[Cake] [PATCH 2/3] Add Common Applications Kept Enhanced (sch_cake) qdisc
Dave Taht
dave.taht at gmail.com
Tue Nov 21 19:09:41 EST 2017
sch_cake is intended to squeeze the most bandwidth and lowest latency out
of even the slowest ISP links and routers, while presenting an API simple
enough that even an ISP can configure it.
Example of use on an ISP uplink:
tc qdisc add dev eth0 cake bandwidth 20Mbit nat docsis ack-filter
Cake can also be used in unlimited mode to drive packets at the speed
of the underlying link.
Cake is filled with:
* A hybrid Codel/Blue AQM algorithm, “Cobalt”, tied to an FQ_Codel
derived Flow Queuing system, which autoconfigures based on the bandwidth.
* A unique "triple-isolate" mode (the default) which balances per-flow
and per-host flow FQ even through NAT.
* An integral deficit based shaper with extensive dsl and docsis support
that can also be used in unlimited mode.
* 8 way set associative queuing to reduce flow collisions to a minimum.
* A reasonable interpretation of various diffserv latency/loss tradeoffs.
* Support for washing diffserv for entering and exiting traffic.
* Perfect support for interacting with Docsis 3.0 shapers.
* Extensive support for DSL framing types.
* (New) Support for ack filtering.
- 20 % better throughput at a 16x1 down/up ratio on the rrul test.
* Extensive statistics for measuring, loss, ecn markings, latency variation.
There are some features still considered experimental, notably the
ingress_autorate bandwidth estimator and cobalt itself.
Various versions shipping have been available as an out of tree build for
kernel versions going back to 3.10, as the embedded router world has been
running a few years behind mainline Linux. A stable version has been
generally available on lede-17.01 and later.
sch_cake replaces a combination of iptables, tc filter, htb and fq_codel in
the sqm-scripts, with sane defaults and vastly easier configuration.
Cake's principal author is Jonathan Morton, with contributions from
Kevin Darbyshire-Bryant, Toke Høiland-Jørgensen, Sebastian Moeller,
Ryan Mounce, Dean Scarff, Guido Sarducci, Nils Andreas Svee, Dave Täht, and
Loganaden Velvindron.
---
include/net/cobalt.h | 152 +++
net/sched/sch_cake.c | 2551 ++++++++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 2703 insertions(+)
create mode 100644 include/net/cobalt.h
create mode 100644 net/sched/sch_cake.c
diff --git a/include/net/cobalt.h b/include/net/cobalt.h
new file mode 100644
index 0000000..0d1e794
--- /dev/null
+++ b/include/net/cobalt.h
@@ -0,0 +1,152 @@
+#ifndef __NET_SCHED_COBALT_H
+#define __NET_SCHED_COBALT_H
+
+/* COBALT - Codel-BLUE Alternate AQM algorithm.
+ *
+ * Copyright (C) 2011-2012 Kathleen Nichols <nichols at pollere.com>
+ * Copyright (C) 2011-2012 Van Jacobson <van at pollere.net>
+ * Copyright (C) 2012 Eric Dumazet <edumazet at google.com>
+ * Copyright (C) 2016-2017 Michael D. Täht <dave.taht at gmail.com>
+ * Copyright (c) 2015-2017 Jonathan Morton <chromatix99 at gmail.com>
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions, and the following disclaimer,
+ * without modification.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. The names of the authors may not be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * Alternatively, provided that this notice is retained in full, this
+ * software may be distributed under the terms of the GNU General
+ * Public License ("GPL") version 2, in which case the provisions of the
+ * GPL apply INSTEAD OF those given above.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ */
+
+/* COBALT operates the Codel and BLUE algorithms in parallel, in order to
+ * obtain the best features of each. Codel is excellent on flows which
+ * respond to congestion signals in a TCP-like way. BLUE is more effective on
+ * unresponsive flows.
+ */
+
+#include <linux/version.h>
+#include <linux/types.h>
+#include <linux/ktime.h>
+#include <linux/skbuff.h>
+#include <net/pkt_sched.h>
+#include <net/inet_ecn.h>
+#include <linux/reciprocal_div.h>
+
+typedef u64 cobalt_time_t;
+typedef s64 cobalt_tdiff_t;
+
+#define MS2TIME(a) (a * (u64) NSEC_PER_MSEC)
+#define US2TIME(a) (a * (u64) NSEC_PER_USEC)
+
+struct cobalt_skb_cb {
+ cobalt_time_t enqueue_time;
+};
+
+static inline cobalt_time_t cobalt_get_time(void)
+{
+ return ktime_get_ns();
+}
+
+static inline u32 cobalt_time_to_us(cobalt_time_t val)
+{
+ do_div(val, NSEC_PER_USEC);
+ return (u32)val;
+}
+
+static inline struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
+{
+ qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
+ return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
+}
+
+static inline cobalt_time_t cobalt_get_enqueue_time(const struct sk_buff *skb)
+{
+ return get_cobalt_cb(skb)->enqueue_time;
+}
+
+static inline void cobalt_set_enqueue_time(struct sk_buff *skb,
+ cobalt_time_t now)
+{
+ get_cobalt_cb(skb)->enqueue_time = now;
+}
+
+/**
+ * struct cobalt_params - contains codel and blue parameters
+ * @interval: codel initial drop rate
+ * @target: maximum persistent sojourn time & blue update rate
+ * @p_inc: increment of blue drop probability (0.32 fxp)
+ * @p_dec: decrement of blue drop probability (0.32 fxp)
+ */
+struct cobalt_params {
+ cobalt_time_t interval;
+ cobalt_time_t target;
+ u32 p_inc;
+ u32 p_dec;
+};
+
+/* struct cobalt_vars - contains codel and blue variables
+ * @count: codel dropping frequency
+ * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
+ * @drop_next: time to drop next packet, or when we dropped last
+ * @blue_timer: Blue time to next drop
+ * @p_drop: BLUE drop probability (0.32 fxp)
+ * @dropping: set if in dropping state
+ * @ecn_marked: set if marked
+ */
+struct cobalt_vars {
+ u32 count;
+ u32 rec_inv_sqrt;
+ cobalt_time_t drop_next;
+ cobalt_time_t blue_timer;
+ u32 p_drop;
+ bool dropping;
+ bool ecn_marked;
+};
+
+/* Initialise visible and internal data. */
+void cobalt_vars_init(struct cobalt_vars *vars);
+
+struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb);
+cobalt_time_t cobalt_get_enqueue_time(const struct sk_buff *skb);
+
+/* Call this when a packet had to be dropped due to queue overflow. */
+bool cobalt_queue_full(struct cobalt_vars *vars,
+ struct cobalt_params *p,
+ cobalt_time_t now);
+
+/* Call this when the queue was serviced but turned out to be empty. */
+bool cobalt_queue_empty(struct cobalt_vars *vars,
+ struct cobalt_params *p,
+ cobalt_time_t now);
+
+/* Call this with a freshly dequeued packet for possible congestion marking.
+ * Returns true as an instruction to drop the packet, false for delivery.
+ */
+bool cobalt_should_drop(struct cobalt_vars *vars,
+ struct cobalt_params *p,
+ cobalt_time_t now,
+ struct sk_buff *skb);
+
+#endif
diff --git a/net/sched/sch_cake.c b/net/sched/sch_cake.c
new file mode 100644
index 0000000..46712bf
--- /dev/null
+++ b/net/sched/sch_cake.c
@@ -0,0 +1,2551 @@
+/* COMMON Applications Kept Enhanced (CAKE) discipline - version 5
+ *
+ * Copyright (C) 2014-2017 Jonathan Morton <chromatix99 at gmail.com>
+ * Copyright (C) 2015-2017 Toke Høiland-Jørgensen <toke at toke.dk>
+ * Copyright (C) 2014-2017 Dave Täht <dave.taht at gmail.com>
+ * Copyright (C) 2015-2017 Sebastian Moeller <moeller0 at gmx.de>
+ * (C) 2015-2017 Kevin Darbyshire-Bryant <kevin at darbyshire-bryant.me.uk>
+ * Copyright (C) 2017 Ryan Mounce <ryan at mounce.com.au>
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions, and the following disclaimer,
+ * without modification.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. The names of the authors may not be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * Alternatively, provided that this notice is retained in full, this
+ * software may be distributed under the terms of the GNU General
+ * Public License ("GPL") version 2, in which case the provisions of the
+ * GPL apply INSTEAD OF those given above.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/jiffies.h>
+#include <linux/string.h>
+#include <linux/in.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/skbuff.h>
+#include <linux/jhash.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/reciprocal_div.h>
+#include <net/netlink.h>
+#include <linux/version.h>
+#include <net/pkt_sched.h>
+#include <linux/if_vlan.h>
+#include <net/tcp.h>
+#include <net/flow_dissector.h>
+#include <net/cobalt.h>
+
+#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
+#include <net/netfilter/nf_conntrack_core.h>
+#include <net/netfilter/nf_conntrack_zones.h>
+#include <net/netfilter/nf_conntrack.h>
+#endif
+
+/* The CAKE Principles:
+ * (or, how to have your cake and eat it too)
+ *
+ * This is a combination of several shaping, AQM and FQ techniques into one
+ * easy-to-use package:
+ *
+ * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
+ * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
+ * eliminating the need for any sort of burst parameter (eg. token bucket
+ * depth). Burst support is limited to that necessary to overcome scheduling
+ * latency.
+ *
+ * - A Diffserv-aware priority queue, giving more priority to certain classes,
+ * up to a specified fraction of bandwidth. Above that bandwidth threshold,
+ * the priority is reduced to avoid starving other tins.
+ *
+ * - Each priority tin has a separate Flow Queue system, to isolate traffic
+ * flows from each other. This prevents a burst on one flow from increasing
+ * the delay to another. Flows are distributed to queues using a
+ * set-associative hash function.
+ *
+ * - Each queue is actively managed by Codel. This serves flows fairly, and
+ * signals congestion early via ECN (if available) and/or packet drops, to
+ * keep latency low. The codel parameters are auto-tuned based on the
+ * bandwidth setting, as is necessary at low bandwidths.
+ *
+ * The configuration parameters are kept deliberately simple for ease of use.
+ * Everything has sane defaults. Complete generality of configuration is *not*
+ * a goal.
+ *
+ * The priority queue operates according to a weighted DRR scheme, combined with
+ * a bandwidth tracker which reuses the shaper logic to detect which side of the
+ * bandwidth sharing threshold the tin is operating. This determines whether a
+ * priority-based weight (high) or a bandwidth-based weight (low) is used for
+ * that tin in the current pass.
+ *
+ * This qdisc incorporates much of Eric Dumazet's fq_codel code, which he kindly
+ * granted us permission to use, which we customised for use as an integrated
+ * subordinate. See sch_fq_codel.c for details of operation.
