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Abstract

This monograph describes the theory behind Raptor codes, and eluci-
dates elements of the processes behind the design of two of the most
prominent members of this class of codes: R10 and RaptorQ (RQ). R10
has already been adopted by a number of standards’ bodies, and RQ
is in the process of entering various standards at the time of writing of
this monograph.

The monograph starts with the description of some of the
transmission problems, which inspired the invention of Fountain codes.
Thereafter, Luby transform codes (LT codes) and Raptor codes are
introduced and insights are provided into their design. These codes are
currently the most efficient realizations of Fountain codes. Different
algorithms are introduced for encoding and decoding various versions
of these codes, including their systematic versions. Moreover, a hybrid
decoding algorithm called “inactivation decoding” is introduced, which
is an integral part of all modern implementations of Raptor codes.

The R10 and RQ codes have been continued and will continue to
be adopted into a number of standards and thus there are publicly
available specifications that describe exactly how to implement these



codes. However, the standards’ specifications provide no insight into
the rationale for the design choices made. One of the primary purposes
of this document is to provide this design rationale.

We provide results of extensive simulations of R10 and RQ codes
to show the behavior of these codes in many different scenarios.



1
Introduction

In theory, there is no difference between theory and
practice, but in practice there is.1

This monograph describes the theory, design, and practical realiza-
tion of Raptor codes. Section 2 describes conceptual design and analysis
tools that provide provably good Raptor code designs. Section 3
describes more detailed design and heuristic analysis tools that
provide constructions of practical Raptor codes. Based on their excel-
lent recovery properties and computational complexity, these practical
constructions have been standardized, implemented, and deployed.

In general and as seems to be universally typical, the performance
of the practical constructions far exceed what can be rigorously proven.
Although the theoretical tools and designs provide the big ideas and
insights, it is the more detailed and precise heuristic tools and meth-
ods that have been developed and honed over the years to become
precision instruments that were used to craft the design details of the

1 Written on the interior glass wall of the EPFL cafeteria in the Computer Science Build-
ing BC, just near Place Alan Turing. Wikipedia attributed to Johannes L. A. van de
Snepscheut and also to Yogi Berra.
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practical Raptor codes, the R10 code and the RaptorQ (RQ) code. For
the R10 and RQ codes, their provable properties are even more real
than a theoretical proof: highly optimized software implementing the
R10 and the RQ codes has been developed, tested, and deployed in mis-
sion critical applications. The R10 and RQ codes decoding properties
have been verified again and again via tens of billions of simulations;
their computational complexity has been verified again and again on
different platforms with all kinds of parameter settings; their real-world
practicality has been demonstrated by their adoption in a variety of
commercial standards and by their deployment in commercial and gov-
ernment/defense markets. Thus, the R10 and RQ codes have achieved
something much more valuable than just a theoretical existence proof:
they have proven to be powerful, efficient, and flexible codes that pro-
vide a lot of practical value to a large variety of data communication
applications.

1.1 Data Transmission

Digital media have become an integral part of modern lives. Whether
surfing the web, making a wireless phone call, watching satellite TV,
or listening to digital music, a large part of our professional and leisure
time is filled with all things digital.

The replacement of analog media by their digital brethren and
the explosion of the Internet use has had a perhaps unintended
consequence. Whereas analog media were previously replaced by
digital media to preserve quality, the existence of high-speed com-
puter networks makes digital media available to potentially anyone,
anywhere, and at any time. This possibility is the basis for modern
scientific and economic developments centered around the distribution
of digital data to a worldwide audience. The success of web sites such
as Apple’s iTunes store or YouTube is rooted in the marriage of digital
data and the Internet.

Reliable transport of digital media to heterogeneous clients becomes
thus a central and at time critical issue. Receivers can be anywhere and
they may be connected to networks with widely differing fidelities.
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1.2 The Transmission Control Protocol

How are data commonly transported on a network such as the Internet?
The basic transmission protocol used by any Internet transmission is
the Internet Protocol, commonly known as IP [4]. The data to be trans-
mitted are subdivided into packets; these packets are given headers
with information pertaining to their origin and their destination; pretty
much like sending a regular letter, where we put the addresses of the
receiver and that of the sender on the envelope. Routers that take the
role of mail stations inspect these headers and forward the packets to
another router closer to the destination. To do this, they consult reg-
ularly updated routing tables, through which they can determine the
shortest path between them and the destination. Eventually, following
the path from one router to another, packets may be delivered to their
destinations.

