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Abstract—WiFi is one of the most widely deployed networking
technologies, and understanding WiFi performance is therefore
of great importance. The WiFi MAC layer sometimes introduces
significant and variable delays. No existing models of the WiFi
protocol describe WiFi performance in terms of complete latency
distributions. In this work, we present a novel model of WiFi per-
formance. We explicitly define our model in terms of the latency
introduced at each step in the protocol state machine, and the
model produces complete latency distributions. We validate the
model by comparing its outputs to previous modeling work and
real-world measurements. Finally, we use our results to quantify
the latency distribution of WiFi as a function of the duration
of transmit opportunities and the number of stations competing
for the channel. Quantifying this relation represents a significant
improvement in our understanding of WiFi performance that
would not be possible with existing models.

Index Terms—Multimedia and real-time communication, Per-
formance evaluation of networks, ∆Q, Quality attenuation, Er-
godicity networking, WiFi, 802.11

I. INTRODUCTION

WiFi is one of the most widely deployed ways for computers
and mobile devices to connect to the Internet. An estimated
16 billion devices are now WiFi compatible, and this number
grows faster every year. Knowledge of the performance of WiFi
networks is therefore of great importance to our understanding
of the end-to-end performance of applications on the Internet.

WiFi stations compete for access to the radio channel
using a distributed coordination function that coordinates the
channel access of multiple stations in a decentralized way. It
is defined by the IEEE 802.11 working group and published
as a standard that all WiFi stations must be compatible with
[1]. The performance of the distributed coordination function
(DCF) has been thoroughly documented in the literature [2]–[9].
The most recent WiFi protocol versions have introduced more
efficient ways to use the WiFi channel, such as MU-MIMO
and OFDMA. However, these protocol improvements run on
top of the DCF. The WiFi DCF is still the basic method for
assigning channel resources in WiFi networks [10].

The performance of the WiFi DCF has been extensively
studied, so why write yet another paper on the subject? The

reason is that we have decided to use an unconventional
definition of performance. Having made that choice, we could
not find any studies of WiFi performance compatible with
our definition. Our preferred definition of performance is that
of Thompson and Davies [11], known as quality attenuation,
or ∆Q for short. The quality attenuation metric combines
latency and packet loss into a single variable where packet loss
is modeled as infinite latency. The motivation for choosing
this performance metric is that ∆Q enables us to reason
about network performance in ways that are not possible with
conventional performance metrics. For example, it deals in
distributions, allowing us to reason about tail risks that average
measures fail to capture. Values of ∆Q can be composed both
sequentially and in parallel. ∆Q values can also describe and
reason about first-to-finish and last-to-finish synchronizations
[12]. In addition, we can define a partial order of ∆Q values,
which allows us to conclude that one network connection is
better than another in a rigorously defined sense [13]. A partial
order establishes a notion of comparing two entities which
includes the idea of ‘incomparable’ in addition to the usual
comparisons equal (=), less than (<), and greater than (>).

Composing network performance measurements is not well
defined for throughput, arguably the most popular network per-
formance metric. Other commonly used performance metrics,
such as the average and standard deviation of latency, provide
some of the benefits of ∆Q because they can be added and
subtracted. However, average and standard deviation do not
adequately describe general latency distributions. ∆Q describes
the full distribution of latency by treating it as a random variable
and including packet loss. The ∆Q performance metric has
proven useful as a design and reasoning tool in real-world
scenarios. Haeri et al. [12] describe how ∆Q was used to
design the Cardano blockchain, and Teigen et al. [14] used
it to uncover protocol violations in the WiFi implementation
on the Raspberry Pi 4B. More details on ∆Q are described in
section III.

The question we seek to answer in this work is ”How much
quality attenuation does a WiFi link introduce?”. We propose



two novel contributions toward answering this question. First,
we develop and validate a novel WiFi distributed coordination
function (DCF) model based on ∆Q. The model is validated
by comparing its outputs to real-world WiFi performance
measurements in a testbed. We also verify that the average
latency values produced by our model match those derived by
Markov chain methods. Second, we use the model to describe
how the quality attenuation of WiFi links depends on the
duration of transmit opportunities (TxOP duration) and the
number of competing stations. To the best of our knowledge,
this is the first work describing the ∆Q performance of the
WiFi DCF. Quantifying this relation represents a significant
improvement in our understanding of WiFi performance that
would not be possible with existing models.