+ */
+
+#define CAKE_SET_WAYS (8)
+#define CAKE_MAX_TINS (8)
+#define CAKE_QUEUES (1024)
+
+#ifndef CAKE_VERSION
+#define CAKE_VERSION "unknown"
+#endif
+static char *cake_version __attribute__((used)) = "Cake version: "
+ CAKE_VERSION;
+
+enum {
+ CAKE_SET_NONE = 0,
+ CAKE_SET_SPARSE,
+ CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
+ CAKE_SET_BULK,
+ CAKE_SET_DECAYING
+};
+
+struct cake_flow {
+ /* this stuff is all needed per-flow at dequeue time */
+ struct sk_buff *head;
+ struct sk_buff *tail;
+ struct sk_buff *ackcheck;
+ struct list_head flowchain;
+ s32 deficit;
+ struct cobalt_vars cvars;
+ u16 srchost; /* index into cake_host table */
+ u16 dsthost;
+ u8 set;
+}; /* please try to keep this structure <= 64 bytes */
+
+struct cake_host {
+ u32 srchost_tag;
+ u32 dsthost_tag;
+ u16 srchost_refcnt;
+ u16 dsthost_refcnt;
+};
+
+struct cake_heap_entry {
+ u16 t:3, b:10;
+};
+
+struct cake_tin_data {
+ struct cake_flow flows[CAKE_QUEUES];
+ u32 backlogs[CAKE_QUEUES];
+ u32 tags[CAKE_QUEUES]; /* for set association */
+ u16 overflow_idx[CAKE_QUEUES];
+ struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
+ u32 perturbation;
+ u16 flow_quantum;
+
+ struct cobalt_params cparams;
+ u32 drop_overlimit;
+ u16 bulk_flow_count;
+ u16 sparse_flow_count;
+ u16 decaying_flow_count;
+ u16 unresponsive_flow_count;
+
+ u16 max_skblen;
+
+ struct list_head new_flows;
+ struct list_head old_flows;
+ struct list_head decaying_flows;
+
+ /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
+ u64 tin_time_next_packet;
+ u32 tin_rate_ns;
+ u32 tin_rate_bps;
+ u16 tin_rate_shft;
+
+ u16 tin_quantum_prio;
+ u16 tin_quantum_band;
+ s32 tin_deficit;
+ u32 tin_backlog;
+ u32 tin_dropped;
+ u32 tin_ecn_mark;
+
+ u32 packets;
+ u64 bytes;
+
+ u32 ack_drops;
+
+ /* moving averages */
+ cobalt_time_t avge_delay;
+ cobalt_time_t peak_delay;
+ cobalt_time_t base_delay;
+
+ /* hash function stats */
+ u32 way_directs;
+ u32 way_hits;
+ u32 way_misses;
+ u32 way_collisions;
+}; /* number of tins is small, so size of this struct doesn't matter much */
+
+struct cake_sched_data {
+ struct cake_tin_data *tins;
+
+ struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
+ u16 overflow_timeout;
+
+ u16 tin_cnt;
+ u8 tin_mode;
+ u8 flow_mode;
+
+ /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
+ u16 rate_shft;
+ u64 time_next_packet;
+ u64 failsafe_next_packet;
+ u32 rate_ns;
+ u32 rate_bps;
+ u16 rate_flags;
+ s16 rate_overhead;
+ u16 rate_mpu;
+ u32 interval;
+ u32 target;
+
+ /* resource tracking */
+ u32 buffer_used;
+ u32 buffer_max_used;
+ u32 buffer_limit;
+ u32 buffer_config_limit;
+
+ /* indices for dequeue */
+ u16 cur_tin;
+ u16 cur_flow;
+
+ struct qdisc_watchdog watchdog;
+ const u8 *tin_index;
+ const u8 *tin_order;
+
+ /* bandwidth capacity estimate */
+ u64 last_packet_time;
+ u64 avg_packet_interval;
+ u64 avg_window_begin;
+ u32 avg_window_bytes;
+ u32 avg_peak_bandwidth;
+ u64 last_reconfig_time;
+};
+
+enum {
+ CAKE_MODE_BESTEFFORT = 1,
+ CAKE_MODE_PRECEDENCE,
+ CAKE_MODE_DIFFSERV8,
+ CAKE_MODE_DIFFSERV4,
+ CAKE_MODE_LLT,
+ CAKE_MODE_DIFFSERV3,
+ CAKE_MODE_MAX
+};
+
+enum {
+ CAKE_FLAG_ATM = 0x0001,
+ CAKE_FLAG_PTM = 0x0002,
+ CAKE_FLAG_AUTORATE_INGRESS = 0x0010,
+ CAKE_FLAG_INGRESS = 0x0040,
+ CAKE_FLAG_WASH = 0x0100,
+ CAKE_FLAG_ACK_FILTER = 0x0200,
+ CAKE_FLAG_ACK_AGGRESSIVE = 0x0400
+};
+
+enum {
+ CAKE_FLOW_NONE = 0,
+ CAKE_FLOW_SRC_IP,
+ CAKE_FLOW_DST_IP,
+ CAKE_FLOW_HOSTS, /* = CAKE_FLOW_SRC_IP | CAKE_FLOW_DST_IP */
+ CAKE_FLOW_FLOWS,
+ CAKE_FLOW_DUAL_SRC, /* = CAKE_FLOW_SRC_IP | CAKE_FLOW_FLOWS */
+ CAKE_FLOW_DUAL_DST, /* = CAKE_FLOW_DST_IP | CAKE_FLOW_FLOWS */
+ CAKE_FLOW_TRIPLE, /* = CAKE_FLOW_HOSTS | CAKE_FLOW_FLOWS */
+ CAKE_FLOW_MAX,
+ CAKE_FLOW_NAT_FLAG = 64
+};
+
+static u16 quantum_div[CAKE_QUEUES + 1] = {0};
+
+/* Diffserv lookup tables */
+
+static const u8 precedence[] = {0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 2, 2, 2, 2, 2, 2, 2, 2,
+ 3, 3, 3, 3, 3, 3, 3, 3,
+ 4, 4, 4, 4, 4, 4, 4, 4,
+ 5, 5, 5, 5, 5, 5, 5, 5,
+ 6, 6, 6, 6, 6, 6, 6, 6,
+ 7, 7, 7, 7, 7, 7, 7, 7,
+ };
+
+static const u8 diffserv_llt[] = {1, 0, 0, 1, 2, 2, 1, 1,
+ 3, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 2, 1, 2, 1,
+ 4, 1, 1, 1, 1, 1, 1, 1,
+ 4, 1, 1, 1, 1, 1, 1, 1,
+ };
+
+static const u8 diffserv8[] = {2, 5, 1, 2, 4, 2, 2, 2,
+ 0, 2, 1, 2, 1, 2, 1, 2,
+ 5, 2, 4, 2, 4, 2, 4, 2,
+ 3, 2, 3, 2, 3, 2, 3, 2,
+ 6, 2, 3, 2, 3, 2, 3, 2,
+ 6, 2, 2, 2, 6, 2, 6, 2,
+ 7, 2, 2, 2, 2, 2, 2, 2,
+ 7, 2, 2, 2, 2, 2, 2, 2,
+ };
+
+static const u8 diffserv4[] = {0, 2, 0, 0, 2, 0, 0, 0,
+ 1, 0, 0, 0, 0, 0, 0, 0,
+ 2, 0, 2, 0, 2, 0, 2, 0,
+ 2, 0, 2, 0, 2, 0, 2, 0,
+ 3, 0, 2, 0, 2, 0, 2, 0,
+ 3, 0, 0, 0, 3, 0, 3, 0,
+ 3, 0, 0, 0, 0, 0, 0, 0,
+ 3, 0, 0, 0, 0, 0, 0, 0,
+ };
+
+static const u8 diffserv3[] = {0, 0, 0, 0, 2, 0, 0, 0,
+ 1, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 2, 0, 2, 0,
+ 2, 0, 0, 0, 0, 0, 0, 0,
+ 2, 0, 0, 0, 0, 0, 0, 0,
+ };
+
+static const u8 besteffort[] = {0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ };
+
+/* tin priority order for stats dumping */
+
+static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
+static const u8 bulk_order[] = {1, 0, 2, 3};
+
+#define REC_INV_SQRT_CACHE (16)
+static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
+
+/* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
+ * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
+ *
+ * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
+ */
+
+static void cobalt_newton_step(struct cobalt_vars *vars)
+{
+ u32 invsqrt = vars->rec_inv_sqrt;
+ u32 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
+ u64 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
+
+ val >>= 2; /* avoid overflow in following multiply */
+ val = (val * invsqrt) >> (32 - 2 + 1);
+
+ vars->rec_inv_sqrt = val;
+}
+
+static void cobalt_invsqrt(struct cobalt_vars *vars)
+{
+ if (vars->count < REC_INV_SQRT_CACHE)
+ vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
+ else
+ cobalt_newton_step(vars);
+}
+
+/* There is a big difference in timing between the accurate values placed in
+ * the cache and the approximations given by a single Newton step for small
+ * count values, particularly when stepping from count 1 to 2 or vice versa.
+ * Above 16, a single Newton step gives sufficient accuracy in either
+ * direction, given the precision stored.
+ *
+ * The magnitude of the error when stepping up to count 2 is such as to give
+ * the value that *should* have been produced at count 4.
+ */
+
+static void cobalt_cache_init(void)
+{
+ struct cobalt_vars v;
+
+ memset(&v, 0, sizeof(v));
+ v.rec_inv_sqrt = ~0U;
+ cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
+
+ for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
+ cobalt_newton_step(&v);
+ cobalt_newton_step(&v);
+ cobalt_newton_step(&v);
+ cobalt_newton_step(&v);
+
+ cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
+ }
+}
+
+void cobalt_vars_init(struct cobalt_vars *vars)
+{
+ memset(vars, 0, sizeof(*vars));
+
+ if (!cobalt_rec_inv_sqrt_cache[0]) {
+ cobalt_cache_init();
+ cobalt_rec_inv_sqrt_cache[0] = ~0;
+ }
+}
+
+/* CoDel control_law is t + interval/sqrt(count)
+ * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
+ * both sqrt() and divide operation.
+ */
+static cobalt_time_t cobalt_control_law(cobalt_time_t t,
+ cobalt_time_t interval,
+ u32 rec_inv_sqrt)
+{
+ return t + reciprocal_scale(interval, rec_inv_sqrt);
+}
+
+/* Call this when a packet had to be dropped due to queue overflow. Returns
+ * true if the BLUE state was quiescent before but active after this call.
+ */
+bool cobalt_queue_full(struct cobalt_vars *vars, struct cobalt_params *p,
+ cobalt_time_t now)
+{
+ bool up = false;
+
+ if ((now - vars->blue_timer) > p->target) {
+ up = !vars->p_drop;
+ vars->p_drop += p->p_inc;
+ if (vars->p_drop < p->p_inc)
+ vars->p_drop = ~0;
+ vars->blue_timer = now;
+ }
+ vars->dropping = true;
+ vars->drop_next = now;
+ if (!vars->count)
+ vars->count = 1;
+
+ return up;
+}
+
+/* Call this when the queue was serviced but turned out to be empty. Returns
+ * true if the BLUE state was active before but quiescent after this call.
+ */
+bool cobalt_queue_empty(struct cobalt_vars *vars, struct cobalt_params *p,
+ cobalt_time_t now)
+{
+ bool down = false;
+
+ if (vars->p_drop && (now - vars->blue_timer) > p->target) {
+ if (vars->p_drop < p->p_dec)
+ vars->p_drop = 0;
+ else
+ vars->p_drop -= p->p_dec;
+ vars->blue_timer = now;
+ down = !vars->p_drop;
+ }
+ vars->dropping = false;
+
+ if (vars->count && (now - vars->drop_next) >= 0) {
+ vars->count--;
+ cobalt_invsqrt(vars);
+ vars->drop_next = cobalt_control_law(vars->drop_next,
+ p->interval,
+ vars->rec_inv_sqrt);
+ }
+
+ return down;
+}
+
+/* Call this with a freshly dequeued packet for possible congestion marking.
+ * Returns true as an instruction to drop the packet, false for delivery.
