvuhIQAR7h3b/AOzrHqSb7oOHdv8A7OsepJvuhIQAR7h3b/7OsepJvug4d2/+zrHq Sb7oSEAEe4d2/wDs6x6km+6Dh3b/AOzrHqSb7oSEAEe4d2/+zrHqSb7oOHdv/s6x6km+6EhABHuH dv8A7OsepJvug4d2/wDs6x6km+6EhABHuHdv/s6x6km+6Dh3b/7OsepJvuhIQAR7h3b/AOzrHqSb 7oOHdv8A7OsepJvuhIQAR7h3b/7OsepJvug4d2/+zrHqSb7oSEAEe4d2/wDs6x6km+6Dh3b/AOzr HqSb7oSEAEe4d2/+zrHqSb7oOHdv/s6x6km+6EhABHuHdv8A7OsepJvug4d2/wDs6x6km+6EhABH uHdv/s6x6km+6GVplWgVdlT0B41k2rRWlbam1oVkR5KQoiUk8jI9pFsMheCPSVGziBTW2iJJS6PO U9kXxzaeik3n39HXOZf6jASEAAAABhrzqMmkWfXatDVoyIVNlSGld5aGlKSf1kQD3Oue1KdIVGqV xUmM+n4zb8ttCy+cjPMW/DWxeVtB9PZ6QyUGk0+nxW4kaK2SGyyzUWalH3VGZ7TMz2mZ7TMzFfes bwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB 9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw2 sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g 7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekH DWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr 7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6 QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlb QfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2C Desbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxe VtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAM Nw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9 Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2 ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesb wdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9 PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1s XlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7 X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHD WxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7 BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6Q zO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQ fT2ekHDWxeVtB9PZ6QzO9Y3g7X2CDesbwdr7BAMNw1sXlbQfT2ekHDWxeVtB9PZ6QzO9Y3g7X2CD esbwdr7BAMNw1sU9nC2hens9IZmPIjymUSIj7bzKyzQttRKSovMZbDDesbwdr7BDCUwkw7vqdMjI JuMqFGm6tOxJOrceSoyLuZk2nPz5n3QEgAAAeTQgzzNCTP5g1bf7NP1D0ADzq2/2afqDVt/s0/UP QAPOrb/Zp+oNW3+zT9Q9AA86tv8AZp+oNW3+zT9Q9AA86tv9mn6g1bf7NP1D0ADzq2/2afqDVt/s 0/UPQAPOrb/Zp+oNW3+zT9Q9AA86tv8AZp+oNW3+zT9Q9AA86tv9mn6g1bf7NP1D0ADzq2/2afqD Vt/s0/UPQAPOrb/Zp+oNW3+zT9Q9AA86tv8AZp+oNW3+zT9Q9AA86tv9mn6g1bf7NP1D0ADzq2/2 afqDVt/s0/UPQAPOrb/Zp+oNW3+zT9Q9AA86tv8AZp+oNW3+zT9Q9AA86tv9mn6g1bf7NP1D0ADz q2/kJ+oNW38hP1D0ADzq2/2afqDVt/s0/UPQAPOrb/Zp+oNW3+zT9Q9AA86tv9mn6g1bf7NP1D0A Dzq2/wBmn6g1bf7NP1D0ADzq2/2afqDVt/s0/UPQAPOrb/Zp+oNW3+zT9Q9AA86tv9mn6g1bf7NP 1D0ADzq2/wBmn6g1bf7NP1D0ADzq2/2afqDVt/s0/UPQAPOrb/Zp+oNW3+zT9Q9AA86tv9mn6g1b f7NP1D0ADzq2/wBmn6g1bf7NP1D0ADzq2/2afqDVt/s0/UPQAPOrb/Zp+oNW3+zT9Q9AA86tv9mn 6g1bf7NP1D0ADzq2/wBmn6g1bf7NP1D0ADzq2/2afqDVt/s0/UPQAPOrb/Zp+ofSIiLIiIi8w+gA ClK/NXv3av7CqKUr81e/dq/sAxNkfoXQPouL90kZlfxTPzDDWP8AoXQPouL90kZoyzIy74ic4sNQ 7mufMnW3dTk2U6+pq76u2g3Fmo0oS+ZEks+4XeGvLn3WdZtu+GKYuXacuMu5GKFIoEBqRPqcJl2W mIiRKmR1rjRFKWonEsvJQo0kaCM1EZlPbRwixUsSbVGLaxNoiaNVK1Jq64sq31OPJJ9zTW2TpPpL vkR6P8BGKpuV7on0Nqy42KiIdtwbhZuOIyzR0FLW83OKWlqQ/p/jW9LS/wAKVZ6BmZ5GSqUa1qIn qppj4xERP7oojV1r9c1T8JmZj9kSp2Ol7YX9cur3xcdtvm/fqbdoi5ynIcSEpxlCiU+646aUsoRm ZkRpM1ZkRlpFlmOyyrR0G6oFBk2Nedx23Lt9DM6gVDTpM1mqTd7JSZpcdUw62aHCUk1q/wACuJWi U0q+5wOpzrlkt3WlkqrXmbopZnCJa6dU0Nk2ajM1ZOtmksjQaS2KPbnkZXT+A9brtFqLF3X4c2p1 Kp0ecpyJC3vDjt0+UiQhpmNpqJBrNKtNZqNRmou4lKS0otqxE9UR+38tImnaa3Vf9/Jg5uPl9WNI u23L8o1DqddoyKYulqpDb0ePKVOeJhtDiXFOKRouHmpRGZGkjPIhmLoxAxpw0teRdN70q06pAhza euTJpLclhTUF14m5Zmy4tfbMoMnCc08lFpFoFo5nfXruf6TfNwXJXKnW5DPV6DT47RMoIlw34b2u ZfSo88zJZJPIyyyLLuinXKBfNHsm5nMRLhfvRuoU7qbHpdHoyWElp6SdPQNa1KWZrLSVpEkkpLtS 2mdYmdSJt+br5z4zFmdMTNcx1Xy5R9Juz9hYizr4vK86ZGiReodtS2abGltmo1yJOrJb5Geejop0 kEWRd0xozHzE/Fa88JsTqzY0SixbUt+TKoJqWp7qnJcjuE3KktOoWSGkod00k2aFGomjPSTplo7k 3OOG1QwrwgoNq111T9ZJnfNUeWolLclOdsvSUXxjLYnPu6Ih9+bme4bkpd3WfbWJq6Had5zXKnOp 501L7zMp0yU/qXjWWi04tOmpBpM81uZKLSLK8xNNcR1RHjl/KcOqMpnj4Z/wv61jhXaBh3iRc7NJ hOv2I4TERDmnoyCJptWbmR555rPiyFvVcVsQqpcmIVJjUa3kW1ZNOYekKkIeckz1yIJP6tOi4lLZ IUe1RkrSJZERJNJmdO+tzVX7pj3hQaRiW5SbfvYmnKjFKnpdfQ+hCU6TTpqIkoVoJ0kmkzPbkZCZ t4Psodv53q2v/wDHMeOwstUX/C6qGmNmW3ts9HS7nHkKU62vNVW6+XiyiKopimOHk1g5jdi/IhV7 gNb9ox6faFqU6vOdUEyHFSTdh69UZGg4nV5EnInD0+Ms0nlmeek45X7ei5icIqNRC6h2zT7jqJVt LqjfVNacdZiNatadBRIaM1OK0i7dJEk9uUhpGBLFKp1004rgccK5reh0BSjYItSTEQ45OFt2meel l/AaovqzLqw1lqoOH8a525M6z6fQJ1Qg0ZM1ip72Q600aT1id6vIJaiNaiUk0rTsPQFImrdPCLe/ O/7NcSJnV1OGfh/LcNq4qVmu7ntrGCbSIsaprt1+srhJUpTKHW2lr1eeeZlmjLPMYu4saq3Rl2El mkwV8LaHOqknS0/xK2IG+UpRt4jVsPPM8hncN8Nzo+BNGwsuIlkoqAVKnklzSURuNGlzJXdPtlbe +Nfq3PV6Q49CqlfxHcuBdkUGfSKRDZpqY++G3oRx0qePTUa3tie2LRI9valmGPrRXM07ov8ASf3s nAi+rFXGPrF/C6pYeNmK02PYFfxEt23YtGxFUUWKzTDd3zTpKo6329atazS6haWl/FSk0no/G2mU XwPxLxKqmGWGOH1gIpDtaXZMevVSq19D8hpLR/i220obWhS3FrJRmo15JJB7FZ7JDgPgnese0cPJ GJ90OTm7RhokU2lPQEtPxZamTaNT7pKPWmhC1pTklOWkeeezLJUHc41uxqTZ54fYgIptbtm3021J mSqcUhifDSeknSZ00mlaVlpJUStmaiMjzGlcWry3fxNvG3wTTVfCmOvL65+HiwVZ3UVVRatCqByr TtOfKcmRak7WnHJZb8jOpZVFhQ2HESZbi1qI06vSMiyLJRqLL3Y26TvbFS27OgWXRaNCuq4nawmY 7U48kocVqmS1RX3ijmpt8jccJGi0tSVI08lZmk882xub6tbMyiVvD++WoVYp8CTBmyqtTSnplm89 rlvEnTRq3NYZ7SPLLIjI8iFpaW5frFg0Cit2nibIO5KBVKzMj1eoQEvlIj1KUuQ+xIaSpBLPTUSt IjT2ySPLLYFP/l3c7Z/C6k3tl3255X+C/wBylULqqFsXe5eWimqN3lWGnm23Vrab0XsiJs1bSR3i 7hHlt4xkHLgva9rNm3rSMRYtoUVM+c41L3gy8tEGMpbSVZvEaCJa2lOmZpM9FREWWWZ57BfCyXhR b1TpNQuh2vy6rWJlYkTHWEsmbkhempOikzLIj2F5hr+dgnetx2lTbAhXKzRqfaldlvGxOpxzIlYi rcW9FS4knEGaUE4kjSZ5GpvaRkGJnVHw/Y/xTPVef3sidSxzxgnWWd0QZrNLkWlYqr2qjW8m1JrJ Jde0GDJwjNlC2orh6SDJRG6RkezIb3t285knEGqWdUnEqQ9TI1bpasiJWoWerdbMi49BZIPM9p63 L/CIZfGAVw30wlNQveHFfq9DO2rnVGpWiio003DUbbKTcPe69Fx5JKzXkTnFsISqhW1Ofxcq93yY So0Gm0hihU7S2a3NZPPLIvklkykj75L7wvE02t1/f3zTVOUWbAAAFQAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABorEPdiYZ4X3TLtC7qBdcedFMu2TA aNt1J8S21G6Wkk+/kJ7hLi3QcZLfdue2aPWodOQ9qWnalGSzvgyLabeitWkkuIz4s9ncMUMVcDsP sY2ILd6Uo3nKe8l1l9pWg5o55m2auM0H3SE0pVKp1DpsakUiG1EhxG0tMMtJJKG0EWREREAuxHZ3 6w6J9C1T7+CJEI7O/WHRPoWqffwQEiAAABHcR/1eXR9CzfuFiRCO4j/q8uj6Fm/cLASIAABoK2Lt xgPdR1W273qNMYt1VqyJ9JpFONbhNk3MQgn3nVEWm6tJ55EkiQXalpbVHEo96XpSrNtbdDTbxrEl 2v3bTqXLohyT6ndT6hUUQUNoZPtULa1rbhOF2yjbMjPJRjdLmHVRcxxRiecxjqeVsu0M4+R63Wrk Id0+9o5IMvnEBp+A18Jao+G9VqdHfw9oFxMXBGWnWdUHijSClRYq05aBJQ+lszWRmakt5ZFpHkp/ TTE77Tz1p8bFdpv745avmi2AWM1zQbpxGp2I9yvVCnIqdeqVFOQrNbEeFOcZdjpPjNJJ1Oinube+ ITWcU8TWMF76rd0XrW48trE2gU9T1LJ0pEOmyplPJ6NHSyRu/kn3EklBGs9LZmZjY9Q3KtxVCJSW iuiPFcjXvVq5ONklf8TSpslbqop/5tqPNmRjJXrufLyqlt3hCt6pUgp1Zv2jXhT0STWllLcGTDeN lw0kZkat6qLMiPLSITRP96Kqt1rcqqLT8Yvf3GPef0e//TVH1+sLTCS+qQ7jY3ZtpXxfFQpkqgvT pMO8IlSjuqdQ6hKFRuqDSHFZEo9MkZpyyM9o2Tf2KFfo12xcPbBstu5bgdpq6xMRJqe8I0KES9Wl SnSadM3HHCNKEEjIyQ4ZqTolpY6i2JiBcmI1GxBxLZoEFdtRpLFOjUh917WLkJJK1OLcSnIiSWRJ Ij2nnmKt82FfbGIzOKGGj1GcqEqjdQKnCqynENOsIdU8w8hbZGoloW44WjlkonOMtEs6Yn6Yinv/ AHKLRVMy1tg1j7elRw+tymM2zKuW97jqddeRCqdSTDTDhx6i83/xD5Idy1ZatsiQheZlxkW0TO19 0zSK3XG6BWbafo0pqlVeXOS7J1m9ZlMeZblRcyQRK7V9txC8y0kHnokIxZWAOKOHlMti4KRX6HVL uozlYanolE61DnR501ck8jTmptSVKSZbDLjLzhce5huOu2pSWiuOC1cT91ya5XpJNGTL8KchbM6I 2RbcjYWSUGfdbQZi+LM1V3jdnzvaPhbOVYiIyjdlytefjfKO5kYu61pk+wKVfEKx5qnZ1Dq9cmU1 yWlD1PRB0iU272nxlLTocRZGfdF3Ex7uapy+DNz4fqtWRcVpz7kt2U1VkzFuNxyaJ1t9BNI1Dyd8 sqIkqcSeau2zLbjexoriJeMEjhFGdbvmDIgW+ytKtGmNyGi1yVZdxTxEvZ5xJbhwYrdXuyzq+zU4 iGbcs+s26+hRK0nHpiYZIWn/AClvVeee3tiF6ZptE9d4+G+/v6lqf1Z9V/jnFv35Ith7j1etRsW1 6Xa1kuXtXIFnUmtXHKlVYoRpVIipWSWzNtw3n16K1aJ6Ce+ssxnbh3SrDdt0u67NtyDMpE6jNV2T VbhrJUSnRWHV6ttk5KmnUqkGsjLVZFkREZqLSSSsNaeCGKmF8OFwBrFAkSZ1r0qg1cqhrUoZfhR9 SmSxokelsNXaKyzyLaQxbm5dr1sVm3plrRrWuNmjWzEoMZdxsqUulSWHXVnNiklKi03De7cu1/It 7RnP5py7v3v8L2sRaKZv97v5SqjbpOVftKtt3C6wlV2o12jKrkmPKqiYjMKMlZtmWvS24TizcSok ERESiLM1JIxfbmi8rovLAOlXdWVSZdZk7/WaJ7ui5pJlPJQ2tRErLIkpTmRHll3RD8OMA8WcJqTb ky3q7b1Vr0KkP0Oq78Q4zHkNHJceakI0CNRLLT2o4j27SGzcCcO69hphVTLJuirMVKqRTkrky2Em lDq3X3HcyI9pfHGdUTOtMb7Tzvlb4WZzFWvRfdE+Fuv4tU4TbofEOXh1byLjtWDWL3uisVaNToaa 1q2FR40hwnHXnzY/FIbIkoLRbWau1PIszykUzdStNsUuiR7Shx7xn1+TbL1LqtbRDhR6gwyh5Te/ dUvT1jbrSmSJrScJws0oMlEUTc3KNbeoVAYq9LtC4ZdoVaqv06JV2VPQp0Sa8t1RPJNJ6t1JqLI0 koth98SONgDWaPh4q2IdjYZ1FuqVd2q1S35FJSzS0maEJaJo0IzNTeqR260GpR/JIiIta5pmqZp3 fzFucb+/gtF4iI++v9/BVuXFLF0sUsKaGzZcWkQbiKonWYcispUtKmUp+IptpROIIj00nmg1aREo kGQ2red3O29LodIp7bLtQrk7ezSXTPRQyhtTr7hkW09FttWX+Y0l3RqG0dz3d9mFh7NptRpjjtq1 CpvyIC3Xd7R4s0yzZjKPNWi2Se1I8iPM+Itg2JiNSnkXhZV26px2JT5kmBNS2g1GhqWybaXMi25E 4TZGfcJRn3BlVeKbU8f2j98kzN5v3R9Z/bNFMNMcKve1aqU+ZXLITQo7UuT1LjzFdWqfHaWpKHpC NNRKS5oLPLQb0Sy2qz2YiNugruq90Uq3o0+w6FIKNTlzIFemLYk1KXKST284XblktthbRqVou5qe SWiWW3HI3NV26mNbiH7ejUWjN1CNBkMIWmXLjzniOQh/ZknJo3CLIz0lGkzyyGcv7ACsVu5Lkct1 NDRSr4j02PWJMpCimwThp0ELjGRGSs0ZZEZp0VJMyz0tmsxETExu/wCf4M7fm393w/ltC0LvdrlX