
Airtime Fairness
Handling massive client download and fair airtime

OPEN-MESH WHITE PAPER

WWW.OPEN-MESH.COM

2

Overview
Many clients connected to one access point is a scenario often seen at
conferences or airports. Throughput performance often drops and laten-
cies go up when many clients use the WiFi simultaneously, but its hard
to test these kind of scenarios in a lab to reproduce these problems.
For this purpose we built a test wall of 30 WiFi clients (OM2P-LC access
points) to simulate these kind of scenarios and tune WiFi drivers and
schedulers. We would like to support a high number of simultaneous
clients while maintaining good throughput, low/acceptable latencies and
fair distribution of resources among stations.

One approach to tackle the mentioned problems is to reduce bufferbloat
by limiting the time packets stay in queues of the access point before
sent to their destination. This will reduce latencies which are often seen
to rise to multiple seconds in busy WiFi networks. The CoDel algorithm
was implemented in the Linux kernel to mitigate this problem, which
attempts to keep latencies below certain target values.

Another problem is that clients may be served at different WiFi rates
(from 1 Mbit/s up to 300 Mbit/s or more), depending on their connection
quality or signal strength. Frames on low datarates take much longer
time in the air to transmit a fixed amount of data compared to frames at
high datarates. A phenomena which can be observed quite often is that
the “slow” clients operating with low datarates will hog most of the air-
time, leaving the fast clients only a fraction of time to transmit data. How-
ever, if airtime is distributed equally among clients regardless of their
datarates used, the “fast” clients can send much more data in their share
of airtime and the throughput sum will increase. Aggregate throughput
improvements of 200% and more can be achieved using this technique.
We have implemented an experimental airtime-based scheduler in ath9k
to balance airtime and improve the overall throughput.

3

Test setup
Our test setup consists of a two test walls with 30 OM2P-LC access
points mounted on them.

All of them connect
to one access point.
Client number 1 (the
“slow client”) is config-
ured at a fixed rate of
1 Mbit/s (by using TKIP
and limiting the legacy
rates to 1 Mbit/s), while
other clients may use
any datarate (up to 72
Mbit/s at MCS7/HT20).

Clients run a netperf
server, and our test
script downloads data
from a machine behind
the access point over
the WiFi to the clients.
At the same time, the
slow client and two fast
clients measure the
latency using ping.

The AP runs OpenWRT
trunk (r39639) with a
few custom patches to
re-enable pfifo_fast for comparison and with the experimental fair air-
time patch. ath9k schedulers are either round robin (the current default
scheduler) and fair airtime. Either pfifo_fast or fq_codel qdiscs are used
on the WiFi interface.

4

Test results
fq_codel + round robin
This is the current default configuration in OpenWRT. We can observe
that the latency limits are not too bad, but the slow client is given way too
much airtime compared to the other fast clients. This results in stable
latency and throughput graphs for the slow client, but poor performance
for the fast clients. Note that various tests have been performed and
most don’t look as stable as the one in the graphs below.

5

fq_codel + fair airtime
Compared to round robin, the airtime is much more equally distributed
on the clients. The slow client is not favored, but its latency times are
too high to be acceptable (around 1s). A lot of frames for this client are
buffered for a long time in the ath9k-internal queues, and the client is
not scheduled very often anymore due to its high airtime consumption.
The aggregate bandwidth is much higher compared to round robin, as
desired.

6

pfifo_fast + round robin
Throughputs are rather shaky in this test, and latencies are above
acceptable levels. The airtime distribution is more fair compared to fq_
codel + round robin.

7

pfifo_fast + fair airtime
Throughputs are still shaky but higher than for the round robin
scheduler. The airtime is distributed more fairly compared to round
robin, but the slow client still hogs more than 25% of the total airtime.
Latencies are still beyond acceptable levels.

8

Summary
The current fair airtime implementation holds its promise and distributes
the airtime fairly among the clients. Also the aggregate throughput
has increased, as expected. However, the slow client now has an
unacceptable high latency - that is because packets for this client now
stay in the ath9k-internal queues, out of reach for CoDel. Also not all
clients are really fast - some of them don’t get enough packets into ath9k
to form large aggregates, and therefore only transmit few packets with
lower datarates (but similar airtime, though).

It seems the key to solving that would be to improve the communication
between the driver (ath9k) and the upper layers (mac80211 or qdiscs),
so that the driver can report which stations could use more packets and
the upper layers can deliver packets for exactly these stations. More on
that in the next section.

On a side node, it is interesting to see how codel and the current
scheduler surprisingly seem to favor the slow client instead of the fast
one.

Next steps
One major problem observed while implementing the fair airtime
scheduler is the supply of frames from higher levels (qdisc). ath9k keeps
separate queues per station, but some are getting filled with frames
while others stay empty. There is currently no way to signal upper levels
which station has airtime credits left and could use more frames, and
which are already full - the only signaling mechanism is to “wake” the
upper layers to deliver more frames for the whole interface (which could
be for any station) or to stop the delivery.

There are currently three ideas how to fix this problem:

1. Separate queues per station
Instead of having a single queue per WMM access class, split queues
per station. That would allow separate qdiscs per station as well, which
can be woken/stopped from the underlying driver directly. The separate
queues could be either created dynamically1, statically (the limit is 2007

9

stations, times 8 for each TID) or with a fixed amount of queues and
a hash. Each of these ideas has drawbacks (too much memory waste,
complicated queue handling) and all mentioned alternatives will probably
require rather complex changes in mac80211 and drivers.

2. Inform qdiscs about delivery
qdiscs currently stop caring about frames after dequeueing them. They
are not informed when the packet actually leaves the underlying driver
and/or hardware. One way to solve this would be to add a callback to
signal transmission completion2. For mac80211/ath9k and many soft
mac drivers, skbs are returned to mac80211 after delivery to report
the tx status (how many retries have been used on which rates, etc).
Therefore a callback could be performed quite easily, however qdisc-
internal state will be lost (skb->cb is overwritten by mac80211 and
drivers).

3. Queue management in drivers
Drivers like ath9k which manage station queues separately could keep
queues short by themselves, e.g. by dropping packets if they can’t be
delivered after some time. This scheme would be driver-dependent
as qdisc code can’t be reused at this point, and still does not interact
properly with the “upper layer” qdiscs.

As for any of the ideas above, we’d be very interested in suggestions and
comments.

External links:
[1] http://permalink.gmane.org/gmane.linux.kernel.wireless.general/80474

[2] http://permalink.gmane.org/gmane.linux.kernel.wireless.general/80476

For more information:
Marek Lindner Simon Wunderlich
marek@open-mesh.com simon@open-mesh.com