+ */
+bool cobalt_should_drop(struct cobalt_vars *vars,
+ struct cobalt_params *p,
+ cobalt_time_t now,
+ struct sk_buff *skb)
+{
+ bool drop = false;
+
+ /* Simplified Codel implementation */
+ cobalt_tdiff_t sojourn = now - cobalt_get_enqueue_time(skb);
+
+/* The 'schedule' variable records, in its sign, whether 'now' is before or
+ * after 'drop_next'. This allows 'drop_next' to be updated before the next
+ * scheduling decision is actually branched, without destroying that
+ * information. Similarly, the first 'schedule' value calculated is preserved
+ * in the boolean 'next_due'.
+ *
+ * As for 'drop_next', we take advantage of the fact that 'interval' is both
+ * the delay between first exceeding 'target' and the first signalling event,
+ * *and* the scaling factor for the signalling frequency. It's therefore very
+ * natural to use a single mechanism for both purposes, and eliminates a
+ * significant amount of reference Codel's spaghetti code. To help with this,
+ * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
+ * as possible to 1.0 in fixed-point.
+ */
+
+ cobalt_tdiff_t schedule = now - vars->drop_next;
+ bool over_target = sojourn > p->target;
+ bool next_due = vars->count && schedule >= 0;
+
+ vars->ecn_marked = false;
+
+ if (over_target) {
+ if (!vars->dropping) {
+ vars->dropping = true;
+ vars->drop_next = cobalt_control_law(now,
+ p->interval,
+ vars->rec_inv_sqrt);
+ }
+ if (!vars->count)
+ vars->count = 1;
+ } else if (vars->dropping) {
+ vars->dropping = false;
+ }
+
+ if (next_due && vars->dropping) {
+ /* Use ECN mark if possible, otherwise drop */
+ drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
+
+ vars->count++;
+ if (!vars->count)
+ vars->count--;
+ cobalt_invsqrt(vars);
+ vars->drop_next = cobalt_control_law(vars->drop_next,
+ p->interval,
+ vars->rec_inv_sqrt);
+ schedule = now - vars->drop_next;
+ } else {
+ while (next_due) {
+ vars->count--;
+ cobalt_invsqrt(vars);
+ vars->drop_next = cobalt_control_law(vars->drop_next,
+ p->interval,
+ vars->rec_inv_sqrt);
+ schedule = now - vars->drop_next;
+ next_due = vars->count && schedule >= 0;
+ }
+ }
+
+ /* Simple BLUE implementation. Lack of ECN is deliberate. */
+ if (vars->p_drop)
+ drop |= (prandom_u32() < vars->p_drop);
+
+ /* Overload the drop_next field as an activity timeout */
+ if (!vars->count)
+ vars->drop_next = now + p->interval;
+ else if (schedule > 0 && !drop)
+ vars->drop_next = now;
+
+ return drop;
+}
+
+#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
+
+static inline void cake_update_flowkeys(struct flow_keys *keys,
+ const struct sk_buff *skb)
+{
+ enum ip_conntrack_info ctinfo;
+ bool rev = false;
+
+ struct nf_conn *ct;
+ const struct nf_conntrack_tuple *tuple;
+
+ if (tc_skb_protocol(skb) != htons(ETH_P_IP))
+ return;
+
+ ct = nf_ct_get(skb, &ctinfo);
+ if (ct) {
+ tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
+ } else {
+ const struct nf_conntrack_tuple_hash *hash;
+ struct nf_conntrack_tuple srctuple;
+
+ if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
+ NFPROTO_IPV4, dev_net(skb->dev),
+ &srctuple))
+ return;
+
+ hash = nf_conntrack_find_get(dev_net(skb->dev),
+ &nf_ct_zone_dflt,
+ &srctuple);
+ if (!hash)
+ return;
+
+ rev = true;
+ ct = nf_ct_tuplehash_to_ctrack(hash);
+ tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
+ }
+
+ keys->addrs.v4addrs.src = rev ? tuple->dst.u3.ip : tuple->src.u3.ip;
+ keys->addrs.v4addrs.dst = rev ? tuple->src.u3.ip : tuple->dst.u3.ip;
+
+ if (keys->ports.ports) {
+ keys->ports.src = rev ? tuple->dst.u.all : tuple->src.u.all;
+ keys->ports.dst = rev ? tuple->src.u.all : tuple->dst.u.all;
+ }
+
+ if (rev)
+ nf_ct_put(ct);
+}
+#else
+static inline void cake_update_flowkeys(struct flow_keys *keys,
+ const struct sk_buff *skb)
+{
+ /* There is nothing we can do here without CONNTRACK */
+}
+#endif
+
+static inline u32
+cake_hash(struct cake_tin_data *q, const struct sk_buff *skb, int flow_mode)
+{
+ struct flow_keys keys, host_keys;
+ u32 flow_hash = 0, srchost_hash, dsthost_hash;
+ u16 reduced_hash, srchost_idx, dsthost_idx;
+
+ if (unlikely(flow_mode == CAKE_FLOW_NONE))
+ return 0;
+
+ skb_flow_dissect_flow_keys(skb, &keys,
+ FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
+
+ if (flow_mode & CAKE_FLOW_NAT_FLAG)
+ cake_update_flowkeys(&keys, skb);
+
+ /* flow_hash_from_keys() sorts the addresses by value, so we have
+ * to preserve their order in a separate data structure to treat
+ * src and dst host addresses as independently selectable.
+ */
+ host_keys = keys;
+ host_keys.ports.ports = 0;
+ host_keys.basic.ip_proto = 0;
+ host_keys.keyid.keyid = 0;
+ host_keys.tags.flow_label = 0;
+
+ switch (host_keys.control.addr_type) {
+ case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
+ host_keys.addrs.v4addrs.src = 0;
+ dsthost_hash = flow_hash_from_keys(&host_keys);
+ host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
+ host_keys.addrs.v4addrs.dst = 0;
+ srchost_hash = flow_hash_from_keys(&host_keys);
+ break;
+
+ case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
+ memset(&host_keys.addrs.v6addrs.src, 0,
+ sizeof(host_keys.addrs.v6addrs.src));
+ dsthost_hash = flow_hash_from_keys(&host_keys);
+ host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
+ memset(&host_keys.addrs.v6addrs.dst, 0,
+ sizeof(host_keys.addrs.v6addrs.dst));
+ srchost_hash = flow_hash_from_keys(&host_keys);
+ break;
+
+ default:
+ dsthost_hash = 0;
+ srchost_hash = 0;
+ };
+
+ /* This *must* be after the above switch, since as a
+ * side-effect it sorts the src and dst addresses.
+ */
+ if (flow_mode & CAKE_FLOW_FLOWS)
+ flow_hash = flow_hash_from_keys(&keys);
+
+ if (!(flow_mode & CAKE_FLOW_FLOWS)) {
+ if (flow_mode & CAKE_FLOW_SRC_IP)
+ flow_hash ^= srchost_hash;
+
+ if (flow_mode & CAKE_FLOW_DST_IP)
+ flow_hash ^= dsthost_hash;
+ }
+
+ reduced_hash = flow_hash % CAKE_QUEUES;
+ srchost_idx = srchost_hash % CAKE_QUEUES;
+ dsthost_idx = dsthost_hash % CAKE_QUEUES;
+
+ /* set-associative hashing */
+ /* fast path if no hash collision (direct lookup succeeds) */
+ if (likely(q->tags[reduced_hash] == flow_hash &&
+ q->flows[reduced_hash].set)) {
+ q->way_directs++;
+ } else {
+ u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
+ u32 outer_hash = reduced_hash - inner_hash;
+ u32 i, k;
+ bool need_allocate_src = false;
+ bool need_allocate_dst = false;
+
+ /* check if any active queue in the set is reserved for
+ * this flow.
+ */
+ for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
+ i++, k = (k + 1) % CAKE_SET_WAYS) {
+ if (q->tags[outer_hash + k] == flow_hash) {
+ if (i)
+ q->way_hits++;
+
+ if (!q->flows[outer_hash + k].set) {
+ /* need to increment host refcnts */
+ need_allocate_src = true;
+ need_allocate_dst = true;
+ }
+
+ goto found;
+ }
+ }
+
+ /* no queue is reserved for this flow, look for an
+ * empty one.
+ */
+ for (i = 0; i < CAKE_SET_WAYS;
+ i++, k = (k + 1) % CAKE_SET_WAYS) {
+ if (!q->flows[outer_hash + k].set) {
+ q->way_misses++;
+ need_allocate_src = true;
+ need_allocate_dst = true;
+ goto found;
+ }
+ }
+
+ /* With no empty queues, default to the original
+ * queue, accept the collision, update the host tags.
+ */
+ q->way_collisions++;
+ q->hosts[q->flows[reduced_hash].srchost].srchost_refcnt--;
+ q->hosts[q->flows[reduced_hash].dsthost].dsthost_refcnt--;
+ need_allocate_src = true;
+ need_allocate_dst = true;
+
+found:
+ /* reserve queue for future packets in same flow */
+ reduced_hash = outer_hash + k;
+ q->tags[reduced_hash] = flow_hash;
+
+ if (need_allocate_src) {
+ inner_hash = srchost_idx % CAKE_SET_WAYS;
+ outer_hash = srchost_idx - inner_hash;
+ for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
+ i++, k = (k + 1) % CAKE_SET_WAYS) {
+ if (q->hosts[outer_hash + k].srchost_tag ==
+ srchost_hash)
+ goto found_src;
+ }
+ for (i = 0; i < CAKE_SET_WAYS;
+ i++, k = (k + 1) % CAKE_SET_WAYS) {
+ if (!q->hosts[outer_hash + k].srchost_refcnt)
+ break;
+ }
+ q->hosts[outer_hash + k].srchost_tag = srchost_hash;
+found_src:
+ srchost_idx = outer_hash + k;
+ q->hosts[srchost_idx].srchost_refcnt++;
+ q->flows[reduced_hash].srchost = srchost_idx;
+ }
+
+ if (need_allocate_dst) {
+ inner_hash = dsthost_idx % CAKE_SET_WAYS;
+ outer_hash = dsthost_idx - inner_hash;
+ for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
+ i++, k = (k + 1) % CAKE_SET_WAYS) {
+ if (q->hosts[outer_hash + k].dsthost_tag ==
+ dsthost_hash)
+ goto found_dst;
+ }
+ for (i = 0; i < CAKE_SET_WAYS;
+ i++, k = (k + 1) % CAKE_SET_WAYS) {
+ if (!q->hosts[outer_hash + k].dsthost_refcnt)
+ break;
+ }
+ q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
+found_dst:
+ dsthost_idx = outer_hash + k;
+ q->hosts[dsthost_idx].dsthost_refcnt++;
+ q->flows[reduced_hash].dsthost = dsthost_idx;
+ }
+ }
+
+ return reduced_hash;
+}
+
+/* helper functions : might be changed when/if skb use a standard list_head */
+/* remove one skb from head of slot queue */
+
+static inline struct sk_buff *dequeue_head(struct cake_flow *flow)
+{
+ struct sk_buff *skb = flow->head;
+
+ if (skb) {
+ flow->head = skb->next;
+ skb->next = NULL;
+
+ if (skb == flow->ackcheck)
+ flow->ackcheck = NULL;
+ }
+
+ return skb;
+}
+
+/* add skb to flow queue (tail add) */
+
+static inline void
+flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
+{
+ if (!flow->head)
+ flow->head = skb;
+ else
+ flow->tail->next = skb;
+ flow->tail = skb;
+ skb->next = NULL;
+}
+
+static struct sk_buff *ack_filter(struct cake_flow *flow, bool aggressive)
+{
+ int seglen;
+ struct sk_buff *skb = flow->tail, *skb_check, *skb_check_prev;
+ struct iphdr *iph, *iph_check;
+ struct ipv6hdr *ipv6h, *ipv6h_check;
+ struct tcphdr *tcph, *tcph_check;
+
+ bool otherconn_ack_seen = false;
+ struct sk_buff *otherconn_checked_to = NULL;
+ bool thisconn_redundant_seen = false, thisconn_seen_last = false;
+ struct sk_buff *thisconn_checked_to = NULL, *thisconn_ack = NULL;
+
+ /* no other possible ACKs to filter */
+ if (flow->head == skb)
+ return NULL;
+
+ iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
+ ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
+
+ /* check that the innermost network header is v4/v6, and contains TCP */
+ if (iph->version == 4) {
+ if (iph->protocol != IPPROTO_TCP)
+ return NULL;
+ seglen = ntohs(iph->tot_len) - (4 * iph->ihl);
+ tcph = (struct tcphdr *)((void *)iph + (4 * iph->ihl));
+ } else if (ipv6h->version == 6) {
+ if (ipv6h->nexthdr != IPPROTO_TCP)
+ return NULL;
+ seglen = ntohs(ipv6h->payload_len);
+ tcph = (struct tcphdr *)((void *)ipv6h + sizeof(struct ipv6hdr));
+ } else {
+ return NULL;
+ }
+
+ /* the 'triggering' packet need only have the ACK flag set.