uC3Kk0y1UqBLS04loz0VsOJ02XNvEZp4y2lmQlI1rhxR5TuIN83mtl1qJPkRafEJxGip1MZrQU5t 2mRqMyIz7w2UIjdH393jNM/qmI+8ov43AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoaputNz5RajJpFWxCRFmQ3VMPsO02YS23EnkpJlqeMjIT2 x7+tPEihpuSzKodRpq1qbRI3u6ySlJ48icSkzLzkWQ1pi9uUMOsXbsp131NDkGYw4k5+9kkRT2y4 kr7x9zS48tg2/RqNS7fpcai0aE1EhQ20tMMtJ0UoSRbCIgF6I/G/T6o/Q8L76SJAI/G/T6o/Q8L7 6SAkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKUr81e/dq/sKopSvzV792r+w DE2P+hdA+i4v3SRmxhLH/QugfRcX7pIzYAAAAAAAAAAAAAAAAAAD4o8kmZdwsx5aUa2kLVxqSRmA 9gAAAAAAADzpJLYaiAegHnTR8ovrHhLpG6tBqTkkkmX8cwsm0qoDzpo+UX1hpo+UX1giz0A86aPl F9Y+kZHxGRgPoAAAACm6s0aGX+JZJMBUAAAAAAAAAAAAAAFNhZuNJWrjMhUAAAAAAAAAAAAFPTPX 6vuaGl/UVAAAAAAAAAAAABTeWbaNJPHmQqAAAAAAAAAAAAAKbKzcQalfKMv6gKgAAAAAAAAAAjs7 9YdE+hap9/BEiEdnfrDon0LVPv4ICRAAAAjuI/6vLo+hZv3CxIhHcR/1eXR9CzfuFgJEAAAAAAAA AAAAAAAAAAAAAAAAPDi9DR2Z6SiIewAAAAHwyI9hlmPoAAAAD4REXEWQ+gPDzmqbU5lnolnkA9gP g+gAAAAAAAAAAAD4Z5FmPLS9Y0hzLLSSSsvnIB7AAAAAAAAAAAAAAHhpzWJ0sssjMvqMewAAAAAA AAAAAAHhC9NS05ZaJ5APYAAAAAAAAAAAAAA8E5m8bWXEklZj2AAAAAAAAAAAAAAAj8b9Pqj9Dwvv pIkAj8b9Pqj9DwvvpICQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApSvzV792 r+wqilK/NXv3av7AMTY/6F0D6Li/dJGaUeikz7xZjC2P+hdA+i4v3SRmjLSIyPugNNw8drrqcuAx TsNY626zMnwKa45XNDWOxFqSs3S1B6tBkkzIy0zz2Zd0fXt0O27Eth6m0Cntu3FTVVEkVaslAbIy cS2cdhxTSkvvaSj7TtNmif8Ai2TCl4U25SV0ZcZ6YZ0OZNmxtJwjzclKUpzS2bSzUeQxL+BdBdt+ Dabdw1pmjRIu8nYSXGzRJa01KMlmpBmkz0jIzQaTMsu8QiOq/wB7v5TVa/5fvf8Ax4tkpPNJHllm WY+iPXXeVv2FCpr1ceWyxPnR6VHNKTV+OdPRbI/MZllmJAR5kR98XmmYiKrZSatUREzG99AAFUAA AAAAA8ufEV8xjzH/ACDf+gv7D058RXzGPMf8g3/oL+wCoAAAil/X4xYZUR6VAkymarUygLKMwt51 sjYec0kttkal7WiLIi4jM+4LDrx2v4pun+W53uhdXzf+HdnVOgQr2qkKLMqM0kUon05q15kaNJJ5 dqeThpz/AMxl3RK3nmmGHJLh9o2g1qMi7hFmOnVppopmqic+vdf3Oi0U0UzVROfXxQrrx2v4pun+ W53uhy1cly1O5r0ueqIrVbaYOrPNMNOOPR1NtpSkkpNtWRpy7xkQ3XB3aGAUqNOfk3UcJcB9bCmJ DCidcNJ5ZpLLaXsMaXxCqeHMfE1llrE5Mbh2TNdgkdMU62luVklvNekXGaT7mwfR9FaLXo+JVGNg zTeMrxM7s56uD3OjtGrwa6oxMKacuuJn9mP1tT8f1b01z2jHVaZV46WlNXDVkmuQyg//AEgtOZGr aW09vzDdh7l66tHT4eQsss//AFefSGlbZdw6xAqbFGp+M0SNLdnpjx25NJUg3nEHnszVxHs2+cet o+k6Pj3rw/zRTvtTe3g9LAxsHFvVRnEb7R/CiqoVsrobgFcdX1BwTdNO/XPjaeWfH3hldbU/H9W9 Nc9oXjQ7Ds6Fw7m4z0+bHZldQ3Dg043tB7PTUlRErZkRGY2xH3MdzSmG5LN/QlNuoJaD6nntIyzL /EGNpei4VNNVdoieNNs+SMXHwMOmKqrRHfH8NT62p+P6t6a57Rs3c+4jptyfdFKr79xVFpJwnYxM wZU4mjUl3T2tpVo55J2HlnkNR3VW7Es/EFrDyrYrxilE6bEuUmmHqIbhf4XD0u/3uIb2pxQtzDh/ XsTKrMfupirLgmlNNjknNvtiQotp5keszz+Yc/SMUV6PGFFF6sS2rla+cbpsx06mmcGMPVvNdtWL WvnHW2X147X8U3T/AC3O90L2xb/jXzKrTcOBKjM0qSiOk5UdxhxzSbSszNtxKVJ+NlxbREbI3UuC 99yqVS6VdjDdUq6yZZgvJNLpOmWegezLPbkXfMSKysTMOrvu25LZtOYy5WaK/q6slDWiesSehmZ/ 4sjLRz8w+WxtExMGKqa8GqmY43yzfPYuj14UVRVhTEx78k5FGR/2f7xIrCjI/wCz/eJHnOFWAAAA AAAAAAAAAUYv5uj5hWFGJ+bo+YVgAAAAAAAAAAFH/wBrP93/AMxWFH/2s/3f/MVgAAAAAAAAAAFG V+RP5y/uKwoyvyJ/OX9xWAAAAAAAAAAABRjfkz/1q/uKwoxvyZ/61f3AVgAAAAAAAAABHZ36w6J9 C1T7+CJEI7O/WHRPoWqffwQEiAAABHcR/wBXl0fQs37hYkQjuI/6vLo+hZv3CwEiAAAQDFq9q1ZS Lcfo8STM3/WWIb8WM02t59tRKzQjWGlJGeRbTUXziyVjxQVdS4kK07lm1WquTmUUphiPvll2GaCf bdNTxNJMtYRkemaTyPIzM0keexDsmfeTFKXSq2ilzKRUG6gw8uPrkmpBGWipOZZlt74gc3B+9afd Vr1a2rjjpkxirMir1OTGJwlvyzYPtGdIsiPVnlt2ERceYrF4j4+GX8pm1793jn/CRsY5W7UXaWxQ bfrtXcqUVMxxMRtglQWzc1Z65LjqFZpWSkmTZLMjSfmz2MR5ln3xp6pbnmFNRQoqavFNqikS0yn6 ehycl43jdddakZkpo3FmZnkRkNwITopJOZnkWWZi+VslYv1vQAAhIAAAAAAAAAClI4m/9ZCqKUji b/1kKoAAAAAAAAAAAKMv82c/0isKMv8ANnP9ICqXEPo+FxD6AAAAAAAAAAAxVwXDT7cjsSakvVsv vpj6ZmREg1EeRnn3NgsY9+WemO0lVwwSMkJI/wAaXeFO9bitKg9TU3S+lvXyS3ppEZ/jS2Z7O4Wl /UZ6LGjnGZPUN/k0/wCAu8OHaYmJjVUYddOVsrXmL8c43uvZ0UYVNeJRVne07om3DKdzE8PbO5RQ edIOHtncooPOkM1vaN4O39gg3tG8Hb+wQ01NJ7VPKfNTWwOzPOPJheHtncooPOkMHeuIdFYtmc5Q rii7+0CJnVuJNWZmRbCE23tG8Hb+wQwN9UePVLXm09L0WIt9JJQ67klJKzLLMxzabRpfo9epXF7T 1W/d0aHVo3pFGvTNrxfOOPuan4R3XymnfaL2BwjuvlPO+0XsGXLDO8lESkrpxke0jJavYKUvDu7Y UV2ZIcp6WmEKcWemrYkizPuD4edH6TiLzTXb3/y+1jH6LmbRVRy/hh5lz3czEedbuafpIbUosjSZ 5kXeyFRNyXYbZKO5p2Zpz4y9gt7bt6rYgUN+dQZMFyOo1x1G5pkZKyyPZl5yEgThfeaUEjSp2wsv jq9gxwsLpLSKYxcKK5pmMpif5bYtfRuBVOHizRFUTnFv4Ryj3Xd0qntSHLmm6S8zPIy75+YXvCO7 OU877RewXtLwpvKJCRHJ2nqJBqLPTVt2n5hdHhleRFma6cRf61ewa0aL0tFMa1Nd/f8Ayzr0noma p1aqOX8MI9d11U9KZi7llGlpxBqJZpNJlpFnns4shtmZiNZ8OC/MOuRHdQ0p3QQ6WkrRLPIvOeQ1 rOsSsxYyJVWqtIjQtc2S3lPHo7FEeRd89g2ncc+2qbbcqo1s2SpimDS6sk5kpCiy2Zd8jHudC+mY MYs41WrERE/mz4578oeH0z6HjThRgU60zMx+XLhluzlmIshMqM1JQRkl1BLIj7xkKox9BqNMq1Hi VCjuk5DeaSplRd1OWwZAfWYNWvh01XveIzh8viU6lc0zFrTukAAGigKLP5R3/UX9hWFFn8o9/qL+ wCsAAAAAAAAAAAAAol+dq/dl/cxWFEvztX7sv7mKwAAAAAAAAAAAAAACPxv0+qP0PC++kiQCPxv0 +qP0PC++kgJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAClK/NXv3av7CqKUr8 1e/dq/sAxNj/AKF0D6Li/dJGbGEsf9C6B9FxfukjNgAAACxqcCkVEo7dWjxntS8l9hLxEei6n4qk 590s9gvhz3jc3RH7guly6DY35AtxMi1TfMiW3OzV28bP/ttMmy7Xtssu4N60FUxdEgLqGe+lRmje z49PRLSz/jmETNVJMzFoX4AAAAAAAAAKS3mNM45vtk4otidIs/qBtxls0RjeRrCSXa6RZmXfyGjs RI2G1WxUpsCnOUWn3dEmxJk6tPSG2pUdlBlox21KMlqN1OaDSWzRUeYj8veJ3fIqyja64CL+ahsr NRb9Kk6aMm0/4t7HHMzPLtMzWfHmIonWmmOP8R+/giudW/3x8vF0sAAJSjV2Yb2VfM6k1K6rfiVG TQ5BSoDjyCUbDhGRkov4pI/4EJIaUmnQMiMjLLLzD6AvOJVVEUzOUbu5aa6qoimZyjc1tcO5zwWu qpt1euYfUmTIaStBGbBEk9IzMzMi2GeZmeZjNTsIsNamukOT7LpL6qC02zTVLjJM4qG/iJRs2EWW whLwG06ZpExETiTluzlrOlY8xETXOXe+ZFll3OIQCVgrhFIq8O5X7PoyZUF5b8Z9LKE6Dqz7ZWZc ZmeX1C9xPXfKqVEhWVTnJO+pGhUHGJSWH2o5FmeqUrYSlHkWlxlmZltGgMP2aLNseyaLiPTGItqt PXCg2anIS7HXIblOanTUo8jUktYSdLbpJzLbkMcLHxMK+zqmPdNlKMWvCn8kzF+Dd9uYBYTWzTZ9 KploQ3IdTn9U5DcgtclUjuKLTzyy7hENhJSlCSQkiIiLIiIQjBN6qSMMKC7V1vLfOOZJU9npm2Sl EjPPb8XRE4FsbGxMaq+JVMz3orxsTGm+JVdp++9yfgfiHPfqtdtBtE6XKKZJkxXFMuPL7ukpJkZk fdG0Y9EpUWkMUJqCzvCMyiO0wpBGhLaCIkpyPvERC/AXxNLx8ammjErmYp3Z7vc0r0nGxaYprqmY jdnuaipm5WwVouIMLEik2m3EqsFanmUNLNLBPHn+M1fxdIszyPLYeR9whP6HYto21V6nXqFb8KDU Kw5rZ0hlkkuSF555rMuM89ozwCcXTNIx/wDq1zOVs56uBiaVjY3/AFK5nK2/qBRWtl1ZNJeRptqJ SkkZGZfwH2Wp1EZ1TCdJwkKNBd88tg5NtSoVin0J6q02VSaxdNxW9KkVibDh6urU+ShJGtt9wlGs 8laSEkejlop0SyIhyTNrzwhjFN4u60beaeIzadQsiPIzSojyMexpPBli24GIFVhYfFDTbq7dp0mW iCaTY6qKceJxR6OzXG2lvT/xbE59wbsGlVOrNlKZ1ouAACqwAAADwt9ltSUOPISpXxSNREZ/MPY5 fx6Jh7EGqz5C6Wt2kU2EuIieeU1pZv6Rrpv/ALwyLI8tuZkIvnEJtlMumm1NMaEZTyNZlsSZkRn/ AAFYcyXmcB+tXXWJmr4dQq5SGbXU8Zb+bhLainosf4tWpxcrWaOw83NIdMoz0Cz48ha1r9yt87dz 0AAISAAAA+GpJGSTURGfEWfGPo1Pe1QoFPxwshUm4UMy3o9QZVFdqJknalrQyZNWiSlHmRGRZn5w 64hNspnhDaRLZ30ZE8jWaGWhmWfHx5D2l5lazbS6g1p40kosy/gOa4ZQiuiHVmNT1w3b/mw5iiMt +nSyfdJDa/8AFvYopNGkj7T4pltFbDtNObvC0J9MNnhZPm1VN1KbMt8uMpNWhvnLbkR6vQ0u4ewI z+/fu5Z8EVZff38HSIAAAAAAD4ZkRGZnkRbTMx9EOxf6mFhnch1aqrp7BU2QZPImqinp6tWinTSp J7TyLRz28W0RM2i4lUlxgmi1khtslGWRqUREY9rfZbJJuPISSvi5qIs/mGirvquFVRwls5V1RaFX 5Mynsx6O1MfaUzvrUEla9NR6KdDbmrjLIyLaI/clNthphilYg1yHV6bS7IN6izXnycQqoJU5rHIy 8zzfSRMkk09vsLIRrflmfv8A5Ta/37o/fwdMgI9h29WpFg22/chuHVnKTEVO1nx98Gyk3NLz6WeY kIvVGrNlKataIkAAELAAPh8W08gAlJMzIlEZlxkR8Qptm20laTdSeiZqVt+Lnt2jTVoVgotdxOi2 HU49brDchl2LGfqmvUbmpSRkalKUZJSrMsuIsstg1og7up5Ylxa7T6lGU/MttdakvTyfUcVbzKZn xfioOObmZFkRIzIVpnWiO+InmdcxwmzrJt1t5Om04laT7qTzIexqrBhmkQrgvSm2ciKi1I0yKVNb hGnejbhs5vkzo9rlnoGejs0jPu5jaotKIm4AACQAAAEdnfrDon0LVPv4IkQjs79YdE+hap9/BASI AAAEdxH/AFeXR9CzfuFiRCO4j/q8uj6Fm/cLASIAAAAAAAAaBxcqNTOTiRXE1yfBmWVRos2htsSl ttk6ba3NNTaTIndNxJN5KIy7XIu6I3SmImcob+AUYjjj0Vp15GgtaCNSe8eW0hWEzkrE3i4AACQA AAABqjGmmxZqm2KTU6wd2z429qLFgz3WkMuEZnvlxCDJOgkzLSUsjIySSSLM8hEzZMRdtN1Br0cj LtVEZ5ioOfcQJ9dRNvCrSq/OaqVnw6WqmJYkraacdcP8YpTaTJLmmrte2I8s9goNPYkTqjfLdKqU 9yDWao9T3Xtcf/obVRGHDcazPtSWhbqci4lkg+6YiqdWJnh/PkiM6op4/wAebokBCcFZkyoYT2pN qEt6TJepUdbrzyzWtajQWZqUe0z84mwvMWmytM60XAABCwAAACm+g3GVISZZqLIsxrzGa4bmptMZ pFApVYU1UW3il1GmMpcdiNpTxJIzLJSuIlbctp94aotGs1O9rLs1ivVutxG42HJVpLipbjD0mcg2 2zeWpKs3CIu2IjMyMnSMyEXymeCbZxHF06Q+jnSj3FibUa/TrjpD0qdMctanJkU9TmTJuSNIt8mg 9hGlZJUrLaadLzCcbnZdUTZtWg1eszKo9T7mrUFMmW6bjikNTXUJzM+4RJLIuIhOetNM9X8eakVR NMVR1/z5NpgAAsAAAAANe43Va4KbaUaLbctqJKqtTi05Uh1w20ttuuElRmstqcy2ZlxZiJlMRdL6 1bdCuLex1mmR5hxHNaxrUErVr75Z8XEL9lJtsttqyzSkiPLzENAUufKq1ToGGFSKbTYrFaqESpKi 1aQ5vp1qOTraESFK1uR6ZqNOZHm3lxEYxFFr9+zXLTm0ep1Cov0Y6+hqNrzyqsaLPNhol5nktRtE REs+6WfdFYoooqmuIzm2fGO9bXqrpimZyi9o4Tn5OmgGpMDVXG3X79hXLV5U2Q1WGHdF501Jjm5E ZcU22R7EpI1HsLZxjbY0mLM75zAI7fVlQL8oh0SoSpEdvWJd02F6Ks0n/ESIBjjYOHpGHOFixemc phrg41eBiRi4c2qjdK3gQ26dCYgsmo0R20tpNR5mZEWW0xWcQh1Cm3EkpKiMjI+IyHoBemimmmKI jJSapqnWnes6bSabRo29KXCais6Rq0G0kksz4zyIXghmMtTl0bCy56jT6mqnS2qc6UeUnjadUWig 8+52xlt7nH3BpqHWLlosK4bVmyKjRlqmUZl+IqpLlqisvqUl11uSozURLNORFnmnLPjMRRTTRGrT Fogrqmqdaqb3dKMoNtGiZl8Yz/qKFWgJqtMlUxbq2kymlNGtB5KSRllmXnHONdcuhurJsa2bmqbD NNxBai059ctxxRpKivSt7uLUZqcbJ8izSoz2bO4JjhxPvCbjDUZl0PTYh1S325iaQ49pNwcniSSS SXa6RlmZmXfy7gtNEYlMxVum5FU4cxVG+EpiYOW/wJbsiry5lQityDkk646aV6eZmW0stm0yyEte