In theory, this protocol is sufficient for data delivery; however, the
reality looks different. Routers tend to get overwhelmed at times by
incoming traffic, leading them to drop some of the incoming pack-
ets. These dropped packets will never reach their destination. To over-
come this problem, researchers proposed already in the early days of
the Internet the “Transmission Control Protocol,” commonly known
as TCP [5]. TCP has withstood the test of time, as it remains the
most widely used transmission protocol on the Internet. For example,
http (the protocol ubiquitously used for surfing the web), ssh (used for
establishing a secure connection to a host), sftp (the secure file transfer
protocol), and many other transmission protocols used today utilize
TCP as a basis.

How does TCP work? We give here a very simplified description
which has the advantage of clarifying the main mechanisms behind
the real TCP. In effect, for every packet sent, an acknowledgment
is expected from the receiver. If the acknowledgment is not received
after a prescribed period of time, the packet is considered lost and
counter mechanisms are initiated, with the most basic of these counter
mechanisms consisting of resending the missing packet. The other inte-
gral part of these countermeasures is the reduction of the transmission
rate, which is done in the following way: the real TCP does not await
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acknowledgments of individual packets before sending the next one, but
instead has at any time a number of packets in transit. The acknowl-
edgment of a packet is only expected after all the packets sent previous
to the packet have been acknowledged. When a packet is lost, detected
at the server by received acknowledgments of packets sent after the lost
packet, the number of packets allowed to be in transit is reduced, which
effectively reduces the rate at which the packets are sent to the receiver
and provides a rate control mechanism. The reason for this reduction
in rate is the implicit assumption by TCP that losses have occurred
because intermediate routers have been overwhelmed. The reduction
of the sending rate is designed to reduce traffic on the routers and to
alleviate the burden on the network.

1.3 The User Datagram Protocol

Another transmission protocol of interest to us is the “User Datagram
Protocol” (UDP) [18]. Originally, this protocol was envisioned for short
messages without strict reliability requirements. Essentially, it is anal-
ogous to sending mail through the postal service: each UDP packet
contains a source address and a destination address, and the packet is
routed through the network toward its destination without any guar-
antees that it will arrive; the packet may, e.g., be lost enroute due to
a router buffer overflow, or to a wireless transmission error, etc. Fur-
thermore, each UDP packet is sent independently of all other UDP
packets, and a source may send a sequence of UDP packets at an arbi-
trarily high rate that can easily overload the network. Thus, UDP lacks
TCP’s higher-level reliability and rate control mechanisms. Because of
this, delivery protocols that use UDP are sometimes blocked by fire-
walls from entering corporate networks.

Nevertheless, in some situations using UDP can be quite use-
ful. For example, the destination address of a UDP packet can be
a group address instead of an individual receiver address. Thus, any
receiver that is part of the group can receive UDP packets sent to that
group, thus enabling UDP to be used effectively in conjunction with a
broadcast/multicast enabled network in a scalable way. For example,
broadcast file delivery and broadcast streaming applications often use
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UDP because the sent packets can be delivered concurrently to many
receivers in a scalable way. In these types of applications, the packet
sending rate is fixed at the source according to the available capacity
of the network and/or the requirements of the application, e.g., real-
time delivery of a 4 mbps video stream of packets. In these types of
applications, adding a reliability protocol on top of UDP can be quite
valuable, and providing this reliability is one of the main applications
of Raptor codes.

1.4 Point-to-point Transmission

The simplest transmission scenario is point-to-point transmission. Here,
a sender transmits data to one receiver, as described in the following
figure in which a sender S is transmitting data to a receiver R:

If the distance between the sender and the receiver is not too large,
then TCP is a perfect transmission protocol. However, if the distance
is large, then TCP exhibits inefficiencies: during the time in which
acknowledgments are awaited, transmission is in an idle mode and
hence the real capacity of the network may not be achieved. The situ-
ation is compounded when there is loss on the network, i.e., the TCP
transmission rate slows down even more.