+ * also check that SYN is not set, as there won't be any previous ACKs.
+ */
+ if ((tcp_flag_word(tcph) &
+ cpu_to_be32(0x00120000)) != TCP_FLAG_ACK)
+ return NULL;
+
+ /* the 'triggering' ACK is at the end of the queue,
+ * we have already returned if it is the only packet in the flow.
+ * stop before last packet in queue, don't compare trigger ACK to itself
+ * start where we finished last time if recorded in ->ackcheck
+ * otherwise start from the the head of the flow queue.
+ */
+ skb_check_prev = flow->ackcheck;
+ skb_check = flow->ackcheck ?: flow->head;
+
+ while (skb_check->next) {
+ bool pure_ack, thisconn;
+
+ /* don't increment if at head of flow queue (_prev == NULL) */
+ if (skb_check_prev) {
+ skb_check_prev = skb_check;
+ skb_check = skb_check->next;
+ if (!skb_check->next)
+ break;
+ } else {
+ skb_check_prev = ERR_PTR(-1);
+ }
+
+ iph_check = skb_check->encapsulation ?
+ inner_ip_hdr(skb_check) : ip_hdr(skb_check);
+ ipv6h_check = skb_check->encapsulation ?
+ inner_ipv6_hdr(skb_check) : ipv6_hdr(skb_check);
+
+ if (iph_check->version == 4) {
+ if (iph_check->protocol != IPPROTO_TCP)
+ continue;
+ seglen = ntohs(iph_check->tot_len) - (4 * iph_check->ihl);
+ tcph_check = (struct tcphdr *)((void *)iph_check
+ + (4 * iph_check->ihl));
+ if (iph->version == 4 &&
+ iph_check->saddr == iph->saddr &&
+ iph_check->daddr == iph->daddr) {
+ thisconn = true;
+ } else {
+ thisconn = false;
+ }
+ } else if (ipv6h_check->version == 6) {
+ if (ipv6h_check->nexthdr != IPPROTO_TCP)
+ continue;
+ seglen = ntohs(ipv6h_check->payload_len);
+ tcph_check = (struct tcphdr *)((void *)ipv6h_check +
+ sizeof(struct ipv6hdr));
+ if (ipv6h->version == 6 &&
+ ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) &&
+ ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr)) {
+ thisconn = true;
+ } else {
+ thisconn = false;
+ }
+ } else {
+ continue;
+ }
+
+ /* stricter criteria apply to ACKs that we may filter
+ * 3 reserved flags must be unset to avoid future breakage
+ * ECE/CWR/NS can be safely ignored
+ * ACK must be set
+ * All other flags URG/PSH/RST/SYN/FIN must be unset
+ * must be 'pure' ACK, contain zero bytes of segment data
+ * options are ignored
+ */
+ if ((tcp_flag_word(tcph) &
+ cpu_to_be32(0x00120000)) != TCP_FLAG_ACK) {
+ continue;
+ } else if (((tcp_flag_word(tcph_check) &
+ cpu_to_be32(0x0E3F0000)) != TCP_FLAG_ACK) ||
+ ((seglen - 4 * tcph_check->doff) != 0)) {
+ pure_ack = false;
+ } else {
+ pure_ack = true;
+ }
+
+ /* if we find an ACK belonging to a different connection
+ * continue checking for other ACKs this round however
+ * restart checking from the other connection next time.
+ */
+ if (thisconn && (tcph_check->source != tcph->source ||
+ tcph_check->dest != tcph->dest)) {
+ thisconn = false;
+ }
+
+ /* new ack sequence must be greater
+ */
+ if (thisconn &&
+ (ntohl(tcph_check->ack_seq) > ntohl(tcph->ack_seq)))
+ continue;
+
+ /* DupACKs with an equal sequence number shouldn't be filtered,
+ * but we can filter if the triggering packet is a SACK
+ */
+ if (thisconn &&
+ (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq))) {
+ /* inspired by tcp_parse_options in tcp_input.c */
+ bool sack = false;
+ int length = (tcph->doff * 4) - sizeof(struct tcphdr);
+ const u8 *ptr = (const u8 *)(tcph + 1);
+
+ while (length > 0) {
+ int opcode = *ptr++;
+ int opsize;
+
+ if (opcode == TCPOPT_EOL)
+ break;
+ if (opcode == TCPOPT_NOP) {
+ length--;
+ continue;
+ }
+ opsize = *ptr++;
+ if (opsize < 2 || opsize > length)
+ break;
+ if (opcode == TCPOPT_SACK) {
+ sack = true;
+ break;
+ }
+ ptr += opsize - 2;
+ length -= opsize;
+ }
+ if (!sack)
+ continue;
+ }
+
+ /* somewhat complicated control flow for 'conservative'
+ * ACK filtering that aims to be more polite to slow-start and
+ * in the presence of packet loss.
+ * does not filter if there is one 'redundant' ACK in the queue.
+ * 'data' ACKs won't be filtered but do count as redundant ACKs.
+ */
+ if (thisconn) {
+ thisconn_seen_last = true;
+ /* if aggressive and this is a data ack we can skip
+ * checking it next time.
+ */
+ thisconn_checked_to = (aggressive && !pure_ack) ?
+ skb_check : skb_check_prev;
+ /* the first pure ack for this connection.
+ * record where it is, but only break if aggressive
+ * or already seen data ack from the same connection
+ */
+ if (pure_ack && !thisconn_ack) {
+ thisconn_ack = skb_check_prev;
+ if (aggressive || thisconn_redundant_seen)
+ break;
+ /* data ack or subsequent pure ack */
+ } else {
+ thisconn_redundant_seen = true;
+ /* this is the second ack for this connection
+ * break to filter the first pure ack
+ */
+ if (thisconn_ack)
+ break;
+ }
+ /* track packets from non-matching tcp connections that will
+ * need evaluation on the next run.
+ * if there are packets from both the matching connection and
+ * others that requre checking next run, track which was updated
+ * last and return the older of the two to ensure full coverage.
+ * if a non-matching pure ack has been seen, cannot skip any
+ * further on the next run so don't update.
+ */
+ } else if (!otherconn_ack_seen) {
+ thisconn_seen_last = false;
+ if (pure_ack) {
+ otherconn_ack_seen = true;
+ /* if aggressive we don't care about old data,
+ * start from the pure ack.
+ * otherwise if there is a previous data ack,
+ * start checking from it next time.
+ */
+ if (aggressive || !otherconn_checked_to)
+ otherconn_checked_to = skb_check_prev;
+ } else {
+ otherconn_checked_to = aggressive ?
+ skb_check : skb_check_prev;
+ }
+ }
+ }
+
+ /* skb_check is reused at this point
+ * it is the pure ACK to be filtered (if any)
+ */
+ skb_check = NULL;
+
+ /* next time start checking from the older/nearest to head of unfiltered
+ * but important tcp packets from this connection and other connections.
+ * if none seen, start after the last packet evaluated in the loop.
+ */
+ if (thisconn_checked_to && otherconn_checked_to)
+ flow->ackcheck = thisconn_seen_last ?
+ otherconn_checked_to : thisconn_checked_to;
+ else if (thisconn_checked_to)
+ flow->ackcheck = thisconn_checked_to;
+ else if (otherconn_checked_to)
+ flow->ackcheck = otherconn_checked_to;
+ else
+ flow->ackcheck = skb_check_prev;
+
+ /* if filtering, the pure ACK from the flow queue */
+ if (thisconn_ack && (aggressive || thisconn_redundant_seen)) {
+ if (PTR_ERR(thisconn_ack) == -1) {
+ skb_check = flow->head;
+ flow->head = flow->head->next;
+ } else {
+ skb_check = thisconn_ack->next;
+ thisconn_ack->next = thisconn_ack->next->next;
+ }
+ }
+
+ /* we just filtered that ack, fix up the list */
+ if (flow->ackcheck == skb_check)
+ flow->ackcheck = thisconn_ack;
+ /* check the entire flow queue next time */
+ if (PTR_ERR(flow->ackcheck) == -1)
+ flow->ackcheck = NULL;
+
+ return skb_check;
+}
+
+static inline u32 cake_overhead(struct cake_sched_data *q, u32 in)
+{
+ u32 out = in + q->rate_overhead;
+
+ if (q->rate_mpu && out < q->rate_mpu)
+ out = q->rate_mpu;
+
+ if (q->rate_flags & CAKE_FLAG_ATM) {
+ out += 47;
+ out /= 48;
+ out *= 53;
+ } else if (q->rate_flags & CAKE_FLAG_PTM) {
+ /* Add one byte per 64 bytes or part thereof.
+ * This is conservative and easier to calculate than the
+ * precise value.
+ */
+ out += (out / 64) + !!(out % 64);
+ }
+
+ return out;
+}
+
+static inline cobalt_time_t cake_ewma(cobalt_time_t avg, cobalt_time_t sample,
+ u32 shift)
+{
+ avg -= avg >> shift;
+ avg += sample >> shift;
+ return avg;
+}
+
+static inline void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
+{
+ struct cake_heap_entry ii = q->overflow_heap[i];
+ struct cake_heap_entry jj = q->overflow_heap[j];
+
+ q->overflow_heap[i] = jj;
+ q->overflow_heap[j] = ii;
+
+ q->tins[ii.t].overflow_idx[ii.b] = j;
+ q->tins[jj.t].overflow_idx[jj.b] = i;
+}
+
+static inline u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
+{
+ struct cake_heap_entry ii = q->overflow_heap[i];
+
+ return q->tins[ii.t].backlogs[ii.b];
+}
+
+static void cake_heapify(struct cake_sched_data *q, u16 i)
+{
+ static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
+ u32 m = i;
+ u32 mb = cake_heap_get_backlog(q, m);
+
+ while (m < a) {
+ u32 l = m + m + 1;
+ u32 r = l + 1;
+
+ if (l < a) {
+ u32 lb = cake_heap_get_backlog(q, l);
+
+ if (lb > mb) {
+ m = l;
+ mb = lb;
+ }
+ }
+
+ if (r < a) {
+ u32 rb = cake_heap_get_backlog(q, r);
+
+ if (rb > mb) {
+ m = r;
+ mb = rb;
+ }
+ }
+
+ if (m != i) {
+ cake_heap_swap(q, i, m);
+ i = m;
+ } else {
+ break;
+ }
+ }
+}
+
+static void cake_heapify_up(struct cake_sched_data *q, u16 i)
+{
+ while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
+ u16 p = (i - 1) >> 1;
+ u32 ib = cake_heap_get_backlog(q, i);
+ u32 pb = cake_heap_get_backlog(q, p);
+
+ if (ib > pb) {
+ cake_heap_swap(q, i, p);
+ i = p;
+ } else {
+ break;
+ }
+ }
+}
+
+static void cake_advance_shaper(struct cake_sched_data *q,
+ struct cake_tin_data *b, u32 len, u64 now, bool drop)
+{
+ /* charge packet bandwidth to this tin
+ * and to the global shaper.