t2jyKIm3JUJt+npZSxqXC0iNCSIiI8+PiGSAcmDoGjYEWoojdFPwjqdOLpukY03rrmc5q+M75W1P p8OlQmadT46GI0dBNttoLJKUlxERC5AB100xTEU07oc0zNU3neAA13joVTYsZVRpVdn012JOhKPe iyRrkqlNJNCjyz0TIz4jIJmxTGtNmxBTbQaVuKMyyUeZDUGIyn61e0ih1Csz4EGl2g9WYm9Za4+s la40KcUaDI1k2lKO1PNP43aW0hA3rnuavWvVb2qtZqEas2/RqHLp7TUhbLa3X0oU4amiMkuaxR6P bEeWeRZCYzm33wVv+WKuLp8Bzxr8RplxX+3RanPdhVWp9S3V648qNq6fFeJ9oj+LpE48RkX+PVn3 zG0sFpUubhVbEqdLelPuQEG488s1rWeZ7VKPaZ+cIzpirjETzL5zHv8ABNQAASAAAACNYkRpcqx6 0mBWJlMfbhuuokxFJS6k0pNWRGZGRZ5ZcQhNTXRJmFdqVO66jWn31U2PqI1PnOtSJ8lxlGRZtqJS lZ5ntPIszMxE5RdNt3ffwbXJBk+buZZGkk/1Hsc9y4N1m1SrTvu5Z7cui2Q9VVvRZi2TdnoWlOkp SDI3NWWiRkewzVmZcQpUi4sTKhcUK4qO7JnS3bYpqJFOW5kzrJJLLfJoPYRoWSVKy2mk1eYL33d/ hfyUmbRf3eNvN0UA1fueTqaLLqsCrVmZVH6dc9agFKlum44tDU11CczPvEksi4iG0BaYtksAACAA AAAAAAR+N+n1R+h4X30kSAR+N+n1R+h4X30kBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAUpX5q9+7V/YVR4eRrGltkeWkk0/WQDD2P+hdA+i4v3SRmxFKLXadbdGg0KsG/HkU+O 3FP8QtZLJtJJJRGkjLIyIjF7w5tjw530R7oAM8AwPDm2PDnfRHugHDm2PDnfRHugAykul02e409N gR31snpNqcbJRoPvkZ8QuchguHNseHO+iPdAOHNseHO+iPdABngGB4c2x4c76I90A4c2x4c76I90 AGeAYHhzbHhzvoj3QDhzbHhzvoj3QAZ4BgeHNseHO+iPdAOHNseHO+iPdABfSLeoMqXv+TRoTsnM j1y2EmvMuLblnsFY6VTDnFUzp8c5ZFok/qy1mXe0uMYvhzbHhzvoj3QDhzbHhzvoj3QAZ4BgeHNs eHO+iPdAOHNseHO+iPdABngGB4c2x4c76I90A4c2x4c76I90AGeAYHhzbHhzvoj3QDhzbHhzvoj3 QAZ4Wb1GpMmKUKRTYrkdKjWTSmkmglGeZnlllnmZn/EY3hzbHhzvoj3QDhzbHhzvoj3QAZxCENoS 22gkpSWSUkWREQ9DA8ObY8Od9Ee6AcObY8Od9Ee6ADPAMDw5tjw530R7oBw5tjw530R7oAM8AwPD m2PDnfRHugHDm2PDnfRHugAzwtI9JpcR96TFp0Zp2RnrVoaIlLz75lxjGcObY8Od9Ee6AcObY8Od 9Ee6ADKQaZTqYhaKdBYjJcVprJpskEpXfPLui6GB4c2x4c76I90A4c2x4c76I90AGeAYHhzbHhzv oj3QDhzbHhzvoj3QAZ4BgeHNseHO+iPdAOHNseHO+iPdABnhZyqRSpshuXMpsZ99n8m440SlI+Yz 4hjeHNseHO+iPdAOHNseHO+iPdABk3aVTH5jdRep8dcpktFt5TZGtJbdhHxlxn9YuxgeHNseHO+i PdAOHNseHO+iPdABngGB4c2x4c76I90A4c2x4c76I90AGeAYHhzbHhzvoj3QDhzbHhzvoj3QAZ4W UiiUeXMRUJVLivSWsjQ8tpKlpy4sjMsyGO4c2x4c76I90A4c2x4c76I90AGUKl01M46mmBHKWotE 3ybLWGXFlpcYM0umx5bk6PAjtyXvyjyWyJa/nPjMYvhzbHhzvoj3QDhzbHhzvoj3QAZ4BgeHNseH O+iPdAOHNseHO+iPdABngGB4c2x4c76I90A4c2x4c76I90AGeFCZBh1GOqLPitSGVZaTbqCUk/4G MRw5tjw530R7oBw5tjw530R7oALxy2redjNQ3aHBWwwZm02bCTSgz48iy2Zj25QqI6wzGdpMRbUY 82UKZSaW/wDSWWwWHDm2PDnfRHugHDm2PDnfRHugAzvFsIfRgeHNseHO+iPdAOHNseHO+iPdABng GB4c2x4c76I90A4c2x4c76I90AGeAYHhzbHhzvoj3QDhzbHhzvoj3QAZGHRaPT5DkqDS4sd53PWO NNJSpW3PaZFtFZcKG5rtOK0rfKdF7NBHrCyyyV39gxHDm2PDnfRHugHDm2PDnfRHugAy0KBCpzBR oERmM0R5khpBJTn8xC4GB4c2x4c76I90A4c2x4c76I90AGeAYHhzbHhzvoj3QDhzbHhzvoj3QAZ4 BgeHNseHO+iPdAOHNseHO+iPdABnhHZ36w6J9C1T7+CKnDm2PDnfRHugKUNRVy541fituJhwIEiI hxxBo1y3nGFmZEe3JJMFtPuq8wCRgAAAjuI/6vLo+hZv3CxIhHcR/wBXl0fQs37hYCRAAAAAAAMD W7Es+46pErNct2DNmwjSbD7zJKUjRVpFkfmPaM8AAAAAAAAAAAAIvcuGNg3hVGq3c1q0+oz2GN7N yH2iUtLWkatAj72ZmeQlAAI7Ow9smpzoFSn2zAflUtCW4jq2SNTKU/FIj7xZbBlI1FpUNM1MWAy0 VReU/LJKCLXOKSSTUrvmaUpL5iIXwB1WOu61pdLp9Fp8ek0mG1FhxWyaYZaSSUNoIsiSRFxELoAA AAAAAAB5cbQ62ppxJKQsjSoj4jI+MhG6hhpYVVpdMotQtSnPwaM2lqAwtgjRHQlJJJKC7hEREWXm EmABZR6NS4k5dSjQGGpTjKI63UIIlG2jPRTn3izPIh8pVFpNDafYpFPZiNyZL0t1LSCSS3nVmtxZ 5calKUZmfdMxfAHeWAAAAAAAFjWqJSbipr1HrlPYmwpKdF1h5BKQsvORi+AN4jLmGthu2+i1nLVp x0pt3XIi6ktBLnyiLv7T2jJQLYt+lqgqp9HixzpkdUSIbbZJ1LJ5ZoT3iPRL6hlAAWUOjUunzJs+ DBZYkVFxL0txCSJTy0pJBKUfdMkpIvmIXoAAAAAAAAC2qNOg1aDIpdTityYkptTTzLqSUhxCiyNJ kfGRkMJTcObGpFHl0CnWvT2KfP8AzmOlktB3/UXdEkALDA02xLPo8SDBpluwYzFMlKnRENtERMyD QtBuJ7yjS4ss+8oxkio9MTVlVwoLJVBbBRjkaJaw2iPS0M+9ntyF4AFuoAAAAAAAYO67JtS+ITdN u2hRKrFaWTiGpLZLSSu/kYzgAbkbq2HVj12FT6dV7YgS49KToQ23WiUTKciLJPeLIi2eYhVqdhWb WapDrVUtuBJm08kpjPOMkamiSeZEXzdwZ8AFlGotKhnOVFgMtHU3jfmGlBFr3DQlvSV3z0EIT8yS HumUyn0aAxS6VEaixIyNWyy0nRShPeIu4QugAAAAAAABjbgt6iXTSnqJcNNYnwJGWtYeTpIXkeZZ l85DAysIcNJlHp9Ak2ZS3KfSlqchR1MFoR1KLJRoLuZkQmAAItLwuw+n0yBRplp056FS1KVDZWyR pZNR5no97MzGcj0alRZzlSjQGGpTrKGFupQRKU2jPRTn3izPIvOL0ALXWVLo1LojT7FJgMxG5Ml6 Y6lpBJJbzqzW4s8uNSlKMzPumYvQAAAAAAAAAAAAEfjfp9UfoeF99JEgEfjfp9UfoeF99JASAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfDSk9ppI/nIfNBHyE/UPQAPOgj5Cf qDQR8hP1D0ADzoI+Qn6g0EfIT9Q9AA86CPkJ+oNBHyE/UPQAPOgj5CfqDQR8hP1D0ADzoI+Qn6g0 EfIT9Q9AA86CPkJ+oNBHyE/UPQAPOgj5CfqDQR8hP1D0ADzoI+Qn6g0EfIT9Q9AA86CPkJ+oNBHy E/UPQAPOgj5CfqDQR8hP1D0ADzoI+Qn6g0EfIT9Q9AA86CPkJ+oNBHyE/UPQAPOgj5CfqDQR8hP1 D0ADzoI+Qn6g0EfIT9Q9AA86CPkJ+oNBHyE/UPQAPOgj5CfqDQR8hP1D0ADzoI+Qn6g0EfIT9Q9A A86CPkJ+oNBHyE/UPQAPOgj5CfqDQR8hP1D0ADzoI+Qn6g0EfIT9Q9AA86CPkJ+oNBHyE/UPQAPO gj5CfqDQR8hP1D0ADzoI+Qn6g0EfIT9Q9AA86CPkJ+oNBHyE/UPQAPOgj5CfqDQR8hP1D0ADzoI+ Qn6g0EfIT9Q9AA86CPkJ+oNBHyE/UPQAPOgj5CfqDQR8hP1D0ADzoI+Qn6g0EfIT9Q9AA86CPkJ+ oNBHyE/UPQAPOgj5CfqDQR8hP1D0ADzoI+Qn6g0EfIT9Q9AA86CPkJ+oNBHyE/UPQAPOgj5CfqDQ R8hP1D0ADzoI+Qn6h9IiLYRZD6AAAAACO4j/AKvLo+hZv3CxIhhL3gyapZlfpsNvTkS6XKYaT8pa mlJSX1mQDNizrB1VNJmKoaI6qiTDhxEyDMmje0T0CXlt0dLLPLblmKkGdFqMVuZDeS406nMjL+xl 3DLiMj2kYuARMXizUu+t074ssHnpQb63TviyweelDbQDPZ98uD0Cfa1c2pd9bp3xZYPPSg31unfF lg89KG2gDZ98noE+1q5tS763TviyweelBvrdO+LLB56UNtAGz75PQJ9rVzal31unfFlg89KDfW6d 8WWDz0obaANn3yegT7Wrm1LvrdO+LLB56UG+t074ssHnpQ20AbPvk9An2tXNqXfW6d8WWDz0oN9b p3xZYPPShtoA2ffJ6BPtaubUu+t074ssHnpQb63TviyweelDbQBs++T0Cfa1c2pd9bp3xZYPPSg3 1unfFlg89KG2gDZ98noE+1q5tS763TviyweelBvrdO+LLB56UNtAGz75PQJ9rVzal31unfFlg89K DfW6d8WWDz0obaANn3yegT7Wrm1LvrdO+LLB56UG+t074ssHnpQ20AbPvk9An2tXNqXfW6d8WWDz 0oN9bp3xZYPPShtoA2ffJ6BPtaubUu+t074ssHnpQb63TviyweelDbQBs++T0Cfa1c2pd9bp3xZY PPSg31unfFlg89KG2gDZ98noE+1q5tS763TviyweelBvrdO+LLB56UNtAGz75PQJ9rVzal31unfF lg89KDfW6d8WWDz0obaANn3yegT7Wrm1LvrdO+LLB56UG+t074ssHnpQ20AbPvk9An2tXNqXfW6d 8WWDz0oN9bp3xZYPPShtoA2ffJ6BPtaubUu+t074ssHnpQb63TviyweelDbQBs++T0Cfa1c2pd9b p3xZYPPSg31unfFlg89KG2gDZ98noE+1q5tS763TviyweelBvrdO+LLB56UNtAGz75PQJ9rVz/hq XfW6d8WWDz0oN9bp3xZYPPShtoA2ffJ6BPtauf8ADUu+t074ssHnpQb63TviyweelDbQBs++T0Cf a1c/4al31unfFlg89KDfW6d8WWDz0obaANn3yegT7Wrn/DUu+t074ssHnpQb63TviyweelDbQBs+ +T0Cfa1c/wCGpd9bp3xZYPPSg31unfFlg89KG2gDZ98noE+1q5/w1LvrdO+LLB56UG+t074ssHnp Q20AbPvk9An2tXP+Gpd9bp3xZYPPSg31unfFlg89KG2gDZ98noE+1q5/w1LvrdO+LLB56UG+t074 ssHnpQ20AbPvk9An2tXP+Gpd9bp3xZYPPSg31unfFlg89KG2gDZ98noE+1q5/wANS763Tviyweel BvrdO+LLB56UNtAGz75PQJ9rVz/hqXfW6d8WWDz0oN9bp3xZYPPShtoA2ffJ6BPtauf8NS763Tvi yweelBvrdO+LLB56UNtAGz75PQJ9rVz/AIal31unfFlg89KErsR7FJxyYWIsW32UESN6dSluqMz7 bT09Z/3csvOJeAmKLTe8tMLRJw6oq2lU++QR+N+n1R+h4X30kSAR+nmmTedUnR1E4wiBFiKWnaWt S48pSc/MTic/nF3YkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPmw+IwI yPaRgPoAAAA+ZkPoAAD5nltMB9AfNg+gAAAAAD4ZkXGeQD6A+Zl3wIyPiMB9AAAAAAAAAAAAAAAA AAHwB9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAGNuSqnQbdqlcJvWHToT8vQ+Vq2zVl/QBQmWba1QfVKm0KG86s81LU0RmZihwAszk3B5o gKzYElCXarKmSZRlm46UpxslK7uSUmREXeLvBwGoHyZvpz3SAOAFmcm4PNEHACzOTcHmiDgNQPkz fTnukHAagd6b6c90gDgBZnJuDzRBwAszk3B5og4DUD5M3057pBwGoHyZvpz3SAOAFmcm4PNEHACz OTcHmiDgNQPkzfTnukHAagfJm+nPdIA4AWZybg80QcALM5NweaIOA1A+TN9Oe6QcBqB8mb6c90gD gBZnJuDzRBwAszk3B5og4DUD5M3057pBwGoHyZvpz3SAOAFmcm4PNEHACzOTcHmiDgNQPkzfTnuk HAagfJm+nPdIA4AWZybg80QcALM5NweaIOA1A+TN9Oe6QcBqB8mb6c90gDgBZnJuDzRBwAszk3B5 og4DUD5M3057pBwGoHyZvpz3SAOAFmcm4PNEHACzOTcHmiDgNQPkzfTnukPnAagfJm+nPdIB94AW Zybg80QcALM5NweaIOA1A+TN9Oe6QcBqB8mb6c90gDgBZnJuDzRBwAszk3B5og4DUD5M3057pBwG oHyZvpz3SAOAFmcm4PNEHACzOTcHmiDgNQPkzfTnukHAagfJm+nPdIA4AWZybg80QcALM5NweaIO A1A+TN9Oe6QcBqB8mb6c90gDgBZnJuDzRBwAszk3B5og4DUD5M3057pBwGoHyZvpz3SAOAFmcm4P NEHACzOTcHmiDgNQPkzfTnukHAagfJm+nPdIA4AWZybg80QcALM5NweaIOA1A+TN9Oe6QcBqB8mb 6c90gDgBZnJuDzRBwAszk3B5og4DUD5M3057pBwGoHyZvpz3SAOAFmcm4PNEHACzOTcHmiDgNQPk zfTnukHAagfJm+nPdIA4AWZybg80QcALM5NweaIOA1A+TN9Oe6QcBqB8mb6c90gDgBZnJuDzRBwA szk3B5og4DUD5M3057pBwGoHyZvpz3SAOAFmcm4PNEHACzOTcHmiDgNQPkzfTnukHAagfJm+nPdI A4AWZybg80QcALM5NweaIOA1A+TN9Oe6QcBqB8mb6c90gDgBZnJuDzRBwAszk3B5og4DUD5M3057 pBwGoHyZvpz3SAOAFmcm4PNEHACzOTcHmiDgNQPkzfTnukHAagfJm+nPdIA4AWZybg80QcALM5Nw eaIOA1A+TN9Oe6QcBqB8mb6c90gDgBZnJuDzRBwAszk3B5og4DUD5M3057pBwGoHyZvpz3SAOAFm cm4PNEHACzOTcHmiDgNQPkzfTnukHAagfJm+nPdIA4AWZybg80QcALM5NweaIOA1A+TN9Oe6QcBq B8mb6c90gDgBZnJuDzRBwAszk3B5og4DUD5M3057pBwGoHyZvpz3SAOAFmcm4PNEHACzOTcHmiDg NQPkzfTnukHAagfJm+nPdIA4AWZybg80QcALM5NweaIOA1A+TN9Oe6QcBqB8mb6c90gDgBZnJuDz RBwAszk3B5og4DUD5M3057pBwGoHyZvpz3SAOAFmcm4PNEHACzOTcHmiDgNQPkzfTnukHAagfJm+ nPdIA4AWZybg80QcALM5NweaIOA1A+TN9Oe6QcBqB8mb6c90gDgBZnJuDzRDNRIcWAwmNDjoZaR8 VCE5EQwvAagfJm+nPdIe6O45Brk23TfceZYjMzGVOK0lIS4pxOhme08jbMyz74DOgAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+GPo+GIncPxaueFuZrjxvxlc3Q26LvuyarCuqW3S IVGUtbTzOZnmZahwiyVkWWkn/mOm9z9ug8d7D3D1v3UiNSKrUnrldotKrd81MqfDjUjWmTUuSalp cdLIjbShs9LiMiMk5K27gNuQ6ZRb6xZuXGXDy1a2V1XU7VKK7KjNS3ExFEew9NPaHn3CFbdn7nS+ cUW8MK9hXR6FU+t3XDnO2vVVamnVFhRILRXkRkWgTZkWw9i1CmHfDwqKZ64pie7deff1JrtiY1Vf VE1THflNo90+SJ4A/CATbxsnFeu4q0i3TlYWNHKemWwuQUGosmWSCaKSWsI9PtdI9h5kZFltOR4Q