1.5 Point-to-multipoint Transmission

The second transmission scenario is the point-to-multipoint transmis-
sion. The situation is described in the figure below, in which a sender S

is transmitting data to receivers R0, . . . ,R7. A typical example is dis-
tributing live video over the Internet. Unless the number of receivers is
small, TCP turns out to have some scaling issues in this setting. The
reason is that the sender needs to keep track of the reception of every
individual receiver, and furthermore that each receiver needs to be sent
a separate stream of data. Therefore, the server load and the network
load increase with the number of receivers, and reliable transmission
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becomes more challenging. Ironically, the more popular the content,
the more difficult it becomes to deliver it to all the receivers. This
phenomenon that is typically referred to as the “curse of popularity”
makes it difficult to provide a scalable broadcast service on the Inter-
net. However, in recent years such services have started to be deployed,
based on already deployed http caching server infrastructure.

What are sometimes used for point-to-multipoint are protocols
based on UDP, using the multicast/broadcast capabilities of UDP
to handle the delivery scalability issue when the network is multi-
cast/broadcast enabled, since all receivers in the destination group
can attempt to receive a UDP packet sent to that destination group.
However, as mentioned previously, UDP does not guarantee delivery
of packets; it is a best effort protocol where sent packets may be lost
for a variety of reasons, including wireless transmission noise that cor-
rupts packets beyond repair, or because of packet overflows within the
routers of the network due to intermittent congestion caused by other
sources. Raptor codes can be used to provide reliability in a scalable
way to UDP-based protocols.

1.6 Multipoint-to-point Transmission

Another scenario is multipoint-to-point transmission. Here, a group of
senders, each possessing a copy of the same data, wants to transmit this
copy to one receiver. The following figure shows an example in which
senders S0, . . . ,S7 are transmitting to a common receiver R. In addition
to problems discussed in the case of point-to-point transmission based
on TCP, multipoint-to-point solutions based on TCP leads to enormous
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inefficiencies: the packets received from the various senders may not be
different if the senders are not coordinated. The reception of duplicate
packets is one of the principal sources of inefficient network usage in
this case.

The fountain code properties (described in Section 1.8) make Raptor
codes ideally suited for basing efficient solutions to the multipoint-to-
point transmission protocols, where either UDP or TCP may be the
underlying protocol onto which the usage of Raptor codes is layered.

1.7 Multipoint-to-multipoint Transmission

Another scenario is multipoint-to-multipoint transmission, depicted in
the following figure in which we have a group of senders denoted
S0,S1,S2, each possessing a piece of data, and a group of receivers
R0, . . . ,R5 each of which connects to a subset of the senders and receives
the data:

A good example of this transmission scenario is a peer-to-peer
network. All the problems discussed for the previous three transmis-
sion scenarios are also valid here. These problems are compounded if
senders and receivers are transient, as is the case in a large peer-to-
peer network. The fountain code properties (described in Section 1.8)
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make Raptor codes ideally suited for usage in multipoint-to-multipoint
scenarios.

1.8 Fountain Code Overview

At the very core of our solution lies the concept of a fountain code.
We introduce the general use case for a fountain code, describe ideal
abstract properties of a fountain code, describe its application to the
scenarios described in the previous sections, and outline a randomized
approach for constructing codes that lead toward the realization of
practical fountain codes.

Suppose we have a block of data, hereafter called a source block,
that are to be reliably transmitted over a packet network. The source
block is typically partitioned into equal sized portions of data, hereafter
called source symbols, that are typically sized to fit into a packet. In
the following, we let k be the number of source symbols in the source
block.

An effective approach to reliably transmitting the source block is to
use an encoder at senders to generate encoded symbols from the source
symbols of the source block and then to use decoders at receivers to decode
the source symbols of the source block from received encoded symbols,
where typically each encoded symbol is the same size as a source sym-
bol. The basic idea is for senders to send encoded symbols in packets,
and then a receiver can use the encoded symbols received in packets to
try and decode the original source block even if some of the packets are
not received. There are a variety of reasons a receiver may not receive
some of the packets, examples of which include transmission over a wire-
less network that intermittently experiences enough interference or noise
to cause unrecoverable errors in packets that are then discarded at the
receiver, packet losses due to intermittent congestion that causes packet
buffer overflows in routers, the receiver being only intermittently sub-
scribed to the sessions in which packets are transmitted, and packets that
arrive too late at the receiver to be useful when there are time constraints
on consumption of the data in the source block.

