<div dir="ltr">I will check that later, still unsure.<div><br></div><div>First guess: the quantum component should influence only how close to a fluid bit-wise approximation you are.</div><div>So cake gets closer by automatic adjustment.</div><div><br></div><div>The computation of the correction factor should be done by computing the probability that a packet</div><div>of a sparse flow loses priority because of the quantum. Bad setting, higher probability, ideal setting 0 probability.</div><div><br></div><div>So your formula seems still wrong to me... </div><div><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Apr 17, 2018 at 4:25 PM, Toke Høiland-Jørgensen <span dir="ltr"><<a href="mailto:toke@toke.dk" target="_blank">toke@toke.dk</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span class="">Luca Muscariello <<a href="mailto:luca.muscariello@gmail.com">luca.muscariello@gmail.com</a>> writes:<br>
<br>
> I'm not sure that the quantum correction factor is correct.<br>
<br>
</span>No, you're right, there's an off-by-one error. It should be:<br>
<br>
R_s < R / ((L/L_s)(N+1) + 1)<br>
<span class="HOEnZb"><font color="#888888"><br>
-Toke<br>
</font></span></blockquote></div><br></div>