Y9brm8LrtCpX5gna6MO8QKdInwplCmPqnUNrRQtg56nj1ajUheWi2RGZ5mWWjoqhVg7j/Fu4arjo nF9mgU2Li5RYrUc6M4ZtQHkJIkskgyIzJvRR22fbZHsIS7Bmz92zQ61YVhXau0aPYtjxHYVQnQnl PyLgZQ2lphJtKSWpPItLMj2H3xpVETHfq/Drv8dykTVebbr/AB/w2+H6nPO5l3U91WxIreBeGbVP uDEm6cTK2bSK046uHTaaiQem86SVpUrIiPRQlRZ5DduPW7gvKzcXKrgzhq/hdBqdoU2PPuCpXxV3 YMaU88glpiwm0KJRuEkyUalKMu2IjyyzVALb3AmIVsWncN/0SnUin4uQMQpV1W/NblGaZUJT5mUZ 5zLtUqbUojLI8sxKsUty9i1Gx2rGO1j4WWBfCr+okRitUW6TJSaTUY7aEJeYcNB6STSRkZZFnlt7 gVZxTn7/AJYt8Oqe9aIzq8OefhnHcheOe6xxvxStTAO88DnKJRKdfNwFDmU+bLdUa6mw5sjPuNEW lF2EozTtPYO7qy5Xywvmu3KUNqtdRXFTigmrUJkak9PVGrttDSzyz25ZDl7F7cx4wVXCrCeXZlIs 5y98Priar8imQmCptMfWZfjEoJBHo5ZEWeWZ8Y6ofj3FcGHbkWswI8OuVCkmiTGadNbTUlbWSkJW ZbUkozLPLiDGtODXTTvvP0jd3XujAn+9RVVutH/ynf32t4tJfB2TZlR3IljTJ8t6S+41J0nHVmtS vx6+Mz2ixxX3R2NVSxwqG5+3MlmWnVq9bFKarNx1O6ZL6IUZDxZtRkJYMlm6ojSrMzyyPLLujn7C LDr4UnBGwabhpZFHw0Oi0jWJinKf1juipZqPSVo7dpmNy3hgxuiMPccajuh8E6XbVeqd8UCFSrpo lUlLjNolx29FMpp1JHsIkknRy25mYYk61cVRu/jLxKY1aZp6/wCYv4MBdXwhdVpm56j3/T7IpsG9 iuhNmVOJVJK+pdKqCV6Lj7ziO3OPsNRZGRkR7TPLbLcLd1Vis9hniNfuKVq2TXIllwV1Kn1ewKyU unVRKWiUuMSHFqebdQrPNSiJJkewu1zVgqBuXMYMPcAalS6NHs2671ui413LclLrkPW0+Ybq9JcZ tSiM2zQRmSXMj4uIYPc07kDFHDe679xCj25auHCq7bp0Kl2xTpDtSp5yNJLm/H9blpZnmjQ72ffE TE2riZztym0XiPjey+UTTPVefjF8r8MrM3uX917jbjVdtHRXaNhVVbarsdUhZWpXVnVKERkZtlOY kLzUZ5aJk2njzPi2CR/Cbz51N3HN4y6dMeivpfpxJcZWaFERy2iPIy28Q1Dh/uNsW6hj5ZeJtw4X 2Fhydqz1TqpVLXmOmut5INCW975EhlJ55mRdwzIdI7tfCC78c9zxXsNrGbiuVioyIK2iku6tvRak tuLzVkeXapPuCMeIqwqdXf8AyvolUUaTE1Tlk4ytm/7tPcWL3N7dw1DhhPuaDakeXpmiQUKUhEw3 SUe0yJnTTn5w3Ku6nn7n7cL0CrK3nVbmui9ptCpDlcnmzCYdNKFG9KdM80soIjMyIyM9hZlnmN10 3cY3pG3X1rYxPOxuCVLthluVHKSefVhuGUYl6rLJRaKldt8w19QdwLixH3LVu2XOi26u9bIvmVdd Op0te+KfUGV5J3u6Zp2EpOfcPLIhtiVRVVVVGV5t8Im0c4zc1FMxFEcM/jNN5v7pybgwG3aF04gH f9nXPSbIuC8rJpJVqO5ZlcJdIqzS0qNDSH3zPUrSpJJWpZmRZ55dwQPBbd/Yo3DjraOE+JtOwxqM a84i3WXbLnSpLlMfJOmlqQ6s1sOK2KQpLSjyMs9LLLSkUfcyYvX/AIR4n25cFkYc4aVO6aSmnUeN a0NJLbNK0rVr5KUpUtDhpJJpy2EZ8YhuH25a3Sib7wKuK5rJsW26PhYtcGVBosk9OQS2UJcnqVok SlrUgs0d/M89orRacWNbdlf43vP0TiTMYVU0787fCItzm/wX9r7vjGm/sRJsWybTwwkUOn3A9RlW rNry4l2SWmlGlx5pLqkxzLJJrIsvikZce0t+RMf7pkbsabudV0elpoMay2bkTM0HN+HIXIU2bZnp 6GhknP4uefdHMmO+4yxxxouWpUuo4X4ZsSpdQ0omIUBx2FPjRjdJzSVFbLRcc0SNBqM8zzzG2MTc D8f7S3StHx2wUgUG4zkWa1aVUbrcxbBsm24akySNJGazPSzMtm1PnGVEzqUzO/PnbzXrpvVVFM/d /JCbk+EAxRoW5wvTGdmzrYfqts38q1Y8M25BMPRScNOmr8bpa0yLjI9HP/CJRijut8d8E7dotOxN oGGFMvS/Kq4zbTS6pJapVMgpQSlPVJ9zJSlJNSUmTZJIz2lx5FrJvcT7oB7cr3JhZVGKG9dNXxHb ucjbmGUdcUndJaszTmR95P8AUb73Yu5tuXGCVYmINj0qg1m4LBmuPoo1dTnBqUd0kk4ys8j0fipM jyPiE1Rq0xn10392rTfxv4mtFWJVaLR+e3vvVqxys1iz8IPeHWDxautVKsWo37hWqEbiqLOdnUOp MyX0IQ80olJcJOSllomvPSTn3cgPdl7rKl3th/a9ewWsNXXcopTLVYjVWUTsORqWlGc9xSTToZuG o0NpzJJkWkZlmdzc+5kxovrcy4pWjLw6w4tO6LwVEZpVJt2MiO0ywzKbcyfkkkjcMySoyzTs4u6N gVfc/wCIU3Fnc73eyxBOnYb0N+DXDORktDqorLZassu3LSbVt2DW0a0X7r8p/eyJ/TOrwn6028Lo pbm7zuG1sGsWryxysilM3VhJWE0WbBt+S4UOovuqQljVLe0lNkalkSlK0siSasv8I8bn/dv3neGK 1HwqxTdwvqEq66c9OpMuxay5MRDcaRpKjTEuKUZOGRlkaTyzSrj4yxlb3EF74g21ukLQuSdCpbWJ txsVq3Zbbhu6JsGlaDdTkWRGpGiZbdhmJPud8F8ZaXeFLq2ImDWEtmw6JTNQuRQYCHZ1Ql6Gjrku 6CTYLMjMyLPPPIUw51s6+Ef/ABz+N1sSIpvFHGfrl8LNYJ3d+6wn4R3TjhRsI8PXLUsS4JFNrDj8 yWiTNiokIbJUVolGlCkko9JS1mRn8VGzI8xiVjVuk7j3X+ENGwum201atz21wggU2pvSUIeYW2hT 65JN8bqEr/FEXa58YyND3JuLsDcV4pYHyItM4T3XWKhNpyCl5sqbelJcRpL0e1PRI89hjNXVufsc bexGwHxUw+o9Dq06w7WRbNdgTpqmUpStlpDjjaySekadBeRbM9gYVoromrqmPGjO/wD7K1zM61v/ AC8Kot4Iind6Y33TibcFEw8tXCxynW7cPUTgvWq85BuaqEg0k65G1ikxyIyNSiMyPIkmXbGW3uCq 3C1RrafuSbFdSmPG16mCMjXpZbEZkZlnmZFx5ZjgndDbkXHXGev1qk1LCTDCc9UJhlTL7Ydcg1Cn sOqRpLWw2WT7iCJRZqPb3Mh3DRrH3phnT8PatVH5yolIYpj05Z/jXlttJRrjP5RmnS+cMO84Ua2/ L45Z/fenE/6v5d2f8Iq1WcV5NaOI3VqU1POnFVkU1cT/AIY2jXo73NzPWaeWWbhdqRmXaHxDYNsV 5i56BBr0dhxhMxolmy5lptL4lIVlszSojI/mGuuDGLbdwsTW5lMWuPAXS0S1Z6OpUpJm6bfGbnaE eWeWY2PbdCjW1QoVCiOLcbhtE3rHDzU4rjUtXnMzMz85gMkAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI7iP+ry6PoWb9wsSIR3Ef8AV5dH0LN+4WAk Q8rUpKFKSk1GRGZEXd8w9CnJeOPHdfJpbptoNRIQWalZFxF5zEVTaLkNKwsSMaLeuO01Yk0i149N vOcqAzSIDbxVGkrUlS29a+bympOSU5L0G2yIzzIzItuJwxx1uXEm/wCbTo2JGG8emRq3Ogs0FMF9 yrvxY7ikEsnimE2SlaOl+RPIu53Ri8Lqxdt6YjMYgYsYV3pArJuOxaJDeixzp9CjqzI1KWl8zW6s iLScJOzPIiIh6uCgXVexW3h7CwgXadQot4wa7IrcNDKKc1GizCfcWyslaxS320m0aTSX5ZeZmRbV OWU9d7eH0z59yJzvP31/XLl3pHgXugqviJcF+W/elKp9MVbFWqCKdIjGtKJNPjynWDWslqV+MQbR GoyMknrCyIstsMkbqXEObhndV4U6g2/SZ0C/aTatLKotvPMtw5sqIyUiSlLrZqWlEo15JWku1Is+ MzjT2DOLMREObQLfcjyqvelyU2rmtxJGihz5q3Sf2K2lklJ5ceSuIX+I2El1qw/xApLFhS6tDlYn W7WI9OZS0tU2lxpVOU+pKVKJKiJth3tVGWeiZCcO04tMVbrW5VUZ/GJn3Zp0j8v6Pf8A6asvhMfR t6xcQcQzxKRh9elZs24m5dLcqTU624j0TemrWlBoebckP6RK0u1USk5GRlkeeZS2/MVrNw7fhQbg mS1T6ilxyNCgQH5shbbZFpum0ylSybTmkjWZaJGpJZ5mQ1RYtjU+fjRRL5sXCefYFNpNNmRKqcqG xEOo63R1TZNsrUSiSotLSPLLiLjEgvqNcllY1IxPiWbVLnpVUtcrfW1TCbXIgyG5Lj6VaDiklq3C cNKjI8yNpGw89lcS8Uxq78/3MPOqbqOHW6atyuYZUq/LwkNtv1yqVOFTolHhSJTstqPLeaQttlBL cV+LbSpRkWRGZ8RbBObdxkw6uqTFiUS4EvOzKY/V20qZcQZRmXSaeNWkRaKkLUlKkHkpJmWZDnjC qzcSMOY9lYhV3DSovHDXcUSoUSAppyVB35UnJDTrZGpKFp0ciPtiPJRfMKVdwfxObo8G97dth2PX bjumsx5sFDqdZTqJWUk24tR56Ok0tqM+pJZ7UqIs8xpiz+e1MZZ872iPjv8AcrGWV+HK15n4bve3 8WP+E6rXpl5N3UhykViDMqUKShhxROxoqTU+vIk5kSSSfGW3uZi0pu6Cw/ulFTg2lU33qpFoz1bi NTafIjNzIyNmuZU4lJPNkpSCNTZmRaadpZkNHRsDL7gxMXrfbtcm6LS6HU6RYzDSk5SG5yNc4SCM 8kmThqRty2H3hObpw9u2TfWHlRgUB1USk4eXFSJjiDSSWZT6adqWT28atS7lls7U+LYLUxTaKp65 j4Xve/ustT+q09V/jaY+sSklB3SVmsWLaVdvWW4zWK9b0KuzIlLp8mWmG28ylanFk2lZtNEajIlL PLIuPYJPcuNeHlrt05cqqS56qrE6oRWqTAfqDiouz8eaGELUlvMyLTMiLPZnmNG4X25iDg3DYk1P DSq15VwWRQaWTUI2VKhTYkTVOMSNNZEls1K2qTpcR7DGCPCXEG0Y1t2hclBuiq0eJZcCnpTa8htk nqg1IecdjzHjUh0mC02NDQMyy1uZbduc5zl3fvePhaI+JGVMzM7v487uiKnj1hjTqTRqw3XXp7Nw RjmU9NOhPy3XGC+M6bbSFKQhJ7FKURER7DFvgjirJxOwig4m1JiOk5ZS3NCC2tSFNtPuISaEmalG ZpQR5bdpnl3hovA208ScIaVadxXHhfVpji7ZkUGVToLjT8inyEzXXEbVrIlNLSou2zz4syG4dzDb VyWzgbRqHdVv9RKqlU1b1P0kmUfWSnlpSRpzLLRUkZ1a35pjhPwm+Xvm2bOZnXoieOffFvpfJYYc 7qO0Lsw0i4hXFFn0lU6qy6ZFgIpspyTIW084giaa0NY6egjSVopPRPMjyyMSqRj1hkzb1PuNqsyp bNTkOw40WJT5D81T7RZvNHFQg3krbIu3SaSNPdyHN8DCnEiBR7Kqb9Fu6AqyazX2ZzFGcYRMeamy VuNSI2mo0rQRGRGR6J7fMM41hEuJaqLjrdm4hOVKfdsm4Yk+nVJo65T1HHYZStxOaW8nUxyJxslG kiPbpGZmNq9XWnVnL+Y+sZwtF4iPvj9NzaVY3SVusXzh9atDgT58S+SlmUxNOk/8PqSItFRaHaK0 jMlErLRy2kWY2bcNywLcTBKU2689UpjcGKwyklOOOLzPYRmWxKSUoz7iUmfcHPFvW/i4ir4UXZel GqtVVSahWI8hZoZ34xFk6KYzklKVEjSIknpmkzy2bDG1sRGpLOJGHdUWoihNzJ0XSWeSESnYiyZU fz6K0F53CLujKZmmLd/7RP8ABVOd6eEfWY/ll+upaisSncKm3nl1qPTOqz5pR+JZZ0tEiUvPYo+P LvbRi63jtZNv27aNx1IpqG72nxKdSY5NEbzi5CyShSk55JQRGSjPPYRl3TIhpCoYa7oGk37PqD1P olQaq1CnQHqnTycS+TkqQSUrPTXlpNoUSthZaLZ5bRl8a8JsYptapE6zYFu1KlUypW+xTWHkulJg xY8plyQrYokaKloJSjIs9FtJFtIWwr1ak19c2n3a0/tZe0TVMRujyj95l0Lb9z0+4l1BiKh5mRS5 Soclh5JJWhZbSPYZ5pMjIyPukMwNW4ctypGLOI1WbMjgqdp8Q1JPtFSWo/43L5tJJGNpCY3R9/fE m0VTEfeV/DcAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAABZHWqOkzSqrQyMthkb6PaLiPKjS0ayLIaeRnlpNrJRZ/OQ5Kxv3Ej15X5GuXD+rppcKp ydOrx1rUSWczzU40Xn+T3zHSeHGHtv4YWnDtK3GVJjRU5qWs81uuH8Zaj7pmYCTiPxv0+qP0PC++ kiQCPxv0+qP0PC++kgJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAA+D6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI7iP+ry6PoWb9wsSIR3Ef9Xl0fQs37hY CRAAAAAAAAAAAAAAAAAAAAAAAADypZIyz7p5EPQAAAAC1qFMp9VYTGqUNmS0lxDqUOoJREtCiUlR Z90jIjIxdAA+D6AALWBTKfSmls02EzGbccU8tLSCSSlqPNSjy7pn3RdAPLi0toNauIizMB6AAAAA AAAAAAAAAHziHxCycQlaeJREZAPQAAAAAAAAAAAAAA8oWSy0k55ZmQ9AAAAAAAAAAAAAPKVpUakl xpPIwHoAAAAAAAAAAAAAAeSWk3Db7pFn/AegAAAAAAAAAAAAAAEfjfp9UfoeF99JEgEfjfp9Ufoe F99JASAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHh1erbW5lnopNX1D2KUr81 e/dq/sAjdLpPCelxK9UqtVErnsokobiznYyGkLSSkoJLaizyIyzM8zM8/mFzwKp3ja4PXcr3gq2P +hdA+i4v3SRmlHkkz7xBOQwHAqneNrg9dyveBwKp3ja4PXcr3g1DSsW8brkpF1XbQaHZpUe2qnUI ZR5K5KZL7cRR6R6ZK0EqUSTyPLIhMD3ReF0Gg0StV6uOwV1qlM1go7cGRKXGjOFmS3tQ2vVJz0iJ S9Ej0FZZ6J5RTOtETHXaeeaNaLzHv8JtPil3AqneNrg9dyveBwKp3ja4PXcr3gxdzYyYa2i3AdrV zt5VOOUuKUOO9MU5HMiMntFhCzS3kZduZEnziOw8fLaRdd7xK5UadCtq1KbRqizVidNZSUz0vGRE RZ6W1pJJJJGajXkRGeQXsTMRkm3AqneNrg9dyveBwKp3ja4PXcr3gw1cxswwtupxaRXLpRFlSmWp BJVFfNLDbnxFPqJBpjkeezWmgYugY50Gv46XFglFiyCl0CiwKqqUcZ7VuqkOPkaCWaNDJKWUGStL JRrMizNKiKYiZm0fdiZiM5+7pbwKp3ja4PXcr3gcCqd42uD13K94MRT8QJU3F6r4aqgNJj02jRqo mSSj01qdcUk0mXFkWiLq9sV7Aw7kRYd23AUSTMQt1mMzGelPG2n4zhtsoWpLZGZEazIkkZkRnmYj WiSJuveBVO8bXB67le8DgVTvG1weu5XvBhbixvwttaPAlVa62lNVKNv2OqHGfmZxv2ytQheg3/nV knYe3YY+3JjbhdaUmJErd1tJcmxUTmzjRnpSERlnkh5xbKFJabVkeitw0pPRVkZ6J5WtJeGZ4FU7 xtcHruV7wOBVO8bXB67le8Fa437kfoJybFdpLs9wkLYXP01xlIPbn+LMjPMuLIxp3DjGfE2u8Ja9 f3Ami23Z9cm0aqSWt8k4e99HNxBqWZERmosiMjP5zFIqiatX76vMmbRE8cvvk25wKp3ja4PXcr3g cCqd42uD13K94MPT8bML6nb1QumPdTbcClGkpm+Yz0d9k1ZaBGw4hLpmszIkESDNZmRJzMxEb+3U