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Abstract—The FQ-CoDel queue management algorithm was
recently published as an IETF RFC. It achieves low latency
especially for low-volume (or sparse) traffic flows competing with
bulk flows. However, the exact conditions for when a particular
flow is considered to be sparse has not been well-explored.

In this work, we analyse the performance characteristics
of the sparse flow optimisation of FQ-CoDel, formulating the
constraints that flows must satisfy to be considered sparse in a
given scenario. We also formulate expressions for the expected
queueing latency for sparse flows.

Then, using a numerical example, we show that for a given
link and a given type of sparse flows (VoIP traffic), the number of
sparse flows that a given bottleneck can service with low sparse
flow latency is only dependent on the number of backlogged bulk
flows at the bottleneck. Furthermore, as long as the maximum
number of sparse flows is not exceeded, all sparse flows can
expect a very low queueing latency through the bottleneck.

Index Terms—FQ-CoDel, Queueing Latency, Bufferbloat

I. INTRODUCTION

THE FQ-CoDel queue management algorithm, which was
recently published as an IETF RFC [1], is a hybrid AQM

and packet scheduling algorithm that has been shown to be
an excellent remedy for the bufferbloat problem of excessive
queueing on a congested link [2]. In particular, FQ-CoDel
achieves very low latency for low-volume traffic competing
with the bulk flows causing the congestion. This is due to the
sparse flow optimisation employed in the flow scheduler.

However, while FQ-CoDel has been shown to achieve very
low latency for such sparse flows, the exact conditions for
when a particular flow is considered to be sparse has not been
well-explored, as noted in the RFC [1, Section 1.3].

The contribution of this work is an analysis of what exactly
constitutes a sparse flow in FQ-CoDel. We achieve this by
formulating analytical expressions for the constraints flows
must satisfy to be treated as sparse by the FQ-CoDel scheduler,
and supplement with a numeric example and simulation for a
typical example of real-world traffic (real-time VoIP traffic).

The rest of this paper is structured as follows: Section II
first summarises related work and Section III explains how the
sparse flow optimisation in FQ-CoDel works. Section IV then
presents our analytical framework and results and Section V
shows the real-world examples. Finally, Section VI concludes.

II. RELATED WORK

While several studies have measured the performance of
FQ-CoDel (e.g., [2]–[4]), none deal specifically with the sparse
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flow optimisation, and none offer any analytical expressions
for the performance of the algorithm. However, similar algo-
rithms have been subject to analysis, as summarised below.

FQ-CoDel is based on the deficit round-robin (DRR) sched-
uler [5]. The authors of DRR propose an extension called
DRR+ where "latency-sensitive flows" are given priority as
long as such a flow never sends more than x bytes every
time period T , which can be said to be an a priori analytical
expression for the constraints of a sparse flow. This mechanism
is expanded upon in the DRR++ [6] algorithm, which adds an
extension to the mechanism to better deal with bursty latency-
sensitive flows. The scheduling of DRR++, in particular, is
identical to that of FQ-CoDel, except that DRR++ requires
flows to be explicitly classified as latency-sensitive (without
specifying any mechanism to do so), whereas FQ-CoDel
applies the same scheduling to all flows, which means that
latency-sensitive flows are only classified implicitly. However,
since the authors of DRR++ assume an a priori classification of
latency-sensitive flows, there is no analysis of their constraints.

The implicit classification mechanism of FQ-CoDel is sim-
ilar to that used by the Shortest Queue First (SQF) queueing
scheme [7], which works by simply dequeueing packets from
the shortest queue available at the time of dequeue. This gives
implicit priority to flows that do not build a queue, such as
voice flows and low-bandwidth video streams. However, since
SQF does not use a round-robin scheduler, it gives no service
guarantees to the backlogged bulk flows. The authors provide
both analytical and experimental evaluations of the algorithm
performance characteristics in [8].

The Quick Fair Queueing (QFQ) algorithm [9] is an O(1)
scheduling algorithm that implements fairness queueing be-
tween flows in a way that approximates a fluid model of the
flows with high accuracy. The paper provides an extensive
analysis of its performance characteristics.

Finally, a comprehensive analysis of the number of active
flows in a fairness queueing system is provided in [10]. This
does not treat queueing latency, nor does it distinguish between
types of traffic, such as sparse or bulk flows.