Fountain codes in particular are especially effective codes that can
be used to provide reliable transmission. The ideal abstract properties
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of a fountain code are as follows [3]:

(1) A sender should be able to use a fountain encoder to gen-
erate as many encoded symbols as required from a source
block.

(2) A receiver that receives any subset of k encoded symbols
should (in most of the cases2) be able to use a fountain
decoder to decode an exact copy of the original source block,
independent of which subset of the generated encoded sym-
bols is received and independent of whether the subset was
generated by one sender or generated by more than one
sender from the original block of source data.

(3) The computation time for encoding and decoding should be
linear, i.e., the time to generate each encoded symbol should
be linearly proportional to its size, and similarly the time
to decode an original source block from encoded symbols
should be linearly proportional to the original source block
size.

These properties bring to mind a “fountain”: When filling a bucket
from a fountain of water, which particular drops fill the bucket doesn’t
matter, only the amount of water in the bucket matters. Similarly, with
a fountain code, which particular encoded symbols are received doesn’t
matter, only the number of encoded symbols received matters.

From this description, it should be clear that fountain codes with
these properties are very effective at providing reliable transmission
over packet networks for any of the scenarios described in previous
section. We now describe how fountain codes can be applied to these
scenarios in a bit more detail.

In the point-to-point scenario, the sender can generate encoded
symbols using a fountain encoder rom the source block and place the
encoded symbols into packets, which are transmitted via the UDP pro-
tocol, for example. In a real-time application, the packets can be sent
at any rate that is below the rate at which encoded symbols can be

2 It is easily seen that a fountain code over a finite alphabet will not allow decoding from k
received symbols in all the cases.
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generated by the fountain encoder. Provided that this rate is very high,
there will essentially be no limit on the transmission speed. Reliabil-
ity of this transmission method is provided by the fountain property:
as soon as the receiver collects k encoded symbols, it can decode the
source symbols of the original source block. As k encoded symbols are
the absolute bare minimum the receiver needs to collect to be able to
decode the k source symbols, the transmission is optimal from an infor-
mation point of view. The question of rate control remains, and in some
cases it can be elegantly solved exploiting the fountain property [10, 11].

In the case of point-to-multipoint transmission, the sender generates
encoded symbols and places them into packets and transmits the pack-
ets via, for example, broadcast or multicast. The fundamental prop-
erties of the fountain code guarantee that each receiver is capable of
decoding the original data from reception of the minimal amount of
data possible. Thus, one sender is capable of efficiently and reliably
delivering to a potentially limitless number of receivers.

In the case of multipoint-to-point transmission, the various senders
use fountain encoders applied to the common copy of the source block
they each possess. The receiver collects encoded symbols from the var-
ious senders; by the properties of the fountain code, from the point of
view of the receiver the mix of senders from which it receives encoded
symbols does not matter. As soon as the receiver has collected k

encoded symbols from the combined set of encoded symbols from the
various senders, the original source block can be decoded.

The case of multipoint-to-multipoint transmission is solved in sim-
ilar fashion and we will not elaborate further.

1.9 Fountain Code Construction Outline

Now that we know that fountain codes provide an elegant solution to
various reliable transmission problem, we need to understand how to
construct them. We now outline an approach that eventually leads
to realizing almost ideal fountain codes. For a given vector (x1, . . . ,xk)
of source symbols, a fountain encoder produces a potentially limitless
stream of encoded symbols y1,y2, . . . . Here, a symbol refers to a bit or a
sequence of bits. In many applications, symbols are of the same size as
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the payload of the transmitted packets, though this is not necessarily
the case. In general, the size of the symbols is often dictated by the
underlying application and requirements.

The fountain codes that we initially describe operate on 1-bit sym-
bols. Note that codes for larger symbols can be obtained using simple
parallel concatenation, i.e., to generate a code that operates on t-bit
symbols simply perform the same operations as would be performed on
1-bit symbols to each of the t positions of t-bit symbols in parallel.

These fountain codes are governed by a probability distribution D
on the vector space F

k
2. The encoding procedure for generating encoded

symbol yj is as follows:

(1) Sample D to obtain a vector (a1, . . . ,ak) ∈ F
k
2.