uHVqWDJvmkSpVTRGqcalOxupstt9l5406OsZU0TqE6CtIjUkiVlkRmYtOWXu8ci+V/vLNsbgVTvG 1weu5XvA4FU7xtcHruV7wXc+5aRS7beuyfIUzTY8Q5rji21EpLRJ0viGWlnl/hyzz2ZZiOyMYrHi XnbuHkuoKauS5mFyY1MNJKeYbSyp0zfIjMm+1QoizPaZHlmRGZTab2Im8Xjcy/AqneNrg9dyveBw Kp3ja4PXcr3gjtIxysis3XPtRkqgwqEmUaahIjkiFJOMaSkJaczPM29JOlmRcezPI8sfQt0XYFct qrXTqKxT4tKhx6jq50PVPSokgj3u+ynSPSS5omSSPJWZZKJOwVvdKZcCqd42uD13K94HAqneNrg9 dyveDD0fF62axbSbkTCqkT/0oxRnYEqOSJbEt15DSULQSjLYayUZkZlokZ7chSpmOOG1ZqV302lX A3LOxmGn6y+yWmyzpk72qVlsWotSslEnPJRaPGRkU9Uz1R9/vCbSzvAqneNrg9dyveBwKp3ja4PX cr3gh0TdDWTLtWbdCqbXY64UyLAKmPwyTOfflGjeyWm9LRVrdYg0npEWRnpaOR5e5+6DsmFa1Lud FPrkpVVfkxm6ZHhkqc07GNZSUuNmoiTqtWvSyUfxe10syziZtlKIz3JdwKp3ja4PXcr3gcCqd42u D13K94FCvm37inIp9NkOKcegM1Jk1oNKXo7mZEtB93IyMjLjI8s+Ms5AJEf4FU7xtcHruV7wOBVO 8bXB67le8EgABH+BVO8bXB67le8DgVTvG1weu5XvBIAAR/gVTvG1weu5XvA4FU7xtcHruV7wSAAE f4FU7xtcHruV7wOBVO8bXB67le8EgABH+BVO8bXB67le8DgVTvG1weu5XvBIAAR/gVTvG1weu5Xv A4FU7xtcHruV7wSAAEf4FU7xtcHruV7wOBVO8bXB67le8EgABH+BVO8bXB67le8DgVTvG1weu5Xv BIAAR/gVTvG1weu5XvA4FU7xtcHruV7wSAAEf4FU7xtcHruV7wOBVO8bXB67le8EgABH+BVO8bXB 67le8DgVTvG1weu5XvBIAAR/gVTvG1weu5XvA4FU7xtcHruV7wSAAEf4FU7xtcHruV7wOBVO8bXB 67le8EgABH+BVO8bXB67le8DgVTvG1weu5XvBIAAR/gVTvG1weu5XvA4FU7xtcHruV7wSAAEf4FU 7xtcHruV7wOBVO8bXB67le8EgABH+BVO8bXB67le8DgVTvG1weu5XvBIAAR/gVTvG1weu5XvA4FU 7xtcHruV7wSAAEf4FU7xtcHruV7wOBVO8bXB67le8EgABH+BVO8bXB67le8DgVTvG1weu5XvBIAA R/gVTvG1weu5XvA4FU7xtcHruV7wSAAEf4FU7xtcHruV7wOBVO8bXB67le8EgABH+BVO8bXB67le 8CC49RrhZtxUyRKjzYb0yOchw3HGjZW0haTWe1RHrkGWeZkZK25ZEUgEdnfrDon0LVPv4ICRAAAA juI/6vLo+hZv3CxIhHcR/wBXl0fQs37hYCRAAAIlf+IMDD5FIk1RpvetTqLcFx5x3VpYJRGemew8 8suLYK8nEzD+JT4lWk3fS24k5Li4zypCdF4kGkl6PfyNSSPvZkMNi3bdwV5m3plu0mNU3qNWWKg5 FkSNSTiEErMiUaVbdveGsHbQvW2r8s6qt2YxVJkp246i/DQ+aI0A5JxzSjXGgyzyJRcRaXbZCsTN s99/DL+SYz+Hjn/DdkvEOx4B04pl005rqs2l2DpPl/xCFZESk98jzL6xISPMsxz83g/fdFaoTNEj spnsR0typyJ2jHQSpSn1sqjqQrWIRpaKMjSeQ6AQRkhJKMjMiLPIXytkiL9b0AAISAAAAAAAAAAp SOJv/WQqilI4m/8AWQqgAAAAAAAAAAAoy/zZz/SKwoy/zZz/AEgKpcQ+j4XEPoAAAAAAAAAAD4fE YpxfzZn92n+wqHxH8wpxfzZn92n+wCqAAAAAAAAAAAAApRvyZ/6lf3FUUo35M/8AUr+4qgAAAAAA ACN3XdzdEt+XVaaTUl6O6ljQUrIiWaiLblt2ZiRnlkeY1reFl06TQKnMopKqM9c1L6iadzNJ6RZp yI8syIu6PN6UxsfCwJnR4jWtPv3dXF6HRuFgYuNTGPM2vH1691mM6693eLKZ9pY8N4q3aSln1Mpm 0/lLEf6lXDyaqXNp6Q8opNw6S/8A8NVLj/Zp6Q+H9YdJdurl/D7P1f0b2Kef8pL117t8WUz7Sw66 93eLKZ9pYjnUm4eTVS5tPSDqTcPJqpc2npB6w6S7dXL+D1f0Z2aef8pH11ru8WUz7SxQg4w3ZNjJ kJpVNSRqUWRqX3DMv+QwnUm4eTVS5tPSFnSaBc0SClh62akSiUs9jae6ozL/ABecUnpHpTXiIrqt n1fwvHR3RerMzTTfLr/lKZGL12savOl0w9YskF26y4xV6693eLKZ9pYikyi3K6bJN2zUz0HUqV+L TxF/EXHUm4eTVS5tPSEx0j0nefz1cv4RPR/RlotTTz/lI+uvdviymfaWHXXu7xZTPtLEc6k3Dyaq XNp6Qt5zVSpjG+ajRpkVojJOm9oITmfczNQmrpLpGmNarEqiPd/CKejejqptTRTM+/8AlKCxVu3X mrqZTc9Ei+Mvvj3117t8WUz7SxGEU2vOK027cqKkqQRkZISZGX2hU6k3DyaqXNp6QmOkeke3Vy/g no/o2N9FPP8AlI+uvdviymfaWMna+JdcqlxQ6PVKfCbal6ZabS1ZpNKc+6IT1JuHk1UubT0hkbYt ap1K6acVUoE1mGybinVuZIIs05FtI8+MbaPp/SVWNREVTOcb4y359TDSNA6Mpwa51YjKd057sutu 3XNftUfaINc1+1R9ohg+A1t+Buc+57Q4DW34E5z7ntH3OtpXZp5z/tfF6ujdqrlH+5nNc1+1R9oh SbnRHZbkFt9Cn2kJcWgj2klRmRH9ZH9QxHAa2/A3Ofc9o90e06bQqtKqlPNad9MNMqbUo1EWgpR5 5nt/xf0CKtK1qYmmLdec+UE06Pqzaqb9WUecs4AAOtzAj8b9Pqj9DwvvpIkAj8b9Pqj9DwvvpICQ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApSvzV792r+wqilK/NXv3av7AMTZH 6F0D6Li/dJGZX8U/mGGsf9C6B9FxfukjNiJi8WHNOFO53pFw067Xr+XesdNSumqOrphXLUYsCVGW 8Zp0oiHksrbWnjI0mSiPbmIvjNblfTel528mmXrAo7tEgxrepVm05MdquaEd5CW5VRZb1zJNur0S bN5tskEkzJRLUOvR9FYo1YpiOqLcosUxETMzneZnnN3JuDiq5hGzb9xX3ZVxyIdRsKjUppMWlvTH 4cqM0aXo7jSCNTekZkeZkSTy2mMHfGGl+1rGW48d6LbVcbRbMK2arBtaWy2cSqaDclMlo0ESkqlM trPVGlWSFq/zGOzgFqo1pieuJurFOWr1bnGF5Wle67lxG19bxEjwsRWmpNKp1Jt+BIYlsuxktlFk PyYjy4ikqzI9NSUpJRmRZkNo4cW1VrM3RtWKpUep7yqmH9uU2FPU0p5pb8J6oG+248lJISsifaPa SdLS2Fs2b+AWonUm8d6ar1xn3eDQlbuQsP8AdH1u5K3blySKZUrZhRY8qm0WTNbN1DyzUkzZQrRM iMuMWM6uOW9jNVMW59m3HVLcvGz6bTKauPSH3ZESTGkTVusPR9HWMk6mS0ZKUkk5tmSjLZn0SApT TNPj4pjK9uv+J/ZxcvDerWBbFArCpOIln3o1SKghmVb1LbrENxp6Q68zAlRlNutq1ZrSZGaUfGUS V97K33S7zhKpd/aV7WjijOsyFDqHB6iIqlEq8lJKUmNIjrQ6lvUurcIlGbaiS+ZE4oi2deALxNrW 6vv7+iZqmZmZ62JtVytvWxSnblisRqsuEyqcwx+TbfNBaxKePtSVmRbTHLNwYX4g1nCvEaBS4dVp 8vrqO3C2lhhtUiVAalMOqUwh5Km3TUlCjSS0mlRlkZDrwBS359pG/wDmJ/ZW17X6pv4TH7uPlYdM 3xGvW57vexTuSnS6ZToLdSep0Sk1Jh5iQbyH4saPGjuGuOs0uEs9I1aOilKi2HSqsfFW48N74hSn rku6gUyp0KVRp9Wt1MCsvk0tCpjSmWmm9elBIQpK9USjNa05q0cx2MAtOdu63hNyfzUzTPXfxizV +Njz9Qwti1GEl9ERNVokyYlaTaUmGmoR1vGtKsjSRNko1EfcI8xa4j2zLmYxYVXBS6Mp1qHUqi5U ZbTWZNoVTH22zcUXERqUlJZ90yG0qhT4VVgyKZUYzciLKbUy8y4nNLiFFkpJl3SMjMIEKPTYTFPi INDEZtLTaTUajJKSyLae09hcZi0VWiY438YsiImIt3W+/vg5YYsi6rjePDFm2Z8GVRI90FIqb8NT cVzfrZtxzaezycNesNRknMy0NuWwUlUm575oVRuOFYFVp6aFbFBprsCZT1MuyJUV83pDDSDP8Yls iIiUnNKjV2pq2jrQBhGFTEUxwtzi1vpC1X5pmZ67+N/OXPdiUmtXXfbNxPW/VKdRajccy5GimRVx 15MRUxWSdQrak1qeW4RKyP8AFkeQp3Fh3XJd5Y0x6Nb62YtYtehsU80s6LUl5pU5TjaD2Eau2QR/ 6yz4x0QA1qiKsKcLqtb4fcIovh1TVHXN/G/1cquRq9XJTmLDFjVpim0av29IcgPUxaJjzMVhTMhx DB9uvVqeMyyLNRMnokrZn9YhXBbzFOxMl2PWHodVqtzPogMU1bkyO3ONW9VuMl2yNMkpNWZdrre2 0cjy6pAZ4mHTiTerv8b3+slMam7u8LW+kNBWbQatQb7wkoTqFImUm0ar1WQkyImm3Fw9UhZbf+0S vR2/4F8Y36LFmi0xirSK61EQU+U02w6/xqU2jM0p8xEajPLvmYvhrNU1Zz3+MzKKaYopiindEQAA CFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcl7pncl 3Lelxt3phXU3Y8uovpTU4S5KkNZnsN9G3Z/mT3eMto3jghg/S8GbNbt6LNfnzpBk9UJr6zUp97LL Zn8VJcRF/wAzMxsMAAR2d+sOifQtU+/giRCOzv1h0T6Fqn38EBIgAAAR3Ef9Xl0fQs37hYkQjuI/ 6vLo+hZv3CwEiAAAB8yLjH0AAAGnsRcQ7xpEu8anb06MxAsKnMVCTEcYSs6gZoN5xBqPa2WrIiIy 7pmIvF0xEzubhAUoz6ZUduSgjJLqSWWfeMsxVEqxN4vAAACQAAAABrnF2r3lbFMkXNQbniw2YrCU RaauGl5dRmKUeiyRn22a+0SRJ27TP5ombJiLtgvEZkjIs8lkYqjTF34k3tBl1+p06RGhRLPiwZE6 CtlLhy1Pds4nT40aKcyLLjMWL2Md6MVO7aUmNHdcfmrg2uomdiHm2GXHUPZcZJS7rSPupbcLuEFU 6sTM9X3+yIzmKeP8ecN6gIthbcNSuzDu3rkrCm1TajT2ZD5tp0UmtSSM8i7hZiUi0xabIpnWi8AA AhIAAAClJSamFpSWZmXEILi1ihT8P6exARVaXDrNVQ6UBVSkoZjo0CzU4s1GWZFmXakeZmZF3zKB 2/ixel9Wra8m3q/TmJr1mpuapymmG3kPPkaUKYSWZkgtYTpKy2pNJFs2iL5TPUm2cRxb6LiH0aLa x1r7Vag1aVAQugTaBDlHHabzeROkErVJJXyVLTqyz4jUnziZYI3ZdN3WpOl3k5GXVIFcqdMdOM3o N5R5TjSci+ZBbe6J65p4K3iYirqn7/ZsIAAEgAAAA+CG4rXlUrKthE2iU52dUp0xinxGmkJWrWOq 0dIkqUklZFmeRmWeQiZsmIumR8RjxGI0x2kqLIyQkjL+A05T8RbkriaFZ1Kr77Fdnz5keoSp9OZb fhpjtk4aNSkzbNR6beRkZlomZjEs433awduT57cZUGMqrsXETbGallCl72N9si2ltLT0S7+QmbQi Pzbvvub9Aazwevi67wqN2s3QhhtNNqbaILTTeibUZyO26hKj/wASu34xswTMW3ouAACEgAAAAjWJ Nw1K07Br9y0dll2dTae9JjtvKIkLcSkzSR/OfEXdPIu6NVUbGC636JV2W6lvyUmZToUKVOp285DL knPTJ2MZFsRlsVlko88jPIRfebrN6xyUTeRll2x8fziqNB13FPEmhuptqI9EqVXpt3tUmQ8qOlG/ oZ012caCSWxDhkgkZl3sxJcPcT67euJFQho1RWw/SG59JI2TQ8stYSFOKM9uRnnkXeLPui0RfOCc ovLa4AAgAAAHlxBONqbPPJRGR5ecRixsP6ZYbdQbpsyXIKoyN8L3wvS0T7xbPOJSITi3cd0WpapV y2FwUqZlxW5G+m1LPVOPtoPQyMi0slHx5jCvR8KvEpxqo/NTe08L5S3w8bFpoqwaJ/LVa8cbZwqU W371iX9Va3U7hTIoUlnRiQtv4pWaduXEWREraXHmJa0kycdMy2GrZ9Q1tfN2Xgq53bYtSpx6cqmW +uvyXXY6XjfM3TbbZIlfFT+LcNRlt+LxCJv4zXfWKNNveivxoVOoFMplQmQFsJcOWclKVuJ0z2o0 UmZFlxmQjR9Go0eJoovOcznN98/S6MfSKtI1a6oiMoiLRbdH1b5yLvBkQ0ZLxivSHcF40dMaO8S5 nU22DJnYiWmGw84h4y4y0XzcI/ksueYbLwur9TunD2g3DWXG1zp0NDr6m0aKTXtzMi7nEOiIvEVc bTzYXtNkoyLvBkXeH0AS+ZF3gyLvD6AD5kI/e1k0a/KOVFrWtJgnUvEbS9FRKLz/AMTHq/J9fpVp VSp2yqGmoRIy3mjloUprtSzPMkmRnsI8tvGI5MrNzVLDui3Yi8YduoOmNz6nLdiodT2zSVbCXsSW Zn5+IiGWPg4ePhVUYsXpnKYa4OJiYGJTiYc2q6p74TaBAZpyGoUZBpYjsIZbz25JTsIs/mF3l5hp FrETEuu0yjRW1R6BV27VVclSS7FS4biyUSUM6CviErJSj7pbCFNGOlfZrkSqSqehygTKDDk73Zbz eRPkErVIJXyVqTqyz4jUnzi9MU0xFNP3a/lLKquZvVPx+NvNvLIu8GRCAYJXTdN2WjNl3k7GcqsC uVOlvHGb0G8o8pbSci+ZPGNgC0xYuAAAAh8Om38jEKXUZdXYXbS45JZikXbpc2beL/V3e6JgAwx9 Hpx5pmZmNWb5TbnxjubYOPODFURETrRbOL8uEgAA3Ygj8b9Pqj9DwvvpIkAj8b9Pqj9DwvvpICQA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApSvzV792r+wqilK/NXv3av7AMTY/6 F0D6Li/dJGbGEsf9C6B9FxfukjLyVGiO6tJ5GlCjL6gRM2i6oA/NWsbrfHGJV50Vm6zJtmS42gtS nYRKMi7gtOy+x15Wf7KfYOH0/CjK0vk6v6x0GmZiaauT9NQH5ldl9jtys/2U+wOy+x15Wf7KfYI9 YYXCUfjLQezVyfpqA/MrsvsdeVn+yn2D52X2OvKz/ZT7A9YYXCT8ZaD2auT9NgH5k9l9jrys/wBl PsDsvsdeVn+yn2B6wwuEn4y0Hs1cn6bAPzK7L7HXlZ/sp9gdl9jrys/2U+wPWGFwk/GWg9mrk/TU B+ZXZfY7crP9lPsDsvsdeVn+yn2B6wwuEn4y0Hs1cn6agPzK7L7HXlZ/sp9gdl9jrys/2U+wPWGF wk/GWg9mrk/TUB+ZPZfY68rP9lPsH3svsdeVn+yn2B6wwuEn4y0Hs1cn6agPzK7L7HblZ/sp9gdl 9jrys/2U+wPWGFwk/GWg9mrk/TUB+ZXZfY7crP8AZT7B87L7HXlZ/sp9gesMLhJ+MtB7NXJ+mwD8 yey+x15Wf7KfYHZfY68rP9lPsD1hhcJPxloPZq5P02AfmT2X2OvKz/ZT7B97L7HXlZ/sp9gesMLh J+MtB7NXJ+moD8yuy+x15Wf7KfYHZfY7crP9lPsD1hhcJPxloPZq5P01AfmV2X2OvKz/AGU+wOy+ x15Wf7KfYHrDC4SfjLQezVyfpqA/MnsvsdeVn+yn2D72X2OvKz/ZT7A9YYXCT8ZaD2auT9NQH5mN 7rrHl5xLTd1aS1qJKS1KNpnxdwSyu4y7ra24s2ZWJ6WkU3R34lt6K85HzPIjcQ2tSklmZbTIW9Oo te02Xo/q7RMSJmiiqbdz9BwH5ldl9jtys/2U+wOy+x25Wf7KfYI9YYXCVPxloPZq5P01AfmlK3V+ P0RiNIfutskS2zca0SaWZpIzLaSTM0nmR7FZH3eIW/ZfY68rP9lPsD0/D4Smf6x0KN9NXJ+moD82 om6e3R06i1C4YleW5TqWtluW+TTZE0p01E2RlxnpGlXER8Qx3ZfY68rP9lPsCekMOJtMST/WGhRE TNNWfc/TYB+ZXZfY68rP9lPsDsvsduVn+yn2CPWGFwlH4y0Hs1cn6agPzK7L7HXlZ/sp9gdl9jty s/2U+wPWGFwk/GWg9mrk/TUB+ZXZfY68rP8AZT7A7L7HXlZ/sp9gesMLhJ+MtB7NXJ+moD8yey+x 15Wf7KfYPvZfY68rP9lPsD1hhcJPxloPZq5P01AfmV2X2OvKz/ZT7A7L7HblZ/sp9gesMLhJ+MtB 7NXJ+moD8yuy+x15Wf7KfYHZfY68rP8AZT7A9YYXCT8ZaD2auT9NQH5k9l9jrys/2U+wOy+x15Wf 7KfYHrDC4SfjLQezVyfpsA/MrsvsdeVn+yn2D52X2OvKz/ZT7A9YYXCT8ZaD2auT9NgH5ldl9jty s/2U+wOy+x15Wf7KfYHrDC4SfjLQezVyfpqA/MrsvsduVn+yn2B2X2OvKz/ZT7A9YYXCT8ZaD2au T9NQH5k9l9jrys/2U+wfey+x15Wf7KfYHrDC4SfjLQezVyfpqA/MrsvsdeVn+yn2B2X2OvKz/ZT7 A9YYXCT8ZaD2auT9NQH5ldl9jrys/wBlPsDsvsdeVn+yn2B6wwuEn4y0Hs1cn6agPzK7L7HXlZ/s p9g+dl9jrys/2U+wPWGFwk/GWg9mrk/TYB+ZXZf47crP9lPsHQO44xuxExSvCu0y8q1v2PDpyX2U 6sk6KzcIs9nmGmHpuHiVRTDq0L+qNE07Hp0fDib1cXWgjs79YdE+hap9/BEiEdnfrDon0LVPv4I6 30iRAAAAjuI/6vLo+hZv3CxIhHcR/wBXl0fQs37hYCRAAAAAAAIHeOEdKvGpTZb9cqcKLWI7MSsw Yxt6mpsNmZpQ5pINSMyUpJm2pCjSeRmZEWU8AB8SlKEklJEREWREQ+gAAAAAAAAAg144YyLquunX bGvisUiRS46mIzEdiI+yhSjPSeJMhlzRcNPa6RZHoll3TznI+B3iAXBhBT7iqCpsu5Kq03NajtVe M0TJN1TUGRoN3tM0nmW3VmjMjyPZsGfpNk0qjtVtqMt1RVya7OdNeiZtLWyhoyRs2Fotlx58ZiQg ItExY64nrhiLRtqHZ1s021qe867GpcZEVpbpka1JSWRGrIiLPZ3CGXABO9ERaLQAAAkAAAWlRpkG qR1x5sZt0loUjNSCUaSMsjyzGv1YG0aPQaFQ6HclXpB0Oj9Qd8xdSbkuDkklNOkttSdpoJWkkkqI 88jLMxssAsI1QrAoNu1M6jTUOIT1PjU1uOoyU220xnoZZlnnt4zMVrPs6n2XDnwqdIfdRUKpNqzh vGRml2S+p5aSyIu1JSzIu7lxmYz4+B13REREWh9AABIAAADA3naMO9KN1JlTJUJxt5uTGlxVEl6M +2olIcRmRlmRlxGRkfdIxngCYuNeFg5DRFakMXXWGq+1UHKl1dSTBylPOI1a80G2bJoNGSdDV6JZ JMiIyIxkLbwrt62HaQ9CelOLpMaWxm8pKt8rkuk6865s2rU5mo8sizUezLITMAGCoVoU+361Xa5D ffW9X5LcqQhZlooUhpDREjIthaKCPbntGdAAAAAAAAAYe7rYp1523ULXqq3kRag0bS1srNDiDzI0 rQouJSVERkffIRNGDNNfi1ZdbuWr1Sq1be+nVXtS0+zqDNTOrS0hLZaKjUfxNuZ6WZDYgCLdZdAq ZhBSIT8CoTa1UahUoldO4H5z+qS5Mk71cikTiUISgkk05kRISn4ifPnIGbPpse713k046mUunpp2 qLRJomyXp5kWWeefnyGdASi2VgAAEgAAAItiHYzmIFC4Pnc1RozCnW3XVwm2FLc0FpWkj1rayIiU kj2EX1CUgExdMTbOEFuTCxFxKhyzu6sQaizTV0mXNipYJydFWZKUh1Jtmgu2TmSkJSpOkrRMiUZH Z1LBC3JjrbMCqVGm0tUeJFm0yMbeomtRstSlw1JNZaJJIu0UnMth5jYwB13VtlZHqVZVKpDlecYc dWdfmnOe09E9Us47TGTezYWg0njzPMz+YXdp23DtC3KfbNPeedjU5kmG1vGRrURd08iIs9veGWAR G6wAACUgAADD3ZQX7nt+ZQWK3LpJzGzaXJittLcSg9iiInUKTtLMtqe7syMQ6o4NOVG2LethzEGu pbtxxLjL294azf0EklonW1MG0rQyI0noZ57eMbJABr+tYTLrrUN6XfNbbqbMN6nS6iy3FQ7OiOKJ SmXEE1qyLMk5KQlKiy2HtPPN0OwaFb1UXUqchaUnAjU5EdRkbbbTGerMsyzz7bjM+4JKAff3zlEx f7++DBWhaFPsyHPhU5991FQqs2rOG8ZGZOyn1PLSWRF2pKWZF3cuMzGdAASAAAAAAAAAACPxv0+q P0PC++kiQCPxv0+qP0PC++kgJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAClK /NXv3av7CqKUr81e/dq/sAxNj/oXQPouL90kZWX+aPfu1f2GKsf9C6B9FxfukjKy/wA0e/dq/sIn crX+mX473D/6/qX/AMY9/wCMxjxkLh/9f1L/AOMe/wDGYx4+Zne/B8X9c+8AAEKAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5pq0N1GK4tRJSl5BqM+4RKLaOkrxvvD2t17EZilFS4UqZ LjrcnpkOOIq0BK0G60klrNCVnln2pFmRZDmQBrGLNNMUx3+NvJ2aLptWi0zTTETeYnPuiY/fe6/q d9YaSK5SCmy6Q5Tk1lUijOuz23zgJ3ktDWi0lktQ1rTZM0rUeSkZ5HkZjC2HdsanRpJXXeVHqN0G /AWuUzUmo5qhoNWky9INpRPFmfbJLMzLLbsHOtCtd+uU+p1BqYw0mmxzfNtR5rdyUkjIi7hFpFtP +vczL2HBsJkPOVtvU0/NM9ZMGeoXokeRFn2/HlnsG21rqq1oj7vf+Pc9OnpLHqimqKN3lbw6uDes W7sLa/Kp9nVaoUuFQarSXnXjZWWjEkR6k5IZRpZEZaTRrSWwsyWWwfY+KFlVy0p1TLeDe/iqZ1WC 9ObjpdUs8mM2dUtTppQSNE0mWiae5xjSjWD9YkNOrjT0OqRIJlJJZUaTQZt9uZ59qei4StHvJUfc EKqcB2mT34DyHUqZWafxrRtqMu4ZpPaWZbRWcaqi023+OcT/AAirpXSMO01URlaL+6nV85+Lo3FC 8KLOwzu2n0y6KW7R5yqGq36Ww8nWR2mk/jk6siI0GRmWZHxmRmOaAAc9c61c18f2ebpmmVaZMTVF rAAAhxgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOrvg9f0/uf6IR98kcojq74PX9P 7n+iEffJHTon/Wpe3/Tv/wDZ4Xvd4COzv1h0T6Fqn38ESIR2d+sOifQtU+/gj337EkQAAAI7iP8A q8uj6Fm/cLEiEexDQt2wLmbbSalro81KSLjMzYXkQCQi0q09VLpcupIhvyzisLeKOwnScd0Umeik u6o8si85i6IyURKSZGRlmRkPoIqiZi0NYdeyZ5Jr09CR0g69kzyTXp6EjpDZ4DHZ4nb8Ieb6Jpn+ Yn5afJrDr2TPJNenoSOkHXsmeSa9PQkdIbPANnidvwg9E0z/ADE/LT5NYdeyZ5Jr09CR0g69kzyT Xp6EjpDZ4Bs8Tt+EHommf5iflp8msOvZM8k16ehI6QdeyZ5Jr09CR0hs8A2eJ2/CD0TTP8xPy0+T WHXsmeSa9PQkdIOvZM8k16ehI6Q2eAbPE7fhB6Jpn+Yn5afJrDr2TPJNenoSOkHXsmeSa9PQkdIb PANnidvwg9E0z/MT8tPk1h17JnkmvT0JHSDr2TPJNenoSOkNngGzxO34QeiaZ/mJ+Wnyaw69kzyT Xp6EjpB17JnkmvT0JHSGzwDZ4nb8IPRNM/zE/LT5NYdeyZ5Jr09CR0g69kzyTXp6EjpDZ4Bs8Tt+ EHommf5iflp8msOvZM8k16ehI6QdeyZ5Jr09CR0hs8A2eJ2/CD0TTP8AMT8tPk1h17JnkmvT0JHS Dr2TPJNenoSOkNngGzxO34QeiaZ/mJ+Wnyaw69kzyTXp6EjpB17JnkmvT0JHSGzwDZ4nb8IPRNM/ zE/LT5NYdeyZ5Jr09CR0g69kzyTXp6EjpDZ4Bs8Tt+EHommf5iflp8msOvZM8k16ehI6QdeyZ5Jr 09CR0hs8A2eJ2/CD0TTP8xPy0+TWHXsmeSa9PQkdIOvZM8k16ehI6Q2eAbPE7fhB6Jpn+Yn5afJr Dr2TPJNenoSOkHXsmeSa9PQkdIbPANnidvwg9E0z/MT8tPk1h17JnkmvT0JHSDr2TPJNenoSOkNn gGzxO34QeiaZ/mJ+Wnyaw69kzyTXp6EjpB17JnkmvT0JHSGzwDZ4nb8IPRNM/wAxPy0+TWHXsmeS a9PQkdIOvZM8k16ehI6Q2eAbPE7fhB6Jpn+Yn5afJrDr2TPJNenoSOkHXsmeSa9PQkdIbPANnidv wg9E0z/MT8tPk1h17JnkmvT0JHSDr2TPJNenoSOkNngGzxO34QeiaZ/mJ+Wnyaw69kzyTXp6EjpB 17JnkmvT0JHSGzwDZ4nb8IPRNM/zE/LT5NYdeyZ5Jr09CR0g69kzyTXp6EjpDZ4Bs8Tt+EHommf5 iflp8msOvZM8k16ehI6QdeyZ5Jr09CR0hs8A2eJ2/CD0TTP8xPy0+TWHXsmeSa9PQkdIOvZM8k16 ehI6Q2eAbPE7fhB6Jpn+Yn5afJrDr2TPJNenoSOkHXsmeSa9PQkdIbPANnidvwg9E0z/ADE/LT5N YdeyZ5Jr09CR0g69kzyTXp6EjpDZ4Bs8Tt+EHommf5iflp8msOvZM8k16ehI6QdeyZ5Jr09CR0hs 8A2eJ2/CD0TTP8xPy0+TWHXsmeSa9PQkdIOvZM8k16ehI6Q2eAbPE7fhB6Jpn+Yn5afJrDr2TPJN enoSOkHXsmeSa9PQkdIbPANnidvwg9E0z/MT8tPk1h17JnkmvT0JHSDr2TPJNenoSOkNngGzxO34 QeiaZ/mJ+Wnyaw69kzyTXp6EjpB17JnkmvT0JHSGzwDZ4nb8IPRNM/zE/LT5NYdeyZ5Jr09CR0g6 9kzyTXp6EjpDZ4Bs8Tt+EHommf5iflp8msOvZM8k16ehI6QktlXy/eDktDtoVyi71JBkqosE2Tul n8XIzzyy2/OQlQCaaK4m81X+ENcHR9JorirExpqjhq0x9AR+N+n1R+h4X30kSAYCMR8PKivLtepM NOfn10g8v6l9Y1dzPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApSvzV792r+w qilK/NXv3av7AMTY/wChdA+i4v3SRlpZGcV4iLMzbVkX8BibH/QugfRcX7pIzYImLxZ+Sddw5vx2 uVFxuz6spKpbykmUVeRkaz8wsettf/I2r+iL9g/XXe0f9g39kg3tH/YN/ZIebPR1M56z4ir+isKq qZ2s8ofkV1tr/wCRtX9EX7A621/8jav6Iv2D9dd7R/2Df2SDe0f9g39kg9XU9pH4Iwvazyh+RXW2 v/kbV/RF+wOttf8AyNq/oi/YP113tH/YN/ZIN7R/2Df2SD1dT2j8EYXtZ5Q/IrrbX/yNq/oi/YHW 2v8A5G1f0RfsH6672j/sG/skG9o/7Bv7JB6up7R+CML2s8ofkV1tr/5G1f0RfsDrbX/yNq/oi/YP 113tH/YN/ZIN7R/2Df2SD1dT2j8EYXtZ5Q/IrrbX/wAjav6Iv2B1tr/5G1f0RfsH6672j/sG/skG 9o/7Bv7JB6up7R+CML2s8ofkV1tr/wCRtX9EX7A621/8jav6Iv2D9dd7R/2Df2SDe0f9g39kg9XU 9o/BGF7WeUPyK621/wDI2r+iL9gdba/+RtX9EX7B+uu9o/7Bv7JBvaP+wb+yQerqe0fgjC9rPKH5 Fdba/wDkbV/RF+wOttf/ACNq/oi/YP113tH/AGDf2SDe0f8AYN/ZIPV1PaPwRhe1nlD8iuttf/I2 r+iL9gdba/8AkbV/RF+wfrrvaP8AsG/skG9o/wCwb+yQerqe0fgjC9rPKH5Fdba/+RtX9EX7A621 /wDI2r+iL9g/XXe0f9g39kg3tH/YN/ZIPV1PaPwRhe1nlD8iuttf/I2r+iL9gdba/wDkbV/RF+wf rrvaP+wb+yQb2j/sG/skHq6ntH4Iwvazyh+RXW2v/kbV/RF+wOttf/I2r+iL9g/XXe0f9g39kg3t H/YN/ZIPV1PaPwRhe1nlD8iuttf/ACNq/oi/YHW2v/kbV/RF+wfrrvaP+wb+yQb2j/sG/skHq6nt H4Iwvazyh+RXW2v/AJG1f0RfsDrbX/yNq/oi/YP113tH/YN/ZIN7R/2Df2SD1dT2j8EYXtZ5Q/Ir rbX/AMjav6Iv2B1tr/5G1f0RfsH6672j/sG/skG9o/7Bv7JB6tp7R+CML2s8ofk3SLSxJoqJ6Itl VNXVCKqI4a4a+1SakqzLz5oIZ11OKDxOIdw4kG1KzOa3vN4ilqNJJ0l7cyPZn2uW0fqPvaP+wb+y Qb2j/sG/skLRoGruqaU/0dTRFqcaeUPyyhs4tQaxLrkeyagmTL0E/mbui22k0noJLvGSUpM+PIuP aYxNwWliRcVSVUpNj1NlRoS2TbURzRSlJZEW3Mz/AImP1j3tH/YN/ZIN7R/2Df2SFZ6PibRNW5NX 9IRVTNE482nuh+RXW2v/AJG1f0RfsDrbX/yNq/oi/YP113tH/YN/ZIN7R/2Df2SD1dT2mX4Iwvaz yh+RXW2v/kbV/RF+wOttf/I2r+iL9g/XXe0f9g39kg3tH/YN/ZIPVtPaPwRhe1nlD8iuttf/ACOq /oi/YHW2v/kbV/RF+wfrrvaP+wb+yQb2j/sG/skHq2ntH4Iwvazyh+RXW2v/AJHVf0RfsDrbX/yN q/oi/YP113tH/YN/ZIN7R/2Df2SD1bT2j8EYXtZ5Q/IrrbX/AMjav6Iv2B1tr/5G1f0RfsH6672j /sG/skG9o/7Bv7JB6up7R+CML2s8ofkV1tr/AORtX9EX7A621/8AI2r+iL9g/XXe0f8AYN/ZIN7R /wBg39kg9W09o/BGF7WeUPyK621/8jav6Iv2B1tr/wCRtX9EX7B+uu9o/wCwb+yQb2j/ALBv7JB6 tp7R+CML2s8ofkV1tr/5G1f0RfsDrbX/AMjav6Iv2D9dd7R/2Df2SDe0f9g39kg9W09o/BGF7WeU PyK621/8jav6Iv2B1tr/AORtX9EX7B+uu9o/7Bv7JBvaP+wb+yQerae0fgjC9rPKH5Fdba/+RtX9 EX7A621/8jav6Iv2D9dd7R/2Df2SDe0f9g39kg9XU9o/BGF7WeUPyK621/8AI2r+iL9gdba/+RtX 9EX7B+uu9o/7Bv7JBvaP+wb+yQerqe0fgjC9rPKH5Fdba/8AkbV/RF+wOttf/I2r+iL9g/XXe0f9 g39kg3tH/YN/ZIPVtPaPwRhe1nlD8iuttf8AyNq/oi/YHW2v/kbV/RF+wfrrvaP+wb+yQb2j/sG/ skHq6ntH4Iwvazyh+RXW2v8A5G1f0RfsDrbX/wAjav6Iv2D9dd7R/wBg39kg3tH/AGDf2SD1dT2j 8EYXtZ5Q/IrrbX/yNq/oi/YHW2v/AJG1f0RfsH6672j/ALBv7JBvaP8AsG/skHq6ntH4Iwvazyh+ RXW2v/kbV/RF+wdP7gy1bkoF9XG/W6HNgtu0pCUKkMqQSj1qdhZjtbe0f9g39kh6Q002eaG0pM+8 WQ0wtBjCriuJ3Ozo/wDpTD0DSadIjEmdXqs9iOzv1h0T6Fqn38ESIR2d+sOifQtU+/gjufWpEAAA D4pKVpNC0kpKiyMj4jIfQAR/gtLjpSxSrpqUCKgsm47aWVpbT3EpNxCjIi4iLPIiyItgcHK5y6q3 MRfdCQAAj/ByucuqtzEX3QcHK5y6q3MRfdCQAAj/AAcrnLqrcxF90HByucuqtzEX3QkAAI/wcrnL qrcxF90HByucuqtzEX3QkAAI/wAHK5y6q3MRfdBwcrnLqrcxF90JAACP8HK5y6q3MRfdBwcrnLqr cxF90JAACP8AByucuqtzEX3QcHK5y6q3MRfdCQAAj/ByucuqtzEX3QcHK5y6q3MRfdCQAAj/AAcr nLqrcxF90HByucuqtzEX3QkAAI/wcrnLqrcxF90HByucuqtzEX3QkAAI/wAHK5y6q3MRfdBwcrnL