III. THE SPARSE FLOW OPTIMISATION

The FQ-CoDel sparse flow optimisation works as follows:
When a packet arrives at the router, it is hashed on its

transport layer 5-tuple (source and destination IP, IP protocol
number and source and destination ports). The result of the
hash, modulo the number of configured queues, is the queue
number of that packet, and the packet is enqueued to that
queue. If this queue is already active, no further action is taken.
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However, if the queue is not already active, it is made active
by being added to the end of the list of new queues.

When dequeueing a packet, FQ-CoDel first finds a queue
to dequeue from. This is done by first looking at the list
of new queues, which gives priority to queues that recently
transitioned from inactive to active. If the list of new queues
is empty, a queue is selected from the list of old queues (which
is every queue that is not a new queue). Having selected
the appropriate queue (either new or old), that queue gets to
dequeue packets at most totalling quantum bytes (which is
configurable, but defaults to one MTU), and afterwards the
queue is moved to the end of the list of old queues. When a
queue becomes empty, it is removed (and so transitions to the
inactive state) as long as it has transitioned through the list of
old queues at least once.

Since empty queues return to the inactive state, it is possible
for a flow to have all its packets trigger the re-activation of
the queue when they arrive at the router, which will give the
flow effective priority for its entire duration. In the following,
we explore what it takes for a flow to achieve this.

IV. ANALYTICAL FRAMEWORK

Consider an FQ-CoDel instance managing a bottleneck with
transmission rate R bytes per second, with N backlogged
flows sharing the bottleneck (and so each achieving a rate of
R/N bytes per second). We do not concern ourselves with the
performance of the N flows, and we assume no hash collisions
occur. We furthermore assume all flows transmit packets of
equal size L bytes and that the FQ-CoDel quantum Q = L.

A. One sparse flow

Consider a sparse flow S transmitting packets of size LS ≤
L bytes. What is the maximum transmission rate that permits
this flow to be prioritised by the sparse flow mechanism? We
first assume that the packets of S are equally spaced with
inter-arrival time IS seconds.

When a packet from flow S arrives at the bottleneck, it
will have to wait for the packet currently being serviced to
complete transmission. After this, the queue of flow S will be
activated as a new queue (i.e., get priority) and be serviced
immediately. Once the packet has been transmitted, the queue
will be moved to the end of the list of old queues, and if it
is still empty after the scheduler has cycled through all the
backlogged flows, it will be removed.

This means that to get treated as sparse, the next packet
from S has to arrive after the queue has been removed from
the scheduler. I.e., after the transmission of the previous packet
in S, plus the bulk packet being serviced on arrival, and one
additional packet from each backlogged flow. This translates
to the following constraints on S:

IS >
L(N + 1) + LS

R
⇒ RS <

R
L
LS

(N + 1) + 1
(1)

Where RS is the rate of flow S.
Next, we consider what happens if the packets of S are

not equally spaced (i.e., that IS varies between subsequent

packets), but still obeys the rate restriction in (1). There are
two cases to consider: The case where the packets of S are sent
in bursts of several back-to-back packets with longer spaces
between them, and the case where the inter-arrival time simply
varies so that, say, every other packet pair obeys (1) and every
other pair does not.

In the case of bursts we assume that the bursts themselves
are equally spaced over the lifetime of the flow. If the total
burst size is less than the quantum size (i.e., Q >= nLS for
bursts of n packets), all packets in the burst will be dequeued
at the same time, and we can simply consider the behaviour
equivalent to the case where the flow consists of single equally
spaced packets of size nLS . If the burst is larger than the
quantum size, the first Q bytes of each burst will be dequeued
immediately, while the rest will be queued until the next round
of the scheduler1.