+ */
+ if (q->rate_ns) {
+ s64 tdiff1 = b->tin_time_next_packet - now;
+ s64 tdiff2 = (len * (u64)b->tin_rate_ns) >> b->tin_rate_shft;
+ s64 tdiff3 = (len * (u64)q->rate_ns) >> q->rate_shft;
+ s64 tdiff4 = (len * (u64)q->rate_ns) >> (q->rate_shft - 2);
+
+ if (tdiff1 < 0)
+ b->tin_time_next_packet += tdiff2;
+ else if (tdiff1 < tdiff2)
+ b->tin_time_next_packet = now + tdiff2;
+
+ q->time_next_packet += tdiff3;
+ if (!drop)
+ q->failsafe_next_packet += tdiff4;
+ }
+}
+
+static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct sk_buff *skb;
+ u32 idx = 0, tin = 0, len;
+ struct cake_tin_data *b;
+ struct cake_flow *flow;
+ struct cake_heap_entry qq;
+ u64 now = cobalt_get_time();
+
+ if (!q->overflow_timeout) {
+ int i;
+ /* Build fresh max-heap */
+ for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
+ cake_heapify(q, i);
+ }
+ q->overflow_timeout = 65535;
+
+ /* select longest queue for pruning */
+ qq = q->overflow_heap[0];
+ tin = qq.t;
+ idx = qq.b;
+
+ b = &q->tins[tin];
+ flow = &b->flows[idx];
+ skb = dequeue_head(flow);
+ if (unlikely(!skb)) {
+ /* heap has gone wrong, rebuild it next time */
+ q->overflow_timeout = 0;
+ return idx + (tin << 16);
+ }
+
+ if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
+ b->unresponsive_flow_count++;
+
+ len = qdisc_pkt_len(skb);
+ q->buffer_used -= skb->truesize;
+ b->backlogs[idx] -= len;
+ b->tin_backlog -= len;
+ sch->qstats.backlog -= len;
+ qdisc_tree_reduce_backlog(sch, 1, len);
+
+ b->tin_dropped++;
+ sch->qstats.drops++;
+
+ if (q->rate_flags & CAKE_FLAG_INGRESS)
+ cake_advance_shaper(q, b, cake_overhead(q, len), now, true);
+
+ __qdisc_drop(skb, to_free);
+ sch->q.qlen--;
+ cake_heapify(q, 0);
+
+ return idx + (tin << 16);
+}
+
+static inline void cake_wash_diffserv(struct sk_buff *skb)
+{
+ switch (skb->protocol) {
+ case htons(ETH_P_IP):
+ ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
+ break;
+ case htons(ETH_P_IPV6):
+ ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
+ break;
+ default:
+ break;
+ };
+}
+
+static inline u8 cake_handle_diffserv(struct sk_buff *skb, u16 wash)
+{
+ u8 dscp;
+
+ switch (skb->protocol) {
+ case htons(ETH_P_IP):
+ dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
+ if (wash && dscp)
+ ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
+ return dscp;
+
+ case htons(ETH_P_IPV6):
+ dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
+ if (wash && dscp)
+ ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
+ return dscp;
+
+ case htons(ETH_P_ARP):
+ return 0x38; /* CS7 - Net Control */
+
+ default:
+ /* If there is no Diffserv field, treat as best-effort */
+ return 0;
+ };
+}
+
+static void cake_reconfigure(struct Qdisc *sch);
+
+static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
+ struct sk_buff **to_free)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ u32 idx, tin;
+ struct cake_tin_data *b;
+ struct cake_flow *flow;
+ /* signed len to handle corner case filtered ACK larger than trigger */
+ int len = qdisc_pkt_len(skb);
+ u64 now = cobalt_get_time();
+ struct sk_buff *skb_filtered_ack = NULL;
+
+ /* extract the Diffserv Precedence field, if it exists */
+ /* and clear DSCP bits if washing */
+ if (q->tin_mode != CAKE_MODE_BESTEFFORT) {
+ tin = q->tin_index[cake_handle_diffserv(skb,
+ q->rate_flags & CAKE_FLAG_WASH)];
+ if (unlikely(tin >= q->tin_cnt))
+ tin = 0;
+ } else {
+ tin = 0;
+ if (q->rate_flags & CAKE_FLAG_WASH)
+ cake_wash_diffserv(skb);
+ }
+
+ b = &q->tins[tin];
+
+ /* choose flow to insert into */
+ idx = cake_hash(b, skb, q->flow_mode);
+ flow = &b->flows[idx];
+
+ /* ensure shaper state isn't stale */
+ if (!b->tin_backlog) {
+ if (b->tin_time_next_packet < now)
+ b->tin_time_next_packet = now;
+
+ if (!sch->q.qlen) {
+ if (q->time_next_packet < now) {
+ q->failsafe_next_packet = now;
+ q->time_next_packet = now;
+ } else if (q->time_next_packet > now && q->failsafe_next_packet > now) {
+ u64 next_time = (q->time_next_packet < q->failsafe_next_packet)
+ ? q->time_next_packet : q->failsafe_next_packet;
+ sch->qstats.overlimits++;
+ qdisc_watchdog_schedule_ns(&q->watchdog, next_time);
+ }
+ }
+ }
+
+ if (unlikely(len > b->max_skblen))
+ b->max_skblen = len;
+
+ /* Split GSO aggregates if they're likely to impair flow isolation
+ * or if we need to know individual packet sizes for framing overhead.
+ */
+
+ if (skb_is_gso(skb)) {
+ struct sk_buff *segs, *nskb;
+ netdev_features_t features = netif_skb_features(skb);
+ /* signed slen to handle corner case
+ * suppressed ACK larger than trigger
+ */
+ int slen = 0;
+
+ segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
+ if (IS_ERR_OR_NULL(segs))
+ return qdisc_drop(skb, sch, to_free);
+
+ while (segs) {
+ nskb = segs->next;
+ segs->next = NULL;
+ qdisc_skb_cb(segs)->pkt_len = segs->len;
+ cobalt_set_enqueue_time(segs, now);
+ flow_queue_add(flow, segs);
+
+ if (q->rate_flags & CAKE_FLAG_ACK_FILTER)
+ skb_filtered_ack = ack_filter(flow, q->rate_flags & CAKE_FLAG_ACK_AGGRESSIVE);
+
+ if (skb_filtered_ack) {
+ b->ack_drops++;
+ b->bytes += skb_filtered_ack->len;
+ slen += segs->len - skb_filtered_ack->len;
+ q->buffer_used += segs->truesize -
+ skb_filtered_ack->truesize;
+ if (q->rate_flags & CAKE_FLAG_INGRESS)
+ cake_advance_shaper(q, b, cake_overhead(q, skb_filtered_ack->len), now, true);
+
+ qdisc_tree_reduce_backlog(sch, 1,
+ qdisc_pkt_len(skb_filtered_ack));
+ consume_skb(skb_filtered_ack);
+ } else {
+ sch->q.qlen++;
+ slen += segs->len;
+ q->buffer_used += segs->truesize;
+ }
+ b->packets++;
+ segs = nskb;
+ }
+ /* stats */
+ b->bytes += slen;
+ b->backlogs[idx] += slen;
+ b->tin_backlog += slen;
+ sch->qstats.backlog += slen;
+ q->avg_window_bytes += slen;
+
+ qdisc_tree_reduce_backlog(sch, 1, len);
+ consume_skb(skb);
+ } else {
+ /* not splitting */
+ cobalt_set_enqueue_time(skb, now);
+ flow_queue_add(flow, skb);
+
+ if (q->rate_flags & CAKE_FLAG_ACK_FILTER)
+ skb_filtered_ack = ack_filter(flow, (q->rate_flags & CAKE_FLAG_ACK_AGGRESSIVE));
+
+ if (skb_filtered_ack) {
+ b->ack_drops++;
+ b->bytes += qdisc_pkt_len(skb_filtered_ack);
+ len -= qdisc_pkt_len(skb_filtered_ack);
+ q->buffer_used += skb->truesize -
+ skb_filtered_ack->truesize;
+ if (q->rate_flags & CAKE_FLAG_INGRESS)
+ cake_advance_shaper(q, b, cake_overhead(q, skb_filtered_ack->len), now, true);
+
+ qdisc_tree_reduce_backlog(sch, 1,
+ qdisc_pkt_len(skb_filtered_ack));
+ consume_skb(skb_filtered_ack);
+ } else {
+ sch->q.qlen++;
+ q->buffer_used += skb->truesize;
+ }
+ /* stats */
+ b->packets++;
+ b->bytes += len;
+ b->backlogs[idx] += len;
+ b->tin_backlog += len;
+ sch->qstats.backlog += len;
+ q->avg_window_bytes += len;
+ }
+
+ if (q->overflow_timeout)
+ cake_heapify_up(q, b->overflow_idx[idx]);
+
+ /* incoming bandwidth capacity estimate */
+ if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
+ u64 packet_interval = now - q->last_packet_time;
+
+ if (packet_interval > NSEC_PER_SEC)
+ packet_interval = NSEC_PER_SEC;
+
+ /* filter out short-term bursts, eg. wifi aggregation */
+ q->avg_packet_interval = cake_ewma(q->avg_packet_interval,
+ packet_interval,
+ packet_interval > q->avg_packet_interval ? 2 : 8);
+
+ q->last_packet_time = now;
+
+ if (packet_interval > q->avg_packet_interval) {
+ u64 window_interval = now - q->avg_window_begin;
+ u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
+
+ do_div(b, window_interval);
+ q->avg_peak_bandwidth =
+ cake_ewma(q->avg_peak_bandwidth, b,
+ b > q->avg_peak_bandwidth ? 2 : 8);
+ q->avg_window_bytes = 0;
+ q->avg_window_begin = now;
+
+ if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS &&
+ now - q->last_reconfig_time >
+ (NSEC_PER_SEC / 4)) {
+ q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
+ cake_reconfigure(sch);
+ }
+ }
+ } else {
+ q->avg_window_bytes = 0;
+ q->last_packet_time = now;
+ }
+
+ /* flowchain */
+ if (!flow->set || flow->set == CAKE_SET_DECAYING) {
+ struct cake_host *srchost = &b->hosts[flow->srchost];
+ struct cake_host *dsthost = &b->hosts[flow->dsthost];
+ u16 host_load = 1;
+
+ if (!flow->set) {
+ list_add_tail(&flow->flowchain, &b->new_flows);
+ } else {
+ b->decaying_flow_count--;
+ list_move_tail(&flow->flowchain, &b->new_flows);
+ }
+ flow->set = CAKE_SET_SPARSE;
+ b->sparse_flow_count++;
+
+ if ((q->flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC)
+ host_load = max(host_load, srchost->srchost_refcnt);
+
+ if ((q->flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST)
+ host_load = max(host_load, dsthost->dsthost_refcnt);
+
+ flow->deficit = (b->flow_quantum * quantum_div[host_load]) >> 16;
+ } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
+ /* this flow was empty, accounted as a sparse flow, but actually
+ * in the bulk rotation.