qrcxF90JAACP8HK5y6q3MRfdBwcrnLqrcxF90JAACP8AByucuqtzEX3QcHK5y6q3MRfdCQAAj/By ucuqtzEX3QcHK5y6q3MRfdCQAAj/AAcrnLqrcxF90HByucuqtzEX3QkAAI/wcrnLqrcxF90HByuc uqtzEX3QkAAI/wAHK5y6q3MRfdBwcrnLqrcxF90JAACP8HK5y6q3MRfdBwcrnLqrcxF90JAACP8A ByucuqtzEX3QcHK5y6q3MRfdCQAAj/ByucuqtzEX3QcHK5y6q3MRfdCQAAj/AAcrnLqrcxF90HBy ucuqtzEX3QkAAI/wcrnLqrcxF90HByucuqtzEX3QkAAI/wAHK5y6q3MRfdBwcrnLqrcxF90JAACP 8HK5y6q3MRfdBwcrnLqrcxF90JAACP8AByucuqtzEX3QcHK5y6q3MRfdCQAAj/ByucuqtzEX3QcH K5y6q3MRfdCQAAj/AAcrnLqrcxF90HByucuqtzEX3QkAAI/wcrnLqrcxF90HByucuqtzEX3QkAAI /wAHK5y6q3MRfdBwcrnLqrcxF90JAACP8HK5y6q3MRfdBwcrnLqrcxF90JAACP8AByucuqtzEX3Q cHK5y6q3MRfdCQAAj/ByucuqtzEX3QcHK5y6q3MRfdCQAAj/AAcrnLqrcxF90HByucuqtzEX3QkA AI/wcrnLqrcxF90HByucuqtzEX3QkAAI/wAHK5y6q3MRfdBwcrnLqrcxF90JAACP8HK5y6q3MRfd DJUuksUtLhoccfffVpvPunm44rLIjM/MWwiLYRcQvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAUpX5q9+7V/YVRSlfmr37tX9gGJsf9C6B9FxfukjMrWltClrPJKSMzM+4Qw1kf oXQPouL90kZpSSURpUWZGWRkBPchXXpwr5c0n0hIdenCvlzSfSEjMcA7M5MU30ZPsDgHZnJim+jJ 9gy/u93i863SHGjxYfr04V8uaT6QkOvThXy5pPpCRmOAdmcmKb6Mn2BwDszkxTfRk+wP7vd4ot0j xo8WH69OFfLmk+kJDr04V8uaT6QkZjgHZnJim+jJ9gcA7M5MU30ZPsD+73eJbpHjR4sP16cK+XNJ 9ISHXpwr5c0n0hIzHAOzOTFN9GT7A4B2ZyYpvoyfYH93u8S3SPGjxYfr04V8uaT6QkOvThXy5pPp CRmOAdmcmKb6Mn2BwDszkxTfRk+wP7vd4lukeNHiw/Xpwr5c0n0hIdenCvlzSfSEjMcA7M5MU30Z PsDgHZnJim+jJ9gf3e7xLdI8aPFh+vThXy5pPpCQ69OFfLmk+kJGY4B2ZyYpvoyfYHAOzOTFN9GT 7A/u93iW6R40eLD9enCvlzSfSEh16cK+XNJ9ISMxwDszkxTfRk+wOAdmcmKb6Mn2B/d7vEt0jxo8 WH69OFfLmk+kJDr04V8uaT6QkZjgHZnJim+jJ9gcA7M5MU30ZPsD+73eJbpHjR4sP16cK+XNJ9IS HXpwr5c0n0hIzHAOzOTFN9GT7A4B2ZyYpvoyfYH93u8S3SPGjxYfr04V8uaT6QkOvThXy5pPpCRm OAdmcmKb6Mn2BwDszkxTfRk+wP7vd4lukeNHiw/Xpwr5c0n0hIdenCvlzSfSEjMcA7M5MU30ZPsD gHZnJim+jJ9gf3e7xLdI8aPFh+vThXy5pPpCQ69OFfLmk+kJGY4B2ZyYpvoyfYHAOzOTFN9GT7A/ u93iW6R40eLD9enCvlzSfSEh16cK+XNJ9ISMxwDszkxTfRk+wOAdmcmKb6Mn2B/d7vEt0jxo8WH6 9OFfLmk+kJDr04V8uaT6QkZjgHZnJim+jJ9gcA7M5MU30ZPsD+73eJbpHjR4sP16cK+XNJ9ISHXp wr5c0n0hIzHAOzOTFN9GT7A4B2ZyYpvoyfYH93u8S3SPGjxYfr04V8uaT6QkOvThXy5pPpCRmOAd mcmKb6Mn2BwDszkxTfRk+wP7vd4lukeNHiw/Xpwr5c0n0hIdenCvlzSfSEjMcA7M5MU30ZPsDgHZ nJim+jJ9gf3e7xLdI8aPFh+vThXy5pPpCQ69OFfLmk+kJGY4B2ZyYpvoyfYHAOzOTFN9GT7A/u93 iW6R40eLD9enCvlzSfSEh16cK+XNJ9ISMxwDszkxTfRk+wOAdmcmKb6Mn2B/d7vEt0jxo8WH69OF fLmk+kJDr04V8uaT6QkZjgHZnJim+jJ9gcA7M5MU30ZPsD+73eJbpHjR4sP16cK+XNJ9ISHXpwr5 c0n0hIzHAOzOTFN9GT7A4B2ZyYpvoyfYH93u8S3SPGjxYfr04V8uaT6QkOvThXy5pPpCRmOAdmcm Kb6Mn2BwDszkxTfRk+wP7vd4lukeNHiw/Xpwr5c0n0hIdenCvlzSfSEjMcA7M5MU30ZPsDgHZnJi m+jJ9gf3e7xLdI8aPFh+vThXy5pPpCQ69OFfLmk+kJGY4B2ZyYpvoyfYHAOzOTFN9GT7A/u93iW6 R40eLD9enCvlzSfSEh16cK+XNJ9ISMxwDszkxTfRk+wOAdmcmKb6Mn2B/d7vEt0jxo8WH69OFfLm k+kJDr04V8uaT6QkZjgHZnJim+jJ9gcA7M5MU30ZPsD+73eJbpHjR4sP16cK+XNJ9ISHXpwr5c0n 0hIzHAOzOTFN9GT7A4B2ZyYpvoyfYH93u8S3SPGjxYfr04V8uaT6QkOvThXy5pPpCRmOAdmcmKb6 Mn2BwDszkxTfRk+wP7vd4lukeNHiw/Xpwr5c0n0hIdenCvlzSfSEjMcA7M5MU30ZPsDgHZnJim+j J9gf3e7xLdI8aPFh+vThXy5pPpCQ69OFfLmk+kJGY4B2ZyYpvoyfYHAOzOTFN9GT7A/u93iW6R40 eLD9enCvlzSfSEh16cK+XNJ9ISMxwDszkxTfRk+wOAdmcmKb6Mn2B/d7vEt0jxo8WH69OFfLmk+k JDr04V8uaT6QkZjgHZnJim+jJ9gcA7M5MU30ZPsD+73eJbpHjR4sP16cK+XNJ9ISMpb2IVlXZNXT rcuSDUJLbRvKaYdJSiQRkRqyLuZqIv4ipwDszkxTfRk+wXdNtm36M+qVSqNEiPKQbZrZaSlRpMyP LMu5mRfUJjaXzs0w403XjaTTbrte7JiOzv1h0T6Fqn38ESIR2d+sOifQtU+/gjR3JEAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAPKkktJoUWZKLIx6ABHGIl00SO3TKTGp8yIwWgwb7ymlobL4qDySZHkWzPZsIh633 fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt 9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fX iWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt93 14lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiW j+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314 lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+ nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo /pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nO e7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/p znuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7 EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pzn uw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7Eh ABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuw 33fXiWj+nOe7EhABHt9314lo/pznuw33fXiWj+nOe7EhABHt9314lo/pznuxc06mT3Kl1crRs76S wqMw0yZmhltRpUvtjyNRqNCMz2bEp2cZnmAAAAAAAGLul242LYq71nRYMmvtwJCqUzPWpEZ2YTaj ZS8pPbJbNeiSjLaRGeW0BlAHMHCj4RvyYYH+vKj0A4UfCN+TDA/15UegA6fAcwcKPhG/Jhgf68qP QDhR8I35MMD/AF5UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/XlR6ADp8BzBwo+Eb8mGB/ryo9A OFHwjfkwwP8AXlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP9eVHoAOnwHMHCj4RvyYYH+vKj0A4 UfCN+TDA/wBeVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/15UegA6fAcwcKPhG/Jhgf68qPQDhR 8I35MMD/AF5UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHw jfkwwP8AXlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP9eVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN +TDA/wBeVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/15UegA6fAcwcKPhG/Jhgf68qPQDhR8I35 MMD/AF5UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkw wP8AXlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP9eVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA /wBeVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/15UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/ AF5UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP8A XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP9eVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/wBe VHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/15UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/AF5U egA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP8AXlR6 ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP9eVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/wBeVHoA OnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/15UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/AF5UegA6 fAcwcKPhG/Jhgf68qPQDhR8I35MMD/XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP8AXlR6ADp8 BzBwo+Eb8mGB/ryo9AOFHwjfkwwP9eVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/wBeVHoAOnwH MHCj4RvyYYH+vKj0A4UfCN+TDA/15UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/AF5UegA6fAcw cKPhG/Jhgf68qPQDhR8I35MMD/XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP8AXlR6ADp8BzBw o+Eb8mGB/ryo9AOFHwjfkwwP9eVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/wBeVHoAOnwHMHCj 4RvyYYH+vKj0A4UfCN+TDA/15UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/AF5UegA6fAcwcKPh G/Jhgf68qPQDhR8I35MMD/XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP8AXlR6ADp8BzBwo+Eb 8mGB/ryo9AOFHwjfkwwP9eVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/wBeVHoAOnwHMHCj4Rvy YYH+vKj0A4UfCN+TDA/15UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/AF5UegA6fAcwcKPhG/Jh gf68qPQDhR8I35MMD/XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP8AXlR6ADp8BzBwo+Eb8mGB /ryo9AOFHwjfkwwP9eVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/wBeVHoAOnwHMHCj4RvyYYH+ vKj0A4UfCN+TDA/15UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/AF5UegA6fAcwcKPhG/Jhgf68 qPQDhR8I35MMD/XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP8AXlR6ADp8BzBwo+Eb8mGB/ryo 9AOFHwjfkwwP9eVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/wBeVHoAOnwHMHCj4RvyYYH+vKj0 A4UfCN+TDA/15UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/AF5UegA6fAcwcKPhG/Jhgf68qPQD hR8I35MMD/XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP8AXlR6ADp8BzBwo+Eb8mGB/ryo9AOF HwjfkwwP9eVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/wBeVHoAOnwHMHCj4RvyYYH+vKj0A4Uf CN+TDA/15UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/AF5UegA6fAcwcKPhG/Jhgf68qPQDhR8I 35MMD/XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP8AXlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjf kwwP9eVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/wBeVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+T DA/15UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/AF5UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MM D/XlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP8AXlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP 9eVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/wBeVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/1 5UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/AF5UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/Xl R6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP8AXlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP9eVH oAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/wBeVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/15Ueg