(2) Calculate yj =
∑

i aixi.

The samplings of the fountain encoder are independent from encoded
symbol to encoded symbol; this is extremely important as it induces
a uniformity property on the encoded symbols generated and ensures
that the code has the fountain properties. Note that when the encoded
symbols are placed into packets for transmission, typically (but not
always) an identifier is also placed in the header of each packet, called
an ESI (encoded symbol identifier), that uniquely identifies the encoded
symbols contained in that packet. The ESI is used by the decoder to
determine the vector (a1, . . . ,ak) corresponding to each encoded symbol
in the received packet.

The average computational cost for generating an encoded symbol is
simply the average weight of the vector (a1, . . . ,ak) ∈ F

k
2 when sampled

from D multiplied by the computational cost of adding two symbols
together. Thus, it will be important to keep the average weight as
small as possible.

Decoding algorithms will be described later; however, for now it is
important to note that the following decoder performance metrics are
key, and in particular the design of the probability distribution D has
a large influence on these decoder performance metrics.

An important property we require of a fountain code is that it should
be possible to decode the source symbols with little reception overhead
with high probability. We say that the overhead is o if k + o encoded
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symbols are used when decoding is attempted, and if the overhead is
written as a percent, i.e., x%, then it is the overhead as a percent of
the number of source symbols, i.e., x = 100 · o/k.

The fountain code constructions we provide all have the property
that encoded symbols are generated independently of one another. In
addition, we will assume that the set of received encoded symbols
is independent of the values of the encoded symbols in that set, an
assumption that is often true in practice. These assumptions imply
that for a given value of k, the probability of decoding failure is inde-
pendent of the pattern of which encoded symbols are received and only
depends on how many encoded symbols are received, i.e., the probabil-
ity of decoding failure depends only on the overhead. Thus, we define
the failure probability f(o) to be the probability that decoding fails at
a specified overhead o, i.e., the failure probability is a function of the
overhead, and typically the failure probability should decrease quickly
with increasing overhead. We call the set of pairs {(o,f(o)):o = 0,1, . . .}
the overhead-failure curve.

Often we analyze the failure probability at a small overhead of inter-
est as a function of k, i.e., for an overhead of ε(k) we provide upper
bounds on f(ε(k)), where both ε(k)/k and f(ε(k)) go to zero as k goes
to infinity. For example, it might be the case that ε(k) = ε · k for some
constant ε, 0 < ε � 1, and f(ε · k) = 1/kc for some positive constant c,
where preferably c > 1. In practice, what is important is that the failure
probability decreases as quickly as possible as a function of increasing
overhead, i.e., the overhead-failure curve is steep.

Equally important, the decoder should be computationally very
efficient.

1.10 The Random Binary Fountain

A natural fountain code to consider is the “random binary fountain
code,” where the distribution D is the uniform distribution on F

k
2, where

k is the number of 1-bit (binary) source symbols in the source block. As
described previously, this can be extended to symbols of arbitrary size.

Let us give a qualitative analysis of a random binary fountain code.
The receiver collects N = k + o encoded symbols y1,y2, . . . ,yN . Each
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of these symbols is a uniform random linear combination of the source
symbols x1, . . . ,xk. The relationship between the source and the col-
lected encoded symbols is described by a matrix, A ∈ F

N×k
2 , as

A ·




x1
...

xk


 =




y1

y2
...

yN


.

This matrix A is chosen uniformly at random from the set of binary
N × k matrices.

Recovery of the source symbols is possible iff the rank of A is k. A
simple analysis [20, Proposition 2] shows the following result:

Proposition 1.1. For a random binary fountain code operating on a
source block with k source symbols, the overhead-failure curve is point-
wise majorized by {(o,2−o):o = 0,1, . . .} with respect to the maximum-
likelihood decoder.

For example, at an overhead of c- log2(k), the failure probability is
1/kc. In fact, one can show that for not too small values of o, f(o) is
roughly 2−o.

As the above proposition describes, a random binary fountain code
has a quickly decreasing failure probability as a function of overhead,
i.e., the failure probability decreases by almost exactly a factor of two
for each increase by one in the overhead. For example, a failure proba-
bility of 10−10 can be achieved with an overhead of around 30 symbols,
regardless of k. For moderate values of k, say in the low thousands, this
overhead relative to k is smaller than 0.3%.