Section II lays out the most relevant related work on WiFi
modeling, and section III covers the details of the ∆Q metric.
We explain our method and its application to WiFi in section
IV. In section V, we describe the testbed and the experiments
used to validate the model. Section V also presents the results
and the discussion of the validation experiments. In section VI,
we use our model to explore how a WiFi link’s ∆Q changes
as a function of the duration of transmit opportunities and the
number of competing stations. Our results are discussed in
section VII. Finally, we conclude the work in section VIII.

II. BACKGROUND

Bianchi [2] models the WiFi distributed coordination function
(DCF) using a Markov chain. In doing so, Bianchi makes a
few key simplifications. The most important simplification is to
abstract away the details of delays. The value of the back-off
counters defines a time step in Bianchi’s model. That is to say;
the model does not separate the case where the medium is
idle from the case in which the station (STA) has to wait for
another transmission to complete before the back-off counter is
decremented. The time steps are defined in terms of the model
state, not how much actual time has passed. Defining the time
steps using back-off counter values is a useful simplification for
a Markov chain analysis, but it comes at the cost of discarding
timing information. Bianchi also points this out [2, Section IV,
A].

Tinnirello et al. [5] extend the methodology of Bianchi [2].
Here, a Markov chain is solved for the steady-state distribution
of back-off timer values. This approach was chosen to better
model the different channel access probabilities of the Wireless
Multi-Media (WMM) extension of WiFi. Still, this method is
also closer to modeling latency distributions. Tinnirello’s model
still makes simplifications that hide latency information because
the model does not deal with differences in transmission times
due to different data rates. Heusse [7] shows that differences
in data rates are very important for WiFi performance.

We have drawn attention to a few examples, but several other
authors have also based their analysis of WiFi performance
on the method first demonstrated by Bianchi [15]–[17]. These
papers all report steady-state results and measure performance
as aggregate throughput. Aggregate throughput is equivalent
to average head-of-line latency under the assumption that all

stations get an equal share of the WiFi channel and use the
same coding rate [18].

From our review of previous work, we see a need for a more
detailed analysis of the latency and packet loss performance
of WiFi. We do not dispute the usefulness of throughput as a
performance metric. Instead, we emphasize that it is important
to be mindful of its limitations. One of these limitations is that
long-term average throughput ignores short-term deviations
from the long-term average behavior. When these short-term
deviations from average behavior are important, it is easy to
draw misleading conclusions. Empirical measurements [8] show
that WiFi latency follows a heavy-tail distribution and that the
WiFi latency of a single packet is sometimes large enough to
potentially affect application performance and user experience
[19], [20]. It is, therefore, interesting to describe WiFi latency
with more fidelity than a long-term average latency value. We
address this by developing a novel model of the 802.11 WiFi
protocol that allows for the exact computation of the statistical
distribution of latency and packet loss.

III. QUALITY ATTENUATION

Quality attenuation is a network quality metric that captures
the latency and packet loss performance of packet-switched
networks. It has been developed through several decades of
academic work [11]–[13], [21], [22], but it is not widely
known in the research community. Therefore, we give a brief
description here. The quality attenuation metric combines
latency and packet loss into a single variable where packet loss
is modeled as infinite latency. Equation 1 formally defines a
quality attenuation value as a probability density function P (t)
paired with a real number P (∞) such that 0 ≤ P (∞) ≤ 1.
P (t) describes the probability density over all possible latency
values, and P (∞) describes the probability of packet loss (we
can think of packet loss as infinite latency). We use “∆Q” to
abbreviate quality attenuation. A ∆Q value can be plotted as
a cumulative density function (CDF) that never goes above
1− P (∞).

One of the most useful features of ∆Q is that values can be
composed both sequentially and in parallel. Equation 2 defines
how two quality attenuation values are sequentially composed.
The operation consists of convolving the probability densities
and computing the sequential probability of packet loss [13].
We use ⊗ to denote the sequential composition of ∆Q values.
Suppose we have a good description of the quality attenuation
of each link along a network path. In that case, sequential
compositionality allows us to reason about how the end-to-end
path will perform. An example of a real-world use-case for
sequential composition is shown in Fig. 1.