For the non-burst case, we consider the packets p1, . . . , pn
of flow S with inter-arrival times i1, . . . , in−1 since the
previous packet. By assumption, the average inter-arrival time
is IS and obeys (1). This means that inter-arrival times will
alternate between being less than or more than IS . I.e., every
sequence of consecutive packet arrivals with inter-arrival times
i−0 , . . . , i

−
j < IS will be followed by a sequence of packet

arrivals with inter-arrival times i+0 , . . . , i
+
k > IS (otherwise

(1) wouldn’t hold). We label the i’th sequence of packets with
inter-arrival times < IS as I−i , and the (ordered) set of all
such sequences as I−. Similarly, the j’th sequence of packets
with inter-arrival times >= IS are labelled I+j , with the set
of all such sequences given as I+. We furthermore impose a
regularity constraint on the flow:

∀I−i ∈ I− :
I−i + I+i

2
≥ IS (2)

where I−i is the average value of ik ∈ I−i . I.e., (2) states that
every sequence of packets with inter-arrival times smaller than
IS must be followed by a sequence of packets with inter-arrival
times larger than IS , such that the average inter-arrival time
satisfies (1) when looking only at those two sub-sequences.

Given these constraints, packets in I+ will receive the low
latency performance from the sparse flow optimisations, while
packets in I− will arrive while the queue is already being
scheduled, and so will experience higher queueing latency. The
actual queueing latency experienced by packets in I− depends
on the distribution of packets; exploring this is out of scope
for this analysis.

B. Multiple sparse flows

If M sparse flows go through the bottleneck, and we assume
that all sparse flows have the same packet inter-arrival time IS ,
this inter-arrival time will have to satisfy:

IS >
L(N + 1) + LSM

R
(3)

1Since we assume that the average rate of the flow obeys (1), the queue
has to be cleared out before the next burst.
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In the worst case scenario, the sparse flows synchronise (so
packets from all flows arrive at the same time). In this case,
the expected queueing latency for all sparse flows will be:

LS(M − 1) + L

2R
(4)

Where the L is due to the bulk flows not being preempted.
However, this worst-case latency is only seen if the sparse

flows synchronise so that their packets arrive at the same
time (and have to queue behind one another). We can express
expected queueing latency of a sparse flow in the average case
by modelling the arrivals of sparse flows as follows.

Since we have bounded the inter-arrival time for each flow
by (3), all flows are by assumption sparse themselves. This
means that when a packet on a given sparse flow arrives at
the bottleneck, it will not queue behind any other packets from
the same flow, but only behind other sparse flows. Since the
sparse flows are served in round-robin order, this becomes
equivalent to a FIFO queue of flows waiting to be serviced
(each of which has a single packet queued), and so we are
really expressing the distribution of flow start times. Assuming
Poisson arrivals for the flows, this system can be expressed as
an M/D/1 queue (as link capacity and packet sizes are fixed).
This will allow us to express an upper bound on the expected
queueing latency of the sparse flows (since the flow arrival
distribution with a fixed number of flows would be a right-
truncated exponential distribution, rather than the exponential
distribution assumed in an M/D/1 setting).

This M/D/1 queueing system has the following values for
arrival rate (λ), service rate (µ) and utilisation (ρ):

λ =M/IS , µ = R/LS , ρ =
MLS

RIS
(5)

From this, we can straight-forwardly express the expected
queueing time ωq as a function of the number of sparse flows,
the packet size and inter-arrival times and the link rate:

ωq =
ρ

2µ(1− ρ)
=

MLS

RIS

2 R
LS

(
1− MLS

RIS

)
=

MLS

2 R
LS

(RIS −MLS)

(6)

This is useful for predicting and upper bound the expected
queueing time for any concrete flow type (where these values
are known), as we will see in Section V. Note that in the case
where there are also bulk flows present, we need to add L/2R
to the expected queueing time, to account for the packet that
is being processed when a packet from a sparse flow arrives.

C. Impact on bulk flows

Since the sparse flow optimisation simply corresponds to
inserting new queues at the head of the round-robin list instead
of at the tail, the steady-state performance impact on bulk
flows is the same as for DRR; i.e., given two flows flow i and
j, for each dequeue opportunity afforded to i, j has at least
one dequeue opportunity. As such, the expected service given
to each flow scales with the total number of bulk and sparse

flows (i.e., it is proportional to N +M ), in the worst case. In
practice, many sparse flows will have rates significantly lower
than the bulk flows, in which case the DRR scheduler will
divide the spare capacity between the backlogged bulk flows.