However, random binary fountain codes suffer from a large encod-
ing and decoding computational complexity. To assess this complexity,
we will distinguish between “symbol operations” and “bit operations.”
The former corresponds to XORs of symbols, whereas the latter corre-
sponds to XORs of bits. When the symbol size is large, a symbol size
operation may be significantly more computationally expensive than a
bit operation.
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On average, every encoded symbol will be the XOR of around half
the source symbols; hence, take around k/2 symbol operations to be
created.3

The decoding takes O(k3) bit operations and O(k2) symbol opera-
tions. To prove this, we proceed as follows: first, we determine a k × k-
submatrix B of A, which is invertible over F2, and we determine its
inverse B−1. This can be done using the Gaussian elimination, and
requires O(k3) bit operations.4 The matrix B is determined by k rows
of A, say rows 1, . . . ,k. Next, we multiply B−1 with the vector consist-
ing of y1, . . . ,yk. As B−1 has O(k2) entries equal to 1, the number of
symbol operations is O(k2).

Summarizing, the random binary fountain code achieves a good
overhead-failure curve; however, both encoding and decoding are com-
putationally complex. What we would like instead is a fountain code
that achieves similar or even an improved overhead-failure curve and
has computationally efficient encoding and decoding algorithms.

For future use in Section 3.3.1, we mention that the concept of a
random fountain is not limited to the field F2. More generally, we talk
about a “q-ary random fountain code,” or a “fountain code over Fq” if
the distribution D is chosen to be uniform over F

k
q .

3 This is not full proof; it is conceivable that a faster algorithm is available than simply
XORing all the corresponding source symbols. Because of the random structure of the
random binary fountain code, this seems highly unlikely though.

4 There are faster algorithms based on fast matrix multiplication; however, they are not
practically relevant.
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Foundations

The goal of this section is to lay down some of the theoretical foun-
dations needed for the design and analysis of Raptor codes. We are
going to describe Luby transform code (LT codes), the first class of
efficient fountain codes, and their encoding and decoding algorithms.
Raptor codes that form an extension of LT codes and can possess lin-
ear time encoding and decoding algorithms are discussed next, and
some of the theoretical tools for their asymptotic design and analysis
are explained. A systematic version of these codes is of great practical
interest and will be discussed in Section 2.3, along with several theo-
retical insights as to why trivial methods to obtain systematic Raptor
codes fail. To achieve very good decoding performance for small num-
bers of source symbols, a different decoding algorithm is needed, and
this is described in Section 2.4. This method, which we call “inactiva-
tion decoding,” combines the efficiency of belief-propagation decoding
with the error performance of maximum-likelihood decoding to yield
optimal, yet efficient, decoding algorithms.

2.1 LT Codes

In order to create computationally efficient fountain codes, we start
from an efficient algorithm that may or may not succeed. Later, we

229
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will design the codes around the algorithm, i.e., design them in such
a way that the algorithm succeeds with high probability. This decod-
ing algorithm, which is known under the names of “belief-propagation
decoder,” “peeling decoder,” or “greedy decoder,” has been rediscov-
ered many times [7, 8, 13, 14, 25]. In the case of the erasure channel, the
belief-propagation decoder takes on a combinatorial form. This algo-
rithm is best described in terms of the “decoding graph” correspond-
ing to the relationship between the source symbols and the collected
encoded symbols. This is a bipartite graph between k source symbols
and N encoded symbols, where N is the number of collected encoded
symbols. Encoded symbol yi is connected to source symbols xj1 , . . . ,xj�

iff encoded symbol yi is the XOR of the source symbols xj1 , . . . ,xj�
.

Here is an example:

The belief-propagation decoder repeats the following until failure
occurs in Step (1), or the decoder stops successfully in Step (4):

(1) Find an encoded symbol, say with index i, of degree 1; let
j be the index of its unique neighbor among the source
symbols. If there is no such degree 1 encoded symbol, then
decoding fails.

(2) Decode xj = yi.
(3) Let i1, . . . , i� denote the indices of encoded symbols con-

nected to source symbol j; set yis = yis + xj for s = 1, . . . , �,
and remove source symbol j and all edges emanating from
it from the graph.