+ */
+ flow->set = CAKE_SET_BULK;
+ b->sparse_flow_count--;
+ b->bulk_flow_count++;
+ }
+
+ if (q->buffer_used > q->buffer_max_used)
+ q->buffer_max_used = q->buffer_used;
+
+ if (q->buffer_used > q->buffer_limit) {
+ u32 dropped = 0;
+
+ while (q->buffer_used > q->buffer_limit) {
+ dropped++;
+ cake_drop(sch, to_free);
+ }
+ b->drop_overlimit += dropped;
+ }
+ return NET_XMIT_SUCCESS;
+}
+
+static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct cake_tin_data *b = &q->tins[q->cur_tin];
+ struct cake_flow *flow = &b->flows[q->cur_flow];
+ struct sk_buff *skb = NULL;
+ u32 len;
+
+ /* WARN_ON(flow != container_of(vars, struct cake_flow, cvars)); */
+
+ if (flow->head) {
+ skb = dequeue_head(flow);
+ len = qdisc_pkt_len(skb);
+ b->backlogs[q->cur_flow] -= len;
+ b->tin_backlog -= len;
+ sch->qstats.backlog -= len;
+ q->buffer_used -= skb->truesize;
+ sch->q.qlen--;
+
+ if (q->overflow_timeout)
+ cake_heapify(q, b->overflow_idx[q->cur_flow]);
+ }
+ return skb;
+}
+
+/* Discard leftover packets from a tin no longer in use. */
+static void cake_clear_tin(struct Qdisc *sch, u16 tin)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct sk_buff *skb;
+
+ q->cur_tin = tin;
+ for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
+ while (!!(skb = cake_dequeue_one(sch)))
+ kfree_skb(skb);
+}
+
+static struct sk_buff *cake_dequeue(struct Qdisc *sch)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct sk_buff *skb;
+ struct cake_tin_data *b = &q->tins[q->cur_tin];
+ struct cake_flow *flow;
+ struct cake_host *srchost, *dsthost;
+ struct list_head *head;
+ u32 len;
+ u16 host_load;
+ cobalt_time_t now = ktime_get_ns();
+ cobalt_time_t delay;
+ bool first_flow = true;
+
+begin:
+ if (!sch->q.qlen)
+ return NULL;
+
+ /* global hard shaper */
+ if (q->time_next_packet > now && q->failsafe_next_packet > now) {
+ u64 next_time = (q->time_next_packet < q->failsafe_next_packet)
+ ? q->time_next_packet : q->failsafe_next_packet;
+ sch->qstats.overlimits++;
+ qdisc_watchdog_schedule_ns(&q->watchdog, next_time);
+ return NULL;
+ }
+
+ /* Choose a class to work on. */
+ if (!q->rate_ns) {
+ /* In unlimited mode, can't rely on shaper timings, just balance
+ * with DRR
+ */
+ while (b->tin_deficit < 0 ||
+ !(b->sparse_flow_count + b->bulk_flow_count)) {
+ if (b->tin_deficit <= 0)
+ b->tin_deficit += b->tin_quantum_band;
+
+ q->cur_tin++;
+ b++;
+ if (q->cur_tin >= q->tin_cnt) {
+ q->cur_tin = 0;
+ b = q->tins;
+ }
+ }
+ } else {
+ /* In shaped mode, choose:
+ * - Highest-priority tin with queue and meeting schedule, or
+ * - The earliest-scheduled tin with queue.
+ */
+ int tin, best_tin = 0;
+ s64 best_time = 0xFFFFFFFFFFFFUL;
+
+ for (tin = 0; tin < q->tin_cnt; tin++) {
+ b = q->tins + tin;
+ if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
+ s64 tdiff = b->tin_time_next_packet - now;
+
+ if (tdiff <= 0 || tdiff <= best_time) {
+ best_time = tdiff;
+ best_tin = tin;
+ }
+ }
+ }
+
+ q->cur_tin = best_tin;
+ b = q->tins + best_tin;
+ }
+
+retry:
+ /* service this class */
+ head = &b->decaying_flows;
+ if (!first_flow || list_empty(head)) {
+ head = &b->new_flows;
+ if (list_empty(head)) {
+ head = &b->old_flows;
+ if (unlikely(list_empty(head))) {
+ head = &b->decaying_flows;
+ if (unlikely(list_empty(head)))
+ goto begin;
+ }
+ }
+ }
+ flow = list_first_entry(head, struct cake_flow, flowchain);
+ q->cur_flow = flow - b->flows;
+ first_flow = false;
+
+ /* triple isolation (modified DRR++) */
+ srchost = &b->hosts[flow->srchost];
+ dsthost = &b->hosts[flow->dsthost];
+ host_load = 1;
+
+ if ((q->flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC)
+ host_load = max(host_load, srchost->srchost_refcnt);
+
+ if ((q->flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST)
+ host_load = max(host_load, dsthost->dsthost_refcnt);
+
+ WARN_ON(host_load > CAKE_QUEUES);
+
+ /* flow isolation (DRR++) */
+ if (flow->deficit <= 0) {
+ flow->deficit += (b->flow_quantum * quantum_div[host_load] +
+ (prandom_u32() >> 16)) >> 16;
+ list_move_tail(&flow->flowchain, &b->old_flows);
+
+ /* Keep all flows with deficits out of the sparse and decaying
+ * rotations. No non-empty flow can go into the decaying
+ * rotation, so they can't get deficits
+ */
+ if (flow->set == CAKE_SET_SPARSE) {
+ if (flow->head) {
+ b->sparse_flow_count--;
+ b->bulk_flow_count++;
+ flow->set = CAKE_SET_BULK;
+ } else {
+ /* we've moved it to the bulk rotation for
+ * correct deficit accounting but we still want
+ * to count it as a sparse flow, not a bulk one.
+ */
+ flow->set = CAKE_SET_SPARSE_WAIT;
+ }
+ }
+ goto retry;
+ }
+
+ /* Retrieve a packet via the AQM */
+ while (1) {
+ skb = cake_dequeue_one(sch);
+ if (!skb) {
+ /* this queue was actually empty */
+ if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
+ b->unresponsive_flow_count--;
+
+ if (flow->cvars.p_drop || flow->cvars.count ||
+ (now - flow->cvars.drop_next) < 0) {
+ /* keep in the flowchain until the state has
+ * decayed to rest
+ */
+ list_move_tail(&flow->flowchain,
+ &b->decaying_flows);
+ if (flow->set == CAKE_SET_BULK) {
+ b->bulk_flow_count--;
+ b->decaying_flow_count++;
+ } else if (flow->set == CAKE_SET_SPARSE ||
+ flow->set == CAKE_SET_SPARSE_WAIT) {
+ b->sparse_flow_count--;
+ b->decaying_flow_count++;
+ }
+ flow->set = CAKE_SET_DECAYING;
+ } else {
+ /* remove empty queue from the flowchain */
+ list_del_init(&flow->flowchain);
+ if (flow->set == CAKE_SET_SPARSE ||
+ flow->set == CAKE_SET_SPARSE_WAIT)
+ b->sparse_flow_count--;
+ else if (flow->set == CAKE_SET_BULK)
+ b->bulk_flow_count--;
+ else
+ b->decaying_flow_count--;
+
+ flow->set = CAKE_SET_NONE;
+ srchost->srchost_refcnt--;
+ dsthost->dsthost_refcnt--;
+ }
+ goto begin;
+ }
+
+ /* Last packet in queue may be marked, shouldn't be dropped */
+ if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb) ||
+ !flow->head)
+ break;
+
+ /* drop this packet, get another one */
+ if (q->rate_flags & CAKE_FLAG_INGRESS) {
+ len = cake_overhead(q, qdisc_pkt_len(skb));
+ cake_advance_shaper(q, b, len, now, true);
+ flow->deficit -= len;
+ b->tin_deficit -= len;
+ }
+ b->tin_dropped++;
+ qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
+ qdisc_qstats_drop(sch);
+ kfree_skb(skb);
+ if (q->rate_flags & CAKE_FLAG_INGRESS)
+ goto retry;
+ }
+
+ b->tin_ecn_mark += !!flow->cvars.ecn_marked;
+ qdisc_bstats_update(sch, skb);
+
+ len = cake_overhead(q, qdisc_pkt_len(skb));
+ flow->deficit -= len;
+ b->tin_deficit -= len;
+
+ /* collect delay stats */
+ delay = now - cobalt_get_enqueue_time(skb);
+ b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
+ b->peak_delay = cake_ewma(b->peak_delay, delay,
+ delay > b->peak_delay ? 2 : 8);
+ b->base_delay = cake_ewma(b->base_delay, delay,
+ delay < b->base_delay ? 2 : 8);
+
+ cake_advance_shaper(q, b, len, now, false);
+ if (q->time_next_packet > now && sch->q.qlen) {
+ u64 next_time = (q->time_next_packet < q->failsafe_next_packet)
+ ? q->time_next_packet : q->failsafe_next_packet;
+ qdisc_watchdog_schedule_ns(&q->watchdog, next_time);
+ } else if (!sch->q.qlen) {
+ int i;
+
+ for (i = 0; i < q->tin_cnt; i++) {
+ if (q->tins[i].decaying_flow_count) {
+ qdisc_watchdog_schedule_ns(&q->watchdog, now +
+ q->tins[i].cparams.target);
+ break;
+ }
+ }
+ }
+
+ if (q->overflow_timeout)
+ q->overflow_timeout--;
+
+ return skb;
+}
+
+static void cake_reset(struct Qdisc *sch)
+{
+ u32 c;
+
+ for (c = 0; c < CAKE_MAX_TINS; c++)
+ cake_clear_tin(sch, c);
+}
+
+static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
+ [TCA_CAKE_BASE_RATE] = { .type = NLA_U32 },
+ [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
+ [TCA_CAKE_ATM] = { .type = NLA_U32 },
+ [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
+ [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
+ [TCA_CAKE_RTT] = { .type = NLA_U32 },
+ [TCA_CAKE_TARGET] = { .type = NLA_U32 },
+ [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
+ [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
+ [TCA_CAKE_NAT] = { .type = NLA_U32 },
+ [TCA_CAKE_ETHERNET] = { .type = NLA_U32 },
+ [TCA_CAKE_WASH] = { .type = NLA_U32 },
+ [TCA_CAKE_MPU] = { .type = NLA_U32 },
+ [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
+ [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
+};
+
+static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
+ cobalt_time_t ns_target, cobalt_time_t rtt_est_ns)
+{
+ /* convert byte-rate into time-per-byte
+ * so it will always unwedge in reasonable time.