∆Q := [P (t), P (∞)], t ∈ R+ (1)



∆QA ⊗∆QB =

[PA(t), PA(∞)]⊗ [PB(t), PB(∞)] :=

[

∫ t

0

PA(τ)PB(t− τ) dτ, PA(∞) + (1− PA(∞))PB(∞)]

(2)

STA AP
∆QWiFi

Server
∆QAccess

STA Server
∆QWiFi ⊗∆QAccess

Figure 1. Practical example of the convolution operator

We can also define the parallel composition of ∆Q values.
The parallel composition can be thought of as modeling
uncertainty about the network state. For instance, we can
describe a situation where a WiFi link has either zero, one,
or two stations competing for the WiFi channel, as illustrated
in Fig. 3. Suppose we do not know how many stations are
competing for the channel but have some idea of the probability
of zero, one, or two competitors, respectively. In that case, the
link’s total ∆Q can be computed by calculating the parallel
composition of the ∆Q of each number of competitors. The
parallel composition operation on ∆Q values extends the notion
of a mixture distribution [23] to improper random variables.
We use ⊕p to denote parallel composition. Fig. 2 is a diagram
showing parallel composition, and equation 3 formally defines
the operation.

p
∆QA

1− p
∆QB

∆QA ⊕p ∆QB

Figure 2. Probabilistic choice

∆QA ⊕p ∆QB =

[PA(t), PA(∞)]⊕p [PB(t), PB(∞)] :=

[pPA(t) + (1− p)PB(t), pPA(∞) + (1− p)PB(∞)]

(3)

We can also define a partial order of ∆Q values. The
meaning of ∆QA < ∆QB is defined by equation 4. This partial

STA AP

p0

∆QNo competition

p1 ∆QOne competing STA

p2

∆QTwo competing STAs

Figure 3. A quality attenuation model of a WiFi link with zero, one or two
competing stations

order has a neat geometrical interpretation. When plotted as
CDFs, ∆QA < ∆QB implies that the CDF of ∆QA is above
and to the left of ∆QB and the graphs never cross. Thompson
and Davies [11] use this partial order of ∆Q values to show
how the ∆Q of an end-to-end network path can be related to
application performance over that path. This can be done by
defining a ∆Q budget for the application and checking whether
the delivered ∆Q is less than the application budget. Suppose
the network delivers a ∆Q less than the application requires.
In that case, we can confidently say that the network is not
causing any issues for the application (barring pathological
cases where the application cannot handle a network that is
too responsive). Equation (4) can be confusing; It expresses
that the CDF of PA(t) is greater than the CDF of PB(t) for
all values of d, which means PA(t) has lower latency for any
given percentile value. A larger CDF for all values of d along
with a lower probability of loss means lower quality attenuation,
hence ∆QA < ∆QB .

∆QA < ∆QB =

[PA(t), PA(∞)] < [PB(t), PB(∞)] := ∀ d ∈ R+ :∫ d

0

PA(t) dt >

∫ d

0

PB(t) dt ∧ PA(∞) < PB(∞)

(4)

IV. MODEL DESCRIPTION

This section describes the structure of our model and how we
evaluate it. We then describe how we implement the features
of the WiFi distributed coordination function in the model.

At a high level of abstraction, our model is a directed
graph of communicating stochastic processes. The model
is evaluated using the discrete event simulation algorithm
described by Cassandras and Lafortune [24, Section 10.2].
The nodes represent queues, links, or computational steps and
are modeled as stochastic processes describing the distribution
of time until the next event generated by that node. The edges
of the graph represent interfaces where the output of one
stochastic process is input to another stochastic process. In
our model, each event carries a data packet, and each event
involves forwarding the data packet from one queue, link, or
processing step to another. As an example of a node, consider
a link that deterministically takes exactly 1 ms to transmit a



Algorithm 1 Algorithm for evaluating the quality attenuation
WiFi model

1: time ← 0
2: eventqueue ← empty list
3: trace ← empty list . To record the event history
4: for n in nodes do
5: eventqueue.add(n.get next event(time)) . A pair (e, t)

6: eventqueue.sort() . Earliest event first
7: while not done do
8: e, t ← pop(eventqueue)
9: trace.append((e, t))

10: time ← t
11: for n in nodes affected by e do
12: must resample ← n.handle event(e, time)
13: if must resample then
14: en ← eventqueue.lookup(n)
15: eventqueue.remove(en)
16: eventqueue.add(n.get next event(time))
17: eventqueue.sort()

packet. Upon receiving a packet at time t, the node representing
this link will generate an event that forwards the packet to a
receiver scheduled at time t+ 1ms.