D. Impact of changing the quantum

We initially assumed that the quantum Q = L, which means
that a bulk flow can dequeue a full packet every time it is
scheduled. If Q > L, every bulk flow is still serviced every
scheduling round, but may dequeue more than one packet.
Whereas, if Q < L, each bulk flow will get a dequeue
opportunity every L/Q scheduling rounds and, conversely,
only QN/L bulk flows will dequeue a packet each round. In
the case where only bulk flows are present, these two effects
cancel each other out. However, in the presence of sparse
flows, the quantum impacts the bounds on sparse flow inter-
arrival time given in (3). Assuming Q >= LS so sparse flows
always dequeue a full packet when they are scheduled, this
becomes:

IS >
Q(N + 1) + LSM

R
(7)

V. REAL-WORLD EXAMPLES

Using (6) and (7) we can compute two useful properties:
The maximum number of sparse flows a given link can sustain
as a function of the number of backlogged bulk flows at the
bottleneck, and the expected queueing time for each such
sparse flow. To do this, we can rewrite (7) as follows, while
also including the case where there are no bulk flows:

Mmax <


ISR

LS
, if N = 0

ISR−Q(N + 1)

LS
, if N > 0

(8)

We also need to assign some values to the variables in the
equations. For our example, we consider a 10 Mbps Ethernet
link where bulk flows transmit full-size (1518 bytes) packets
and the quantum is set to coincide with this full packet size
(as is the default in FQ-CoDel), and the sparse flows consist
of a number of G.711 VoIP flows at the highest (64 Kbps)
data rate, which transmits packets of 218 bytes (160 bytes
payload + RTP, UDP, IP and Ethernet headers) at a fixed 20
ms interval. These values are summarised in Table I.

TABLE I: Values used in the numerical example

Variable Value

Q 1518B
LS 218B
IS 0.02s
R 1.25 MB/s (10 Mbps)

With these values, (8) tells us that the maximum number of
VoIP flows the bottleneck can handle while still treating them
as sparse flows, is a linear function of the number of bulk
flows backlogged at the bottleneck. With no bulk flows, 114
sparse flows can be serviced, which correspond to the number
of VoIP flows the bottleneck link has capacity for (each flow
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transmits at a link-level rate of 87.2 Kbps). With 15 bulk flows
backlogged, only three simultaneous VoIP flows can traverse
the bottleneck link as sparse flows, and with more backlogged
flows, the VoIP flows will no longer be treated as sparse. The
number of sparse flows per bulk flow is related to the ratio
between the quantum and the packet size of the VoIP flows.

Turning to the expected queueing time of the sparse flows
themselves, Figure 1 shows this as a function of the number
of sparse flows. To verify that the model accurately predicts
an upper bound on the queueing latency, we have also created
a simulation of FQ-CoDel in the Salabim event-driven simu-
lator2. The results from the simulation are also included in the
figure.3 Note that the expected queueing time does not depend
on the number of bulk flows, other than to limit the number of
sparse flows that can be supported. In fact, a sparse flow can
experience lower latency when competing against bulk flows,
than when competing against a large number of other sparse
flows. This limiting is illustrated by the two graphs, where
Figure 1a shows the case of no bulk flows and Figure 1b
shows the case of a single bulk flow.

The thing to note here is that the expected queueing latency
is kept very low for all the sparse flows, and that adding bulk
flows does not change this, other than to add a constant to the
queueing time corresponding to the packet being processed
when a sparse flow packet arrives. In fact, as Figure 1b shows,
the expected queueing latency even for the maximum number
of sparse flows that the link can handle, is less than two
milliseconds with one or more bulk flows limiting the number
of sparse flows. So as long as an operator is using (8) to
calculate the max number of sparse flows the link can support,
she can be confident that the sparse flows themselves will
achieve very low queueing latency at the bottleneck.

VI. CONCLUSION

We have analysed the performance characteristics of the
sparse flow optimisation of FQ-CoDel. This analysis shows
the constraints that flows must satisfy to be considered sparse
in a given scenario, which is dependent on the number of flows
(both bulk and sparse) and the link rate. We also formulate
expressions for the expected queueing latency for sparse flows.

Using a numerical example, we also show that for a given
link and a given type of sparse flows (VoIP traffic), the number
of sparse flows that a given bottleneck can service with the
low sparse flow latency is only dependent on the number of
backlogged bulk flows at the bottleneck. And that as long as
the maximum number of sparse flows is not exceeded, all
sparse flows can expect a very low queueing latency.
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Fig. 1: Expected queueing delay as a function of the number
of sparse flows at the bottleneck.
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