+ */
+ static const u64 MIN_RATE = 64;
+ u64 rate_ns = 0;
+ u8 rate_shft = 0;
+ cobalt_time_t byte_target_ns;
+ u32 byte_target = mtu + (mtu >> 1);
+
+ b->flow_quantum = 1514;
+ if (rate) {
+ b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
+ rate_shft = 32;
+ rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
+ do_div(rate_ns, max(MIN_RATE, rate));
+ while (!!(rate_ns >> 32)) {
+ rate_ns >>= 1;
+ rate_shft--;
+ }
+ } /* else unlimited, ie. zero delay */
+
+ b->tin_rate_bps = rate;
+ b->tin_rate_ns = rate_ns;
+ b->tin_rate_shft = rate_shft;
+
+ byte_target_ns = (byte_target * rate_ns) >> rate_shft;
+
+ b->cparams.target = max(byte_target_ns, ns_target);
+ b->cparams.interval = max(rtt_est_ns +
+ b->cparams.target - ns_target,
+ b->cparams.target * 2);
+ b->cparams.p_inc = 1 << 24; /* 1/256 */
+ b->cparams.p_dec = 1 << 20; /* 1/4096 */
+}
+
+static int cake_config_besteffort(struct Qdisc *sch)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct cake_tin_data *b = &q->tins[0];
+ u32 rate = q->rate_bps;
+ u32 mtu = psched_mtu(qdisc_dev(sch));
+
+ q->tin_cnt = 1;
+
+ q->tin_index = besteffort;
+ q->tin_order = normal_order;
+
+ cake_set_rate(b, rate, mtu, US2TIME(q->target), US2TIME(q->interval));
+ b->tin_quantum_band = 65535;
+ b->tin_quantum_prio = 65535;
+
+ return 0;
+}
+
+static int cake_config_precedence(struct Qdisc *sch)
+{
+ /* convert high-level (user visible) parameters into internal format */
+ struct cake_sched_data *q = qdisc_priv(sch);
+ u32 rate = q->rate_bps;
+ u32 mtu = psched_mtu(qdisc_dev(sch));
+ u32 quantum1 = 256;
+ u32 quantum2 = 256;
+ u32 i;
+
+ q->tin_cnt = 8;
+ q->tin_index = precedence;
+ q->tin_order = normal_order;
+
+ for (i = 0; i < q->tin_cnt; i++) {
+ struct cake_tin_data *b = &q->tins[i];
+
+ cake_set_rate(b, rate, mtu, US2TIME(q->target),
+ US2TIME(q->interval));
+
+ b->tin_quantum_prio = max_t(u16, 1U, quantum1);
+ b->tin_quantum_band = max_t(u16, 1U, quantum2);
+
+ /* calculate next class's parameters */
+ rate *= 7;
+ rate >>= 3;
+
+ quantum1 *= 3;
+ quantum1 >>= 1;
+
+ quantum2 *= 7;
+ quantum2 >>= 3;
+ }
+
+ return 0;
+}
+
+/* List of known Diffserv codepoints:
+ *
+ * Least Effort (CS1)
+ * Best Effort (CS0)
+ * Max Reliability & LLT "Lo" (TOS1)
+ * Max Throughput (TOS2)
+ * Min Delay (TOS4)
+ * LLT "La" (TOS5)
+ * Assured Forwarding 1 (AF1x) - x3
+ * Assured Forwarding 2 (AF2x) - x3
+ * Assured Forwarding 3 (AF3x) - x3
+ * Assured Forwarding 4 (AF4x) - x3
+ * Precedence Class 2 (CS2)
+ * Precedence Class 3 (CS3)
+ * Precedence Class 4 (CS4)
+ * Precedence Class 5 (CS5)
+ * Precedence Class 6 (CS6)
+ * Precedence Class 7 (CS7)
+ * Voice Admit (VA)
+ * Expedited Forwarding (EF)
+
+ * Total 25 codepoints.
+ */
+
+/* List of traffic classes in RFC 4594:
+ * (roughly descending order of contended priority)
+ * (roughly ascending order of uncontended throughput)
+ *
+ * Network Control (CS6,CS7) - routing traffic
+ * Telephony (EF,VA) - aka. VoIP streams
+ * Signalling (CS5) - VoIP setup
+ * Multimedia Conferencing (AF4x) - aka. video calls
+ * Realtime Interactive (CS4) - eg. games
+ * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
+ * Broadcast Video (CS3)
+ * Low Latency Data (AF2x,TOS4) - eg. database
+ * Ops, Admin, Management (CS2,TOS1) - eg. ssh
+ * Standard Service (CS0 & unrecognised codepoints)
+ * High Throughput Data (AF1x,TOS2) - eg. web traffic
+ * Low Priority Data (CS1) - eg. BitTorrent
+
+ * Total 12 traffic classes.
+ */
+
+static int cake_config_diffserv8(struct Qdisc *sch)
+{
+/* Pruned list of traffic classes for typical applications:
+ *
+ * Network Control (CS6, CS7)
+ * Minimum Latency (EF, VA, CS5, CS4)
+ * Interactive Shell (CS2, TOS1)
+ * Low Latency Transactions (AF2x, TOS4)
+ * Video Streaming (AF4x, AF3x, CS3)
+ * Bog Standard (CS0 etc.)
+ * High Throughput (AF1x, TOS2)
+ * Background Traffic (CS1)
+ *
+ * Total 8 traffic classes.
+ */
+
+ struct cake_sched_data *q = qdisc_priv(sch);
+ u32 rate = q->rate_bps;
+ u32 mtu = psched_mtu(qdisc_dev(sch));
+ u32 quantum1 = 256;
+ u32 quantum2 = 256;
+ u32 i;
+
+ q->tin_cnt = 8;
+
+ /* codepoint to class mapping */
+ q->tin_index = diffserv8;
+ q->tin_order = normal_order;
+
+ /* class characteristics */
+ for (i = 0; i < q->tin_cnt; i++) {
+ struct cake_tin_data *b = &q->tins[i];
+
+ cake_set_rate(b, rate, mtu, US2TIME(q->target),
+ US2TIME(q->interval));
+
+ b->tin_quantum_prio = max_t(u16, 1U, quantum1);
+ b->tin_quantum_band = max_t(u16, 1U, quantum2);
+
+ /* calculate next class's parameters */
+ rate *= 7;
+ rate >>= 3;
+
+ quantum1 *= 3;
+ quantum1 >>= 1;
+
+ quantum2 *= 7;
+ quantum2 >>= 3;
+ }
+
+ return 0;
+}
+
+static int cake_config_diffserv4(struct Qdisc *sch)
+{
+/* Further pruned list of traffic classes for four-class system:
+ *
+ * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
+ * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
+ * Best Effort (CS0, AF1x, TOS2, and those not specified)
+ * Background Traffic (CS1)
+ *
+ * Total 4 traffic classes.
+ */
+
+ struct cake_sched_data *q = qdisc_priv(sch);
+ u32 rate = q->rate_bps;
+ u32 mtu = psched_mtu(qdisc_dev(sch));
+ u32 quantum = 1024;
+
+ q->tin_cnt = 4;
+
+ /* codepoint to class mapping */
+ q->tin_index = diffserv4;
+ q->tin_order = bulk_order;
+
+ /* class characteristics */
+ cake_set_rate(&q->tins[0], rate, mtu,
+ US2TIME(q->target), US2TIME(q->interval));
+ cake_set_rate(&q->tins[1], rate >> 4, mtu,
+ US2TIME(q->target), US2TIME(q->interval));
+ cake_set_rate(&q->tins[2], rate >> 1, mtu,
+ US2TIME(q->target), US2TIME(q->interval));
+ cake_set_rate(&q->tins[3], rate >> 2, mtu,
+ US2TIME(q->target), US2TIME(q->interval));
+
+ /* priority weights */
+ q->tins[0].tin_quantum_prio = quantum;
+ q->tins[1].tin_quantum_prio = quantum >> 4;
+ q->tins[2].tin_quantum_prio = quantum << 2;
+ q->tins[3].tin_quantum_prio = quantum << 4;
+
+ /* bandwidth-sharing weights */
+ q->tins[0].tin_quantum_band = quantum;
+ q->tins[1].tin_quantum_band = quantum >> 4;
+ q->tins[2].tin_quantum_band = quantum >> 1;
+ q->tins[3].tin_quantum_band = quantum >> 2;
+
+ return 0;
+}
+
+static int cake_config_diffserv3(struct Qdisc *sch)
+{
+/* Simplified Diffserv structure with 3 tins.
+ * Low Priority (CS1)
+ * Best Effort
+ * Latency Sensitive (TOS4, VA, EF, CS6, CS7)
+ */
+ struct cake_sched_data *q = qdisc_priv(sch);
+ u32 rate = q->rate_bps;
+ u32 mtu = psched_mtu(qdisc_dev(sch));
+ u32 quantum = 1024;
+
+ q->tin_cnt = 3;
+
+ /* codepoint to class mapping */
+ q->tin_index = diffserv3;
+ q->tin_order = bulk_order;
+
+ /* class characteristics */
+ cake_set_rate(&q->tins[0], rate, mtu,
+ US2TIME(q->target), US2TIME(q->interval));
+ cake_set_rate(&q->tins[1], rate >> 4, mtu,
+ US2TIME(q->target), US2TIME(q->interval));
+ cake_set_rate(&q->tins[2], rate >> 2, mtu,
+ US2TIME(q->target), US2TIME(q->target));
+
+ /* priority weights */
+ q->tins[0].tin_quantum_prio = quantum;
+ q->tins[1].tin_quantum_prio = quantum >> 4;
+ q->tins[2].tin_quantum_prio = quantum << 4;
+
+ /* bandwidth-sharing weights */
+ q->tins[0].tin_quantum_band = quantum;
+ q->tins[1].tin_quantum_band = quantum >> 4;
+ q->tins[2].tin_quantum_band = quantum >> 2;
+
+ return 0;
+}
+
+static int cake_config_diffserv_llt(struct Qdisc *sch)
+{
+/* Diffserv structure specialised for Latency-Loss-Tradeoff spec.