(4) If there are unrecovered source symbols, then goto Step (1).
Else STOP.
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Note that if this is repeated k times without a failure in Step (1) then
decoding completes successfully with all k source symbols recovered,
since each repetition recovers one of the k source symbols.

The complexity of belief-propagation decoding is essentially same
as the complexity of the encoding algorithm, in the sense that there is
exactly one symbol operation performed for each edge in the bipartite
graph between the source symbols and the encoded symbols during
both encoding and belief-propagation decoding. This is perhaps the
main attraction of belief-propagation decoding, as it is typically decod-
ing that is hard to make efficient. Thus, the computational complexity
of belief-propagation decoding is linear in the average degree of the
degree distribution multiplied by the size of the source block.

The challenge is to design the code in such a way that the average
number of XOR operations is small, and so that belief propagation suc-
cessfully decodes with high probability using approximately k encoded
symbols to decode the k source symbols. We address this challenge after
providing some more examples of how a belief-propagation decoder
works.

Let us examine how this algorithmworks for the example above. First,
we find an encoded symbol of degree 1. The only such encoded symbol has
index 3 and corresponds to y3.Wedecode the value of its unique neighbor,
with index 2, to x2 = y3. Next, we add x2 to the values of the neighbors
of source symbol x2 excluding y3, namely the values y0, y1, and y5. In the
following figure, the edges that will be deleted from the graph after the
computational operations are colored light gray.
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After removing the gray edges, we need to find an encoded symbol
of degree one. The only such encoded symbol is the one corresponding
to y5, which will recover the value of x5.

Continuing, we find that now the encoded symbol corresponding to
y4 has degree one.

At this point, we have three choices for an encoded symbol of degree
one, namely the encoded symbols corresponding to y0, y1, and y2. We
choose y0 that recovers x4.
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Next, we choose y2 that recovers x3.

Finally, we choose y6 to recover x1.

A much simpler way of describing the decoding process is by means
of a “schedule.” This is a table with 2 rows and k columns. The columns
correspond to the steps of the decoding process, each step correspond-
ing to the recovery of one source symbol. The top row stores indices
of encoded symbols used for decoding, and the bottom row stores the
indices of source symbols recovered at the corresponding step. More
precisely, the value of the first row at the ith column is the index of the
encoded symbol, which is taken for the recovery of the source symbol
recovered at step i, and the bottom row gives the index of this source
symbol. The schedule for the above example is as follows:

3 5 4 0 2 6
2 5 0 4 3 1
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The two problems that might occur when using this decoder are as
follows:

• There may not be any encoded symbols of degree one at
some intermediate step of the decoding (leading to decoding
failure).

• There may be too many encoded symbols of degree one at
some intermediate step of the decoding (leading to many
redundant encoded symbols and thus high overhead).

For example, for the random binary fountain code, at the start of decod-
ing with high probability there will be no encoded symbols of degree
one, and thus decoding cannot even get started. Indeed, the proba-
bility that the random binary fountain encoder produces an encoded
symbol of degree one is k/2k, so that k + ε(k) received encoded symbols
are of degree larger than one with probability (1 − k/2k)k+ε(k), which
is roughly e−(k2+k·ε(k))/2k

. For meaningful values of ε(k) (say propor-
tional to k), this probability converges to 1 exponentially fast as k goes
to infinity. Clearly, the distribution D needs to be chosen carefully if
we are to avoid both of these problems.

Such a distribution was given by Luby [9], leading to the class of LT
codes. In this distribution, elements in F

k
2 of the same weight are assigned

the same probability. More precisely, fix a probability distribution Ω
on the integers {1,2, . . . ,k}, assigning probability Ωi to the integer i.
Ω induces a probability distribution DΩ on F

k
2, which assigns probability

Ωd/
(
k
d

)
to a vector ofHammingweightd. To sample fromDΩ, we first sam-

ple fromΩtoobtainan integerd, and thenwe sampleuniformlyat random
avectorx ∈ F

k
2 ofweightd.Wecall thepair (k,Ω) theparametersof theLT

code, and call Ω the corresponding degree distribution.
How should Ω be chosen? Clearly, Ω1 should be larger than zero,

or else decoding cannot start. On the other hand, if we want a small
overhead, then Ω1 should not be too large. In fact, we have the following
result.