The simulation algorithm of Cassandras and Lafortune [24,
Section 10.2] is described in algorithm 1 for completeness.
When the algorithm terminates, the list ”trace” contains a
timestamped record of the events. We use this record to compute
the latency distribution of head-of-line packets in the individual
stations by taking the difference between the time at which a
packet becomes the head-of-line packet and the time at which
it is received at the other end of the WiFi link. By sampling
many packets, we can build a distribution (∆Q) of the time it
takes for a packet to be serviced once it reaches the head of
the line.

We represent the WiFi channel as a single node in the model
graph. We first describe how we handle enqueuing packets at
the WiFi stations (the node’s handle event() function) and then
describe how we model the operation of the WiFi DCF (the
node’s get next event() function).

1) handle event(): When a new packet arrives at one of
the WiFi stations, the packet is either enqueued or dropped
depending on the state of the appropriate queue. If the queue is
empty and the relevant back-off timer is zero when the packet
arrives, we check whether enough time has passed [1, Section
10.3.3] since the trailing edge of the last transmission. If so, the
carrier sense mechanism reports that the frequency is idle, and
the packet is transmitted immediately. If the frequency is not
idle, then the back-off procedure for that station is triggered.
The back-off procedure selects a random number in the range
[0, CWmin] and assigns that number to a back-off counter [1,
Section 10.2.2]. ”CW” here stands for contention window.

2) get next event(time): Our WiFi node implements the
rules by which the WiFi DCF controls access to the channel.
The WiFi DCF is ”clocked” by the trailing edges of busy

periods on the channel and the duration ”slot time” (see Table
I). The state of a WiFi channel with n competing stations is
modeled as an allocation of each of the n stations to a back-off
counter and a retry counter value, and each station has its own
set of internal queues. The WiFi DCF defines rules for updating
this state. We call these updates state transitions. When looking
at the state of the WiFi DCF between slot boundaries, there
must be an ongoing transition, and at one of the slot-time
boundaries, only three cases are possible:

1) No stations have a back-off counter value of zero, so
all eligible stations decrease their back-off counter value
by one. Which stations are eligible depends on AIFSN
values [1, Section 10.3.2.3], WMM traffic classes [1,
Section 10.22.2] and how much time has passed since
the falling edge of the last transmission. The duration of
this state transition is one slot time.

2) Exactly one station has a back-off counter value of zero.
This station successfully transmits. The state transition
lasts for the time required to transmit the packet and
receive the following ACK. The transmitting station is
then finished sending its packet. The station leaves the
system if its queue is empty. Otherwise, it triggers the
back-off procedure with the packet at the head of its
queue. The transmitting station resets its retry counter to
zero. The remaining stations hold their back-off counters
constant for the transmission duration.

3) More than one station has a back-off counter value of
zero. Several stations initiating a transmission at the
same time cause a collision, spending the amount of time
required for the longest colliding transmission (including
ACK) to complete. All the colliding stations then increase
their retry counter by one and select a random back-off
counter value from the range (0, CW (r)), where r is
the new retry counter value at each station [1, Section
10.2.2]. All stations not involved in the collision keep
their back-off counter values constant for the duration
of the collision.

When the get next event(time) function of the WiFi DCF
node is called, we iterate the DCF process until a packet is
successfully transmitted. This generates an event that passes
the transmitted packet to its receiver. If all queues become
empty before a successful transmission occurs, the WiFi node
generates a null event timestamped at infinity, which amounts
to an idle waiting state.

V. MODEL VALIDATION

In this section, we compare the output of our model to
the results of Bianchi [2], and we compare model outputs to
real-world WiFi measurements in a testbed.

A. Experiments and results

To replicate the results of Bianchi [2] we evaluate our
model using stations that always have a packet to send. We
perform the evaluation using the same parameters as Bianchi
[2, Table 2], shown in table I. Figure 4 shows results for total



Parameter Bianchi Testbed
Slot time (µs) 50 20

SIFS (µs) 28 10
DIFS (µs) 128 50

PHY Header (bits) 128 192
MAC Header (bits) 272 284

ACK (µs) 240 304
Base rate (Mbit/s) 1 1

CWmin 15 15
CWmax 1023 1023

Maximum retries 6 6
packet size 1023 N/A

Table I
PARAMETERS USED FOR COMPARISON TO THE RESULTS OF BIANCHI AND

FOR COMPARISON TO TESTBED MEASUREMENTS
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Figure 4. System throughput as a function of initial back-off window size.

system throughput as a function of initial back-off window
size, compared to results from [2, Figure 9].