A6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/AF5UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/XlR6AD p8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP8AXlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP9eVHoAOn wHMHCj4RvyYYH+vKj0A4UfCN+TDA/wBeVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/15UegA6fA cwcKPhG/Jhgf68qPQDhR8I35MMD/AF5UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/XlR6ADp8Bz Bwo+Eb8mGB/ryo9AOFHwjfkwwP8AXlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP9eVHoAOnwHMH Cj4RvyYYH+vKj0A4UfCN+TDA/wBeVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/15UegA6fAcwcK PhG/Jhgf68qPQDhR8I35MMD/AF5UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/XlR6ADp8BzBwo+ Eb8mGB/ryo9AOFHwjfkwwP8AXlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP9eVHoAOnwHMHCj4R vyYYH+vKj0A4UfCN+TDA/wBeVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/15UegA6fAcwcKPhG/ Jhgf68qPQDhR8I35MMD/AF5UegA6fAcwcKPhG/Jhgf68qPQDhR8I35MMD/XlR6ADp8BzBwo+Eb8m GB/ryo9AOFHwjfkwwP8AXlR6ADp8BzBwo+Eb8mGB/ryo9AOFHwjfkwwP9eVHoAOnwHMHCj4RvyYY H+vKj0A4UfCN+TDA/wBeVHoAOnwHMHCj4RvyYYH+vKj0A4UfCN+TDA/15UegA6fAcwcKPhG/Jhgf 68qPQE7wbrO6xqNzymMdrOw5pNATAWuM9blRlyJKpmsbJCVJeSSSb0DdMzLbmSe4ZgNyAAAAAAAA +D6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwrVcpVu052rVma3Fislmt xZ7C/wCZn5iGpr53RVrs2vJds2o75qi1kw0lTSk6Geebm0tpERfWZDzOkemNC6LomrScSImIva+c +6Ho6B0TpnSdcU6NhzMTNr2m0e+W16lcNDpBkmp1WLGM+InHCI/qFeBU6dVGtdTprMlHymlkov6D gWp1iqViUubU5z0l5wzUpbizMzMZK0r2uGzKo1U6NPcbNtRGto1GaHC7pKLuj86wv/1Poq0jVxMG 2HfffOO9+hYv/wCmmJTo+th418ThbL3O8gGEs654l3W3AuCNklMxolmjP4quJRfwPMZsfqeDjUaR hxiYc3iYvD8wxcKvBrnDri0xNp+AAANWYAAAx9wyn4VBqMyMvQeYiuuNqyzyUSDMj+scwT91lSI+ 5Sq91FfhJvyNac6Uy71Pc7WoIYcNs8tXq9iyT/lHUNchvVGiz6fHNJOyYzjSNI8i0lJMiz+sadmY KXE/uTqrgslFK4RzbSm0Rt01nvcpLrC0IM16Olo6SizPRzy7gwqir+5bhTb3/mvbw8FqLbXDvuvN /wDTv8V5Usfl0c3KbTbMq9zyKJSY1SuCRCNtCISXW9MtijLTWaSUvQTtyLzkLa4d1BSIUupRLRsi s3V1KtyPdUhcFbaE7weJ0yUnTMs1/iVFocZ/wMWMnDbF+0atcirDhW7U4d60uJGluVCc5HXS5bMf e5uoSlpZSEGnI9AzbPNPxtuz7Y+AVesquXNveZCfp1QsSmWzCcNZpcVJj771i1p0ckoM5CMsjM+P Zs29O+uY6s/3t+zGnW1Ivvy/a/xZe290xbNbkwHqpb1UodHrVEduGkVOboE3MhttpcWo0Eek2ZIV pZKLaQyFnY7xblrtFo9Xs6rW+zdTTr1vS5poNFRJts3FJySZm2vVEaySraaSV8kxC6xudbiuO3sP 7Yqk6GxGoNlSraqrrLqlLS87CQwSmiNPbJJSTPblsy2Czwh3O9Xta7rWqlbsK0aO3Z7DyUVKBMdl yKk8phUdK0ocbSUQtBazURKcM9LR0iIj0q4cxVnVlv8ACZtPxiyZmbTbu+kfvd0mKb7zcdlb7qiS htJqUZ8REXGYqCE40UC87rwwuC1rBlRYtarMU6e1JkuKQmO28ZIddI0kZ6aGlLUkstqiSRmRbRWq 9st7SLXzamwbxlvm4MTCfuyeSrTv5E6RaTKmkp1CYj2rJJKIiNRPNpU8WZnsMstgYT7o+vO0Budf 9tVd2luXRMoK7jNDSI7ThznGI6TbLJWhnqm9Zllme3umLq5tyhatvUq2Kpgrb9No9zWlUIciA886 tLamEGSH2lGRKyJbRq4i48hjqXg5jXLstvCG4GLai2+7chVqTWYc91UkoiKiUwoqY5tkRrUaEoN3 WEREo+0MyzCrfTq9V4nw/bxhlN9bPdOfu+9/gm1R3R1Jg1GoPtWjVpNr0iplSKhcSFNlHYk6ZIUW gZ6akpWZJUoiyI8+8Yytdx1tyhWhiBeT1NmPRMPXnWZqG9HSkGiM0+Zt7csjS6ktvdIxr+bgximi h3FhHAaoDtn3HW3qqdadmOFMisPyNe9H3rqzS4rS0iS5rUkRK+KeW3G4kYJ40VC38VcOrKjW0/Rc RV76jVSfPdaegGcJlhxhUdLSic0jj7HNYnR1uZoVo5KtRnERV/4//bl1LVX1p1d2f1/LzjenmE2K V43tiriHbFat12FSLedhIpzynGzI0uNGo8ySelmrMj28RFkNwjV2HdiXdaGJ95VqbFp7tEuNqA+x Jblq17bzLOrW2pk0ZaPdJen5tHujaIR+imO6Odsym96r8Z5dTT26Xu6uWpb9rJot4rtdFYueFTJt TRqdJmM4lw15G8lSE7Up2mQidJxKqNk4pN0CJinKxHt521anXKo4oojq6W5EcY1Wi7GQhBa5Lrxa C8zM2iMsiI89h424az8TItqQIzEB+NSLliVWc1MPtHI7SXCURFkekrNZZEeRecZytYfURFo1+iWl Q6ZTZNWgPRiNplLSVLUhSU6RpLiIzFaLxe/GfpDSqY1YiGs3t0i0cChXdLtC5YMSp0SoV2FBI2FH OiMMNvGtSdqkq0V9qnMtuefcE3qeN1pU+VRWGW5U1NZoEu5SXFRrNTBYJrNakltM1qfQlJFxnpd4 xgKfhHcDVawslTjp7kSz7ck0iqo1ij1jjkZlrJstHtk5tqzzy2GWwa6w+3MOJduWjiXSqpdEFuq1 OncFLMlsOrXvGhMG8uKTpmRGl01yFkvRz2Nt7Ty2Wryw41d9p+tUR/8AjPuurRF6vzbrx9I+mfg2 FQ90zbkm4p9t3bQpFtSYNGfrx75lsPHvRktJw3EtqNTSiSZHoqIj2isvH+oRbcn3dVMKLkiUhilu VeJIM2lnJjo0TPNJKzaUaFEokq2nkZdwajiblu+a9cGU60LQsq35tpVa3Z7NKqLs6WqRLQlJSdat lvTLYfaGWzItp5jcVuvYmU+hdRcWaRZ1Itak0lyPUqqiquO78SlBI1mrW22iKjIlKUSlu5EeWezS NVamJmOrx+KtF5trdf3uSamYo0Kt3tGsqkNOy3H6I1XVSm8jZbjuqyaIz76tpl5iGqr4u2rzt0TW bEqGN8ixaJTrSpdUistOQWtfJflTW3VGqS2o1ZJYaLIj2fxDcc2TU6NbVcu6syjl9Vp64NHkGky0 qNFUpuGaSP8AwmjiMthkRGXGJg9g0zV8e67iTclHpFRo8616XR4iJCCdebkMSZrrp6Kk5Ek0yGsj I8zMj2FltiqJiqnx5T9JyXpn8td9+VvhMfXOUOw+x+qcKjPUOfv6+as7cE2k28/GQ0y5V4sckqXI UrtWiSjT0TWREkzyyLaMxOxxk3C7ayaEiVRZjd5cHbjpclCFPRlpiuPG0o9pGRpNpaVp2GlRGQze ImG9xM3JaF94YU2kOTbSRMilR5TxxI8mNJJBLJLqEL1S0m2kyPQUR7Sy25lFKXgbfDtVRetbdpLd brV8ouyrRWHlKZhsIpyYTUdpw0EbykoabM1mlGkalHkkskiuJMzRM07/AOI+q0W1o+H1zZa3sf2K jRqHCtS3a5dlaqseTO3qpxhl5qK3IWzrHV9qgs1oNKSIszIvMYz8THWgHUKpTa1RqlRX6XbTNzrR OQlClxlKcQ4giz+O2psiV+8R3xrqw8GMVsJX6LdNuU+g16pt0h+jVOmSam5Ea0DmvSWnmpBMuHmR OmSkm3t2ZGWW3EboW2K/flZw1tZyq0hm96o8uDccGmKUZlQXyNUpWRq00tJUw3k4rIlLTkREatEt seKYxJjDnKZmI8bfDdeeDKmcvzRui/K0z+8Q6Qs+427vtalXSzBfht1aI3MbYfy1iELTpJJWXdyM hmBSjRmYcdqJGbS20ygm0ISWRJSRZERCqK1WvOruTTe0X3ue8TaViRS8WbGt+kY3XTCp14TaiiSw 3GgKKOhmPrUJaNTBmRZ7O2M9gy9Px9p9vsvxpNNr9cty36gdCqd4PakmzmoXq3NJtBJNRJcPQUtK SSSiUXcMSy+7ErVyYlYeXbT3IqYVrSag9OJxZk4aX42rRoERGRnpceZlsGkE7k2p0+s1qhxbOtSo Uus3HKryLjnTHFS4zcqWqU6wqEbZtuqSta0oXrElo6OaTNJmqmHFqopnd/PkiOuZ4+FvNse5t01S bZjXzWZFlVl+iYfk6mq1Fs29BTqCQeg0gz0lmaVkeZbNmXGLeTul6hFuGqWm9g9cpVanUxFcSzrW NB6nGpSTeJelklRGks2z7btiFveeCF317DDFezae7TUzL0qD0mmG48om0tqJsi1hkkzSfaHxEfcE trGHVen4hVe6WHIhQ51nLoLRKcMnCkm8ayMyyyJGR8eefmGNVeJTTVMReerl5piZmuimYynf3MNK 3StJmTabTLItCp3NOn0Ju4lRY7zTDrcNZqJJpS4ZG4rNCyNKc8siz4yGxLlvmh2jZcm+q+p+LTok UpTqVt/jUkZFkjR+UZmRZd8c/XFufrylYe23acvDSzbonUm3lUtqe9WpFNlU6QojJam30MuG4g+1 MiImzSaTPM8yy2lcmE1dujANrCms3UubW0UiJEerD6DM5EtkkHrlpzzMlLRmZZ57T2jpxLRFWr1b vFGDM1ak15XjPwYtzH6onEq1OlYd1WkXEigya7RoE15o+qLDRESjSpJ6KVJNSNJCjIyJRCzwHu++ 69uYqbiRd1Unv16s2+Vc1ksmPxanIqXE6smkkkmsz0kkrNREeSjMeWcOsUr3uhm78QabQKM/Q7bq VDpsSnT3JaZT8wmtZIccU02bacmUETZErLSUZqPZlM8J8Pp9qYF2nhhcy2FzKTa8GiT1Rlmts3Go qGXDQoyIzTmk8jMi2dwUxqf7NcUb5ibeNvi0omIqomrjn98EAubE69afuK63ixEq+hdESyZNWZm6 pB6MpEZS0r0MtHYoiPLLISR/HYmrpesujWfUrgmUmPDerDkR5lK4pPpI0qJpRktwsjzM0lkXEIbP wpxjrGFTu51n0e2mrXmRTosu5Gqo7vlVMPYskQtTkl1Tf4vPXmSTVpZHlonWxswVuu+7idlUCw7W OWphiPTrqKrPwajTEpUk1ZtoaVr8jSRpLWNl3DLujXEqpmq9O6Z83PhU104dNNe+Iz8P5Sy6d0JA t+rXAxT7MrNZpNnoQq4qpE0NXAzb1q0kgz0nVIbMlKJBbM8uMbTgzYtShR6jBeS9GlNIeZcSeZLQ oiNKi8xkZGOWrp3Ltxncd2O0y0bVudF5OIknWqzPeZepj62ktPKVGS2pEtBaOsSjTbzzNJnltHT9 FpjFEo0CjRkpSzAjNRmySkkkSUJJJZEWwiyLiIVtaGl5md1sl6AAIWAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAHhxxtos3HEoI+6o8gHsB5NxCUkpS0kR8Rmewx9AfQHhDrTmZNuJ Vlx6J55BrmtE1axGik8jPSLIjAexbVGoRKTBfqU99LMeM2bjq1HkSUkWZmKy3mUZabqE6XFmoizE XxNtaZetmTbep9RRDXKNvN5RZp0UrSoyPaXGRZDn0vExMLArrwadaqIm0cZ6m+jUYeJjUUYtVqZm Lzwjrc8Y2YzQcQYjNDo0V5qLFkG6bqzy1xZZFs73dGtKfbdaqkffUCFrWjM06WsQnaXmMyMbdRuW K44eTd1wFH/laM//AKhURuWLkNObV1xDT/laVl/4h+F6f0D/AFB0tpdWl6bgTVM8JiPdxftugdPd AdFaLTouhY8UxHGJn38Gp+BNz+LP95vpDLW5hNedyT0QosBtvM+3Wt5BkhPdPIjMxsI9y1cqVEg7 tiEo+ItWrM//AJhIbFwFuWyLli19y7IxpYJz8WSVJ1hmgyIjzVxZmR/wE6F/R+l1Y9EaRotcUXz/ ADRu5K6b/WGi06PXOjaTTNdsvyzv5qdfta5rMfgU2gS3UxocVttCmnyRmsszUZln3TMxsPC2+JN0 RH6fVTI58LLSUWzWJPZn8+fGItUMH7lqj65866WHluHpKcUk8v7iQYcYdv2lVpFQfq7Eo3WDaJDX c7YjzPb5v6j63ofQ+ldD6Y2mFhVUYFUzeJqvFurLqfB9J6VoGldHzTiYlNWNFrTEWm/Xn1tigAD9 OfEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDrTTzamnm0uIWWSkqLMjLvGQ9gA8ttttIS20hK EJLIkpLIiLzD0AAAAAAKW9o+v31qG9do6Gs0S0tHvZ8eQqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD89t1XOtqpbraRbu6duO5aLhWxazci2F U955mK9Ucy1ylqa43SPS0SPvEP0JGPq9v0KvtoarlHhz0NnpITJYS4ST75aRbAH534rXO7SNw7Yd dpN03nLpEK/KUqNUK+2pqeqmoloPNeXbKbJJKyM9pkXeyG7N09j7MxK3I+Id0blS5n6vWKWUeM/I pjaykx2VOtnINosiPTJlSjzLaRZmW0iHUs2gUSowEUqfSIciE3o6Ed1lKm05cWSTLLYPNLt6g0Rh 2LR6NChMvHm42wwlCVnllmZEW3YA/Ovc6TLQpe6dw+gbla6btrVtVKhvOX4iqOvuR21khOrW5rNi X9LPNJDWmIeItTtDAzdKYA1ap11vEe4MSo0i24CGn1PSYhzICtJhRF8TQYe4jy2+cfq/SrdoFDU4 qjUWFBN483DjsJbNZ+fIto8SbXtyZUkVmXQYD09oyNElcdCnUmXFkoyzAfnru02bbp2M+53t/GCu VimWu3a01qtOQZDyFa9tLBJPNvaatMjyFO3K7ibJ+Dhxwk1ep3HIpsKXPasydVDcTUHaQS2dUpRn 2/xjcIjPuF3h+iFWtq3q6409WqJBnrYIyaVIYS4aM+PLMtnEQrvUqmSKeqkv0+O5CWjVqjqbI2zT 3jTxZAOH9wfgteNpW6nES67FKkJq1mRn4dSK4ZExyap5lCzUthZ6LRmR6WziM8hkPg7N0Hh8eElu 4Q3Deil31IrVbSVPkk4p5RHOkuo7Yyyy1REZbeIdrMxo8eOiGwwhthpBNobSkiSlBFkSSLuFlsyG KhWVZ9OmoqUC2KXHltqNSH2oqErSZkZGZKIs+6f1gPy+3T+OuKVZ3T1SxesKn3TItjBmoRaa1vBh aoMnRc/9IG8ZHt7U9Eth7UjbHwhNXmYiytzlMs+jVG4qdc8+oyTpcGc5EOe0qKwtKDdRkae6ZH5h 3m3b9CajSYbVHhoYmKUuQ2TCSS6pXGaiy2mfnH3qDRcoRdSYmVN/My1Kf+H2Zdps7XYRFsAfmZYl WvF34NHG6rPV+qIcTOkpplKflOuzaG0mU0W9lLV2+Ze3ziUfBhuW0/e9RfKZTnK6dqJzTHqsyS6p o32Ncpxt49BJksmdqduZmRbMx+hCbat5MSVATRIJRpyjXJZJhOg8ozzM1llko8++KdJtO16DJVMo lvU6A+tBtqcjxkNqNBmRmkzIuLMiPLzEAywAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//9k= --000000000000f491e805f213409b--