Proposition 2.1. Suppose that we have a sequence of LT codes
with parameters (k,Ω(k)), such that the maximum-likelihood decod-
ing algorithm succeeds with high probability for a overhead ε(k) such
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that ε(k)/k converges to 0 as k → ∞. Then, Ω(k)
1 has to converge to

zero.

proof (Sketch). Suppose that Ω(k)
1 > τ for some constant τ > 0, and

consider the bipartite graph between encoded symbols of degree one
and the source symbols. In this graph, the expected number of source
symbols connected to at least two encoded symbols is a constant. In
fact, if k is large, for each source symbol the probability that its degree
is d is well approximated by e−ααd/d!, where α = Ω(k)

1 (1 + ε(k)/k).
Therefore, the probability that a source symbol is of degree 2 or larger
is e−α

∑
d≥2 αd/d! = 1 − e−α(1 + α), which is a constant.

Each such source symbol of degree 2 or larger as just described leads
to at least one “redundant” encoded symbol, i.e., an encoded symbol
that cannot be used to decode a source symbol. It follows that the
expected number of redundant encoded symbols of degree one is a con-
stant fraction of k, say ξ · k. Therefore, the number of collected encoded
symbols has to be at least ξ · k larger than the minimum number k,
which implies that the overhead is at least ξ · k. This contradicts suc-
cessful decoding with high probability at an overhead that converges
to zero as k → ∞.

A heuristic way to design a good degree distribution is to use an
expectation analysis. For the sake of simplicity, we assume that every
encoded symbol chooses its neighbors among the source symbols ran-
domly and with replacement.

As described above, the belief-propagation decoder proceeds in steps
and recovers one source symbol at each step. Step 0 is before decoding
starts, the ith source symbol is recovered in step i, and thus step k is
the last step in a successful decoding. Following the notation in [9], we
call the set of encoded symbols of reduced degree one after step i the
ripple at step i. We say that an encoded symbol is released at step i if its
degree is larger than one before step i, and it is equal to one after step i,
so that recovery of the source symbol at step i reduces the degree of
the encoded symbol to one. The probability that an encoded symbol of
initial degree d releases at step i can be easily calculated as follows: this
is the probability that the encoded symbol has exactly one neighbor
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among the k − i source symbols that are not yet recovered after step i,
and that not all the remaining d − 1 neighbors are among the i − 1
already recovered source symbols before step i. The probability that
the encoded symbol has exactly one neighbor among the unrecovered
source symbols and that all its other neighbors are within a set of size
s contained in the set of remaining source symbols is d(1 − i

k )( s
k )d−1,

since we are assuming that the encoded symbol chooses its neighbors
with replacement. Therefore, the probability that the encoded symbol
is released at step i given that its original degree is d equals

d

(
1 − i

k

)((
i

k

)d−1

−
(

i − 1
k

)d−1
)

.

Multiplying the term with the probability Ωd that the degree of the
symbol is d, summing over all d, and setting

Ω(x) =
∑

d

Ωdx
d,

we obtain the following expression for the probability that an encoded
symbol is released at step i:(

1 − i

k

)(
Ω′
(

i

k

)
− Ω′

(
i − 1

k

))
.

Note that

Ω′
(

i

k

)
− Ω′

(
i − 1

k

)
∼ 1

k
Ω′′
(

i

k

)
+ O

(
1
k2

)
.

Suppose that the decoder collects N = k + ε(k) encoded symbols.
Then, the expected number of encoded symbols releasing at step i is N

times the probability that an encoded symbol releases at step i, which,
by the above, is approximately equal to

N

k

(
1 − i

k

)
Ω′′
(

i

k

)
+ O

(
N

k2

)
.

In order to construct asymptotically optimal codes, i.e., codes that can
recover the k source symbols from any N encoded symbols for values
of N arbitrarily close to k, we require that this expectation be equal
to 1 when N = k and k → ∞. Setting x = i/k, this means that

(1 − x)Ω′′(x) = 1
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for 0 < x < 1. Solving this equation and keeping in mind that Ω(1) = 1,
this shows that

Ω(x) =
∑
d≥2

xd

d · (d − 1)
.

This distribution is only valid in the limit, and for this reason we call
it the limit degree distribution. Note that the limit degree distribution
does not