Figure 5 shows our model predictions for latency and packet
loss performance for some of the scenarios we use to compare
our model to Bianchi’s results. Bianchi’s model does not predict
distributions, so we can not compare predictions in this case.
Packet loss is pictured as the distance from 1 on the y-axis.
Note that the results show the latency of a head-of-line packet,
so queuing delays and potential packet loss due to full buffers
will come in addition to the delays shown here. The shape of
the latency distributions in figure 5 is instructive. The shape of
the CDFs shows that when a WiFi link is saturated with many
stations, some packets receive relatively good service, while
some packets receive very bad service indeed. The distribution
of head-of-line latency has a long tail. We believe this is
an effect of the exponential back-off of the WiFi protocol,
where those packets that are unlucky enough to suffer several
collisions get extremely large delays.

To check that the quality attenuation predicted by our model
is not unrealistic, we compare the model predictions to real-
world WiFi performance measurements in a testbed. We first
describe the testbed and then compare model outputs with
testbed measurements.

The testbed consists of seven Raspberry Pi 4B machines
and a WiFi access point, arranged as shown in figure 6.
One machine, called the Server, is connected to the WiFi

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Latency (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

C
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F

n=5

n=10

n=20

n=50

Figure 5. CDF for latency and packet loss with initial back-off window size
of 8

Ethernet
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WiFi

Probe

AP
TWAMP
Server 

TWAMP Client
 

Iperf
Servers 

WiFi
SnifferTraffic-5

Iperf Client

Traffic-1

Iperf Client

tcpdump

Figure 6. The testbed setup with two traffic generators. The validation runs
make use of five traffic generators.

AP with a 1 Gbit/s Ethernet cable. The Server runs a Two-
Way Active Measurement Protocol (TWAMP) server, five
iperf servers, and records WiFi packets using a WiFi adapter
(Alfa AWUS036ACH) with a Realtek RTL8812AU WiFi 5
(802.11ac) chipset. Five machines, called traffic-1 through
traffic-5, run UDP uploads to the iperf servers. The final
Raspberry Pi runs the TWAMP client, our source of latency
measurements. All the Raspberry Pis run NixOS [25] and are
configured through NixOps. Table I shows the WiFi parameters
for the testbed setup. The Raspberry Pi 4B machines use the
Broadcom BCM4345/6 WiFi chipset with brcmfmac43455
firmware version 7.45.229.

We aim to design experiments that will invalidate our model
if it outputs incorrect latency distributions. To this end, we
developed a set of test scenarios that vary the number of
competing stations and the packet arrival rate at each station.
These scenarios span a wide range of network conditions and
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Figure 7. Model predictions compared to testbed measurements for various combinations of n stations and average packet arrival rate λ at each station.
Per-packet transmission time (including the WiFi ACK) is 12.506 ms.

capture the effects of interactions between competing stations
and overall channel saturation.

We independently vary two different parameters in the
validation scenarios. First, we vary the number of participating
stations, each running a single UDP upload towards the iperf
server. Second, we vary the throughput of the UDP uploads.
The packet size is kept constant at 1470 bytes, and the WiFi
rate is 1 Mbit/s. The per-packet transmission time, including
the ACK, is 12.506 ms. The WiFi configuration of both the
testbed and the simulations use the parameters listed in Table
I. We have verified that the testbed access point is configured
correctly by inspecting beacon frames captured by the WiFi
sniffer. All traffic, including the TWAMP measurement packets,
are tagged as Best Effort using DSCP, and RTS/CTS is off.
Both testbed experiments and simulations are run for 150
seconds of real and simulated time, respectively, and collect
300 samples of head-of-line quality attenuation in that period.