+ * Loss Sensitive (TOS1, TOS2)
+ * Best Effort
+ * Latency Sensitive (TOS4, TOS5, VA, EF)
+ * Low Priority (CS1)
+ * Network Control (CS6, CS7)
+ */
+ struct cake_sched_data *q = qdisc_priv(sch);
+ u32 rate = q->rate_bps;
+ u32 mtu = psched_mtu(qdisc_dev(sch));
+
+ q->tin_cnt = 5;
+
+ /* codepoint to class mapping */
+ q->tin_index = diffserv_llt;
+ q->tin_order = normal_order;
+
+ /* class characteristics */
+ cake_set_rate(&q->tins[5], rate, mtu,
+ US2TIME(q->target), US2TIME(q->interval));
+
+ cake_set_rate(&q->tins[0], rate / 3, mtu,
+ US2TIME(q->target * 4), US2TIME(q->interval * 4));
+ cake_set_rate(&q->tins[1], rate / 3, mtu,
+ US2TIME(q->target), US2TIME(q->interval));
+ cake_set_rate(&q->tins[2], rate / 3, mtu,
+ US2TIME(q->target), US2TIME(q->target));
+ cake_set_rate(&q->tins[3], rate >> 4, mtu,
+ US2TIME(q->target), US2TIME(q->interval));
+ cake_set_rate(&q->tins[4], rate >> 4, mtu,
+ US2TIME(q->target * 4), US2TIME(q->interval * 4));
+
+ /* priority weights */
+ q->tins[0].tin_quantum_prio = 2048;
+ q->tins[1].tin_quantum_prio = 2048;
+ q->tins[2].tin_quantum_prio = 2048;
+ q->tins[3].tin_quantum_prio = 16384;
+ q->tins[4].tin_quantum_prio = 32768;
+
+ /* bandwidth-sharing weights */
+ q->tins[0].tin_quantum_band = 2048;
+ q->tins[1].tin_quantum_band = 2048;
+ q->tins[2].tin_quantum_band = 2048;
+ q->tins[3].tin_quantum_band = 256;
+ q->tins[4].tin_quantum_band = 16;
+
+ return 5;
+}
+
+static void cake_reconfigure(struct Qdisc *sch)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ int c, ft;
+
+ switch (q->tin_mode) {
+ case CAKE_MODE_BESTEFFORT:
+ ft = cake_config_besteffort(sch);
+ break;
+
+ case CAKE_MODE_PRECEDENCE:
+ ft = cake_config_precedence(sch);
+ break;
+
+ case CAKE_MODE_DIFFSERV8:
+ ft = cake_config_diffserv8(sch);
+ break;
+
+ case CAKE_MODE_DIFFSERV4:
+ ft = cake_config_diffserv4(sch);
+ break;
+
+ case CAKE_MODE_LLT:
+ ft = cake_config_diffserv_llt(sch);
+ break;
+
+ case CAKE_MODE_DIFFSERV3:
+ default:
+ ft = cake_config_diffserv3(sch);
+ break;
+ };
+
+ for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++)
+ cake_clear_tin(sch, c);
+
+ q->rate_ns = q->tins[ft].tin_rate_ns;
+ q->rate_shft = q->tins[ft].tin_rate_shft;
+
+ if (q->buffer_config_limit) {
+ q->buffer_limit = q->buffer_config_limit;
+ } else if (q->rate_bps) {
+ u64 t = (u64)q->rate_bps * q->interval;
+
+ do_div(t, USEC_PER_SEC / 4);
+ q->buffer_limit = max_t(u32, t, 4U << 20);
+ } else {
+ q->buffer_limit = ~0;
+ }
+
+ if (1 || q->rate_bps)
+ sch->flags &= ~TCQ_F_CAN_BYPASS;
+ else
+ sch->flags |= TCQ_F_CAN_BYPASS;
+
+ q->buffer_limit = min(q->buffer_limit, max(sch->limit * psched_mtu(qdisc_dev(sch)), q->buffer_config_limit));
+}
+
+static int cake_change(struct Qdisc *sch, struct nlattr *opt)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct nlattr *tb[TCA_CAKE_MAX + 1];
+ int err;
+
+ if (!opt)
+ return -EINVAL;
+
+ err = nla_parse_nested(tb, TCA_CAKE_MAX, opt, cake_policy, NULL);
+ if (err < 0)
+ return err;
+
+ if (tb[TCA_CAKE_BASE_RATE])
+ q->rate_bps = nla_get_u32(tb[TCA_CAKE_BASE_RATE]);
+
+ if (tb[TCA_CAKE_DIFFSERV_MODE])
+ q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
+
+ if (tb[TCA_CAKE_ATM]) {
+ q->rate_flags &= ~(CAKE_FLAG_ATM | CAKE_FLAG_PTM);
+ q->rate_flags |= nla_get_u32(tb[TCA_CAKE_ATM]) &
+ (CAKE_FLAG_ATM | CAKE_FLAG_PTM);
+ }
+
+ if (tb[TCA_CAKE_WASH]) {
+ if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
+ q->rate_flags |= CAKE_FLAG_WASH;
+ else
+ q->rate_flags &= ~CAKE_FLAG_WASH;
+ }
+
+ if (tb[TCA_CAKE_FLOW_MODE])
+ q->flow_mode = nla_get_u32(tb[TCA_CAKE_FLOW_MODE]);
+
+ if (tb[TCA_CAKE_NAT]) {
+ q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
+ q->flow_mode |= CAKE_FLOW_NAT_FLAG *
+ !!nla_get_u32(tb[TCA_CAKE_NAT]);
+ }
+
+ if (tb[TCA_CAKE_OVERHEAD]) {
+ if (tb[TCA_CAKE_ETHERNET])
+ q->rate_overhead = -(nla_get_s32(tb[TCA_CAKE_ETHERNET]));
+ else
+ q->rate_overhead = -(qdisc_dev(sch)->hard_header_len);
+
+ q->rate_overhead += nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
+ }
+
+ if (tb[TCA_CAKE_MPU])
+ q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
+
+ if (tb[TCA_CAKE_RTT]) {
+ q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
+
+ if (!q->interval)
+ q->interval = 1;
+ }
+
+ if (tb[TCA_CAKE_TARGET]) {
+ q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
+
+ if (!q->target)
+ q->target = 1;
+ }
+
+ if (tb[TCA_CAKE_AUTORATE]) {
+ if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
+ q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
+ else
+ q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
+ }
+
+ if (tb[TCA_CAKE_INGRESS]) {
+ if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
+ q->rate_flags |= CAKE_FLAG_INGRESS;
+ else
+ q->rate_flags &= ~CAKE_FLAG_INGRESS;
+ }
+
+ if (tb[TCA_CAKE_ACK_FILTER]) {
+ q->rate_flags &= ~(CAKE_FLAG_ACK_FILTER |
+ CAKE_FLAG_ACK_AGGRESSIVE);
+ q->rate_flags |= nla_get_u32(tb[TCA_CAKE_ACK_FILTER]) &
+ (CAKE_FLAG_ACK_FILTER |
+ CAKE_FLAG_ACK_AGGRESSIVE);
+ }
+
+ if (tb[TCA_CAKE_MEMORY])
+ q->buffer_config_limit = nla_get_s32(tb[TCA_CAKE_MEMORY]);
+
+ if (q->tins) {
+ sch_tree_lock(sch);
+ cake_reconfigure(sch);
+ sch_tree_unlock(sch);
+ }
+
+ return 0;
+}
+
+static void *cake_zalloc(size_t sz)
+{
+ void *ptr = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
+
+ if (!ptr)
+ ptr = vzalloc(sz);
+ return ptr;
+}
+
+static void cake_free(void *addr)
+{
+ if (addr)
+ kvfree(addr);
+}
+
+static void cake_destroy(struct Qdisc *sch)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+
+ qdisc_watchdog_cancel(&q->watchdog);
+
+ if (q->tins)
+ cake_free(q->tins);
+}
+
+static int cake_init(struct Qdisc *sch, struct nlattr *opt)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ int i, j;
+
+ sch->limit = 10240;
+ q->tin_mode = CAKE_MODE_DIFFSERV3;
+ q->flow_mode = CAKE_FLOW_TRIPLE;
+
+ q->rate_bps = 0; /* unlimited by default */
+
+ q->interval = 100000; /* 100ms default */
+ q->target = 5000; /* 5ms: codel RFC argues
+ * for 5 to 10% of interval
+ */
+
+ q->cur_tin = 0;
+ q->cur_flow = 0;
+
+ if (opt) {
+ int err = cake_change(sch, opt);
+
+ if (err)
+ return err;
+ }
+
+ qdisc_watchdog_init(&q->watchdog, sch);
+
+ quantum_div[0] = ~0;
+ for (i = 1; i <= CAKE_QUEUES; i++)
+ quantum_div[i] = 65535 / i;
+
+ q->tins = cake_zalloc(CAKE_MAX_TINS * sizeof(struct cake_tin_data));
+ if (!q->tins)
+ goto nomem;
+
+ for (i = 0; i < CAKE_MAX_TINS; i++) {
+ struct cake_tin_data *b = q->tins + i;
+
+ b->perturbation = prandom_u32();
+ INIT_LIST_HEAD(&b->new_flows);
+ INIT_LIST_HEAD(&b->old_flows);
+ INIT_LIST_HEAD(&b->decaying_flows);
+ b->sparse_flow_count = 0;
+ b->bulk_flow_count = 0;
+ b->decaying_flow_count = 0;
+
+ for (j = 0; j < CAKE_QUEUES; j++) {
+ struct cake_flow *flow = b->flows + j;
+ u32 k = j * CAKE_MAX_TINS + i;
+
+ INIT_LIST_HEAD(&flow->flowchain);
+ cobalt_vars_init(&flow->cvars);
+
+ q->overflow_heap[k].t = i;
+ q->overflow_heap[k].b = j;
+ b->overflow_idx[j] = k;
+ }
+ }
+
+ cake_reconfigure(sch);
+ q->avg_peak_bandwidth = q->rate_bps;
+ return 0;
+
+nomem:
+ cake_destroy(sch);
+ return -ENOMEM;
+}
+
+static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
+{
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct nlattr *opts;
+
+ opts = nla_nest_start(skb, TCA_OPTIONS);
+ if (!opts)
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_BASE_RATE, q->rate_bps))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_ATM, (q->rate_flags &
+ (CAKE_FLAG_ATM | CAKE_FLAG_PTM))))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE, q->flow_mode))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_WASH,
+ !!(q->rate_flags & CAKE_FLAG_WASH)))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead +
+ qdisc_dev(sch)->hard_header_len))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_ETHERNET,
+ qdisc_dev(sch)->hard_header_len))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
+ !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_INGRESS,
+ !!(q->rate_flags & CAKE_FLAG_INGRESS)))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER,
+ (q->rate_flags &
+ (CAKE_FLAG_ACK_FILTER | CAKE_FLAG_ACK_AGGRESSIVE))))
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
+ goto nla_put_failure;
+
+ return nla_nest_end(skb, opts);
+
+nla_put_failure:
+ return -1;
+}
+
+static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
+{
+ /* reuse fq_codel stats format */
+ struct cake_sched_data *q = qdisc_priv(sch);
+ struct tc_cake_xstats *st = cake_zalloc(sizeof(*st));
+ int i;
+
+ if (!st)
+ return -1;
+
+ st->version = 5;
+ st->max_tins = TC_CAKE_MAX_TINS;
+ st->tin_cnt = q->tin_cnt;
+
+ for (i = 0; i < q->tin_cnt; i++) {
+ struct cake_tin_data *b = &q->tins[q->tin_order[i]];
+
+ st->threshold_rate[i] = b->tin_rate_bps;
+ st->target_us[i] = cobalt_time_to_us(b->cparams.target);
+ st->interval_us[i] = cobalt_time_to_us(b->cparams.interval);
+
+ /* TODO FIXME: add missing aspects of these composite stats */
+ st->sent[i].packets = b->packets;
+ st->sent[i].bytes = b->bytes;
+ st->dropped[i].packets = b->tin_dropped;
+ st->ecn_marked[i].packets = b->tin_ecn_mark;
+ st->backlog[i].bytes = b->tin_backlog;
+ st->ack_drops[i].packets = b->ack_drops;
+
+ st->peak_delay_us[i] = cobalt_time_to_us(b->peak_delay);
+ st->avge_delay_us[i] = cobalt_time_to_us(b->avge_delay);
+ st->base_delay_us[i] = cobalt_time_to_us(b->base_delay);
+
+ st->way_indirect_hits[i] = b->way_hits;
+ st->way_misses[i] = b->way_misses;
+ st->way_collisions[i] = b->way_collisions;
+
+ st->sparse_flows[i] = b->sparse_flow_count +
+ b->decaying_flow_count;
+ st->bulk_flows[i] = b->bulk_flow_count;
+ st->unresponse_flows[i] = b->unresponsive_flow_count;
+ st->spare[i] = 0;
+ st->max_skblen[i] = b->max_skblen;
+ }
+ st->capacity_estimate = q->avg_peak_bandwidth;
+ st->memory_limit = q->buffer_limit;
+ st->memory_used = q->buffer_max_used;
+
+ i = gnet_stats_copy_app(d, st, sizeof(*st));
+ cake_free(st);
+ return i;
+}
+
+static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
+ .id = "cake",
+ .priv_size = sizeof(struct cake_sched_data),
+ .enqueue = cake_enqueue,
+ .dequeue = cake_dequeue,
+ .peek = qdisc_peek_dequeued,
+ .init = cake_init,
+ .reset = cake_reset,
+ .destroy = cake_destroy,
+ .change = cake_change,
+ .dump = cake_dump,
+ .dump_stats = cake_dump_stats,
+ .owner = THIS_MODULE,
+};
+
+static int __init cake_module_init(void)
+{
+ return register_qdisc(&cake_qdisc_ops);
+}
+
+static void __exit cake_module_exit(void)
+{
+ unregister_qdisc(&cake_qdisc_ops);
+}
+
+module_init(cake_module_init)
+module_exit(cake_module_exit)
+MODULE_AUTHOR("Jonathan Morton");
+MODULE_LICENSE("Dual BSD/GPL");
+MODULE_DESCRIPTION("The Cake shaper. Version: " CAKE_VERSION);
--
2.7.4
More information about the Cake
mailing list