There are a few differences between the model and the
testbed. In the model, we use Poisson processes to generate
the packet arrivals. In the testbed, packets are spaced with
an (almost) constant delay because we use iperf3 to generate
traffic. It is hard to faithfully replicate the traffic patterns of
iperf3 in the model because it depends on details like clock
granularity, CPU scheduling, and, most importantly, the timing
of triggering the iperf3 commands via SSH on each of the

traffic generators. Therefore, we believe that attempting to
model the iperf3 traffic pattern exactly is as likely to introduce
new artifacts as it is to remove them. Consequently, we have
chosen to stick to a Poisson arrival pattern in the simulation.
Another source of prediction errors is the possibility of random
noise or interference from other 2.4GHz radios causing packet
retransmissions that are not due to collisions with other traffic
in the testbed. To mitigate this, we ensure that no other WiFi
networks are within range on the same channel in the testbed
location.

Figure 7 shows the results for each validation scenario from
both the testbed and the model. Each plot shows the cumulative
density function (CDF) of latency in the interval from 0 to
0.1 seconds. The blue dotted line shows model predictions,
and testbed measurements are shown in orange. The number
of active traffic generators (n) varies from 1 to 5, and the
average time between packet arrival times varies from 12 ms
to 96ms in steps of 12 ms. The vertical grid lines are spaced
one packet transmission time apart to aid interpretation. The
plot background is colored to indicate how heavily loaded the
WiFi channel is in each case. ρ (see the color bar) represents
the fraction of time needed to complete transmissions of all the
arriving traffic (i.e., the sum of traffic arriving at all stations),
assuming perfect time-division multiplexing of the channel.
When ρ << 1, the WiFi channel is empty some of the time,
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and we expect that the queues in each station also become
empty occasionally so that fewer than n stations compete for
access to the channel at any single moment on average. When
ρ ≥ 1, the WiFi channel can not service all arriving traffic. In
this case, we expect the queue in each station to be full most
of the time. Therefore, when ρ ≥ 1, all of the n stations are
competing for access to the WiFi channel almost all the time.

B. Discussion of the model validation

We consider figure 7 convincing evidence that our WiFi
model is valid. The prediction error is much smaller than the
packet transmission time for most scenarios. Predictions are
less accurate when ρ is slightly less than one, which we believe
is because the packet arrival patterns in the testbed are different
from the model. Poisson arrivals are phase-less, meaning there
is no correlation between subsequent inter-arrival times. The
iperf3 arrivals in the testbed have close to constant inter-arrival
times, and, therefore, the different traffic sources have the
potential to become out of phase with each other. If the packet
arrivals are out of phase, they are biased toward a perfect time-
division multiplexing of the WiFi channel. That might explain
why the measured latency is smaller than the model predicts.
If this is the correct explanation, we expect the effect to be
most noticeable when ρ is slightly less than one, and it should

n Mean STD 50th percentile 90th percentile
1 2.36 1.56 1.96 3.85
2 4.42 7.37 2.91 8.04
3 6.33 13.27 3.54 11.49
4 8.07 17.16 4.02 15.44
5 9.78 22.71 4.29 18.73

Table II
LATENCY STATISTICS MEASURED IN TXOP DURATIONS

disappear completely when ρ ≥ 1 because then queues start
to fill, and any out-of-phase arrival pattern no longer matters.
This is indeed what the results show.

Because each frame can be retried up to 6 times before it is
lost (see table I), the probability of packet loss is very small.
We did not observe any loss of TWAMP packets in the testbed
during the validation runs. Simulation of the transit of 3000
packets for the highest number of stations (n = 5) yielded a
loss rate of 0.10%, so observing no loss in the experimental
case (300 recorded packets) is not statistically inconsistent.
Frame loss (and hence retries) is a direct consequence of
collisions. We know our model captures this phenomenon
because collisions, and the resulting back-off behavior, are
a significant cause of WiFi latency. The delay distributions
would be substantially different if we did not model collisions
accurately. Therefore, we can be reasonably confident that the
model accurately captures the processes that lead to packet
loss.

VI. ∆Q ANALYSIS OF THE WIFI DCF

In this section, we use our model to explore and quantify
the impact of some of the factors that affect quality attenuation
in the WiFi DCF.

The left plot in figure 8 shows the model predictions from
the rightmost column of figure 7 (where n = 5) collapsed into
a single chart. We have normalized the x-axis to count the
number of packet transmission durations (TxOP duration). The
right plot of figure 8 shows model predictions for a different
combination of packet size and WiFi rate (3788 bytes and 14.4
Mbit/s), which yields a TxOP duration of 2.528 milliseconds.
We chose 2.528 ms because it is the default maximum TxOP
duration for best-effort traffic in the 802.11ac standard, the
most widely deployed version of the WiFi protocol [1, Table
9-137].

We want to illustrate two things with figure 8. First, notice
that the left and right plots are very similar. This similarity
shows that the quality attenuation of a WiFi link scales linearly
with the TxOP duration. Linear scaling with TxOP duration
is expected considering that the waiting time for idle slots
(typically 9 or 20 µs) is very short compared to the packet
transmission times (typically > 1ms). Second, we also observe
that the head-of-line quality attenuation is very similar for all
cases where ρ > 1. This is because any load above capacity
is queued within each station, and this does not affect the
head-of-line quality attenuation.

Figure 9 shows the TxOP-normalized ∆Q CDFs when
ρ > 1 for different numbers of competing stations. Table
II summarizes some of the results shown in figure 9.
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Figure 10. How TxOP efficiency scales with the size of TxOPs

Figure 9 suggests that reducing the TxOP duration will
lead to much lower head-of-line quality attenuation. However,
the minimum per-transmission overhead of WiFi is constant.
Reducing the TxOP duration reduces the maximum throughput
a WiFi channel can support. Figure 10 shows the percentage of
overhead in each TxOP as a function of the TxOP duration. The
TxOP overhead is the time it takes to transmit the minimum
per-transmission overhead (PHY and MAC headers, the SIFS
between a packet and the following ACK, and the time needed
to transmit the ACK) divided by the total duration of each
TxOP. Our calculations for figure 10 use the parameters in
table I.

We can leverage these results to explore trade-offs in the
WiFi DCF. We can use figures 9 and 10 to quantify the cost and
benefit of tuning the maximum TxOP size in a WiFi network.
The default TxOP limit for best-effort traffic in the 802.11ac
standard is 2.528 milliseconds [1, Table 9-137]. Figure 10
shows that this gives us approximately 16.2% overhead. If the
maximum TxOP duration is reduced to 1.25 ms, the overhead
grows to 32.3%. This increase in overhead buys us a 50%
reduction in head-of-line latency. This trade-off might be well
worth considering depending on the relative importance of
latency vs. throughput for a specific WiFi network. We should
also note that the parameters of table I give a relatively large
overhead compared to default values for 802.11ac and 802.11ax.
The trade-off is more favorable for newer protocol versions
because overhead has been reduced while the relationship
between TxOP duration, number of stations, and ∆Q remains
the same.

Figures 7 and 9 also show how the model can be used
to quantify the effects of reducing the number of competing
stations (n). Given a network with n stations, we can shape
the traffic of each station so that not all n stations compete for
WiFi resources all of the time. This can reduce head-of-line
quality attenuation significantly, and figure 7 effectively shows
examples for specific traffic shaping scenarios using Poisson
arrival patterns.

VII. DISCUSSION

Figures 9 and 10 maps out what we believe to be the most
critical dimensions of the space of performance trade-offs for
the WiFi DCF. It is not surprising that more stations and a
larger TxOP duration increase the ∆Q of a WiFi link, but
this is the first time the magnitude of this increase has been
calculated. We can now make well-informed decisions when
optimizing WiFi performance because we can leverage our
knowledge of the relationship between TxOP duration, the
number of competing stations, and quality attenuation. A WiFi
access point can influence both the number of stations and the
TxOP duration, so these results provide a clear path towards
optimizing ∆Q in real-world WiFi networks.

One of the main limitations of our approach is that the results
are long-term averages of ∆Q for static network configurations.
In real-world networks, the ∆Q of a link typically varies with
time so that samples taken within a limited time interval are
correlated. Ignoring short-term correlations is a limitation of
all steady-state approaches, and so it also applies to most other
WiFi modeling work. Nevertheless, addressing this limitation
remains an exciting direction for future study.

VIII. CONCLUSION AND FUTURE WORK

We have built and validated a model of WiFi performance,
which allows us to compute the quality attenuation of a WiFi
link. Using the newly validated model, we quantified how
the performance of a WiFi link depends on the duration of
transmissions and the number of competing stations. To the
best of our knowledge, this is the first structured approach
to describing the quality attenuation of WiFi. Our results lay
the foundations for analyzing WiFi networks with tools and
methods based on the quality attenuation formalism. Our results
provide a clear path toward optimizing the quality attenuation
of WiFi networks, but more work is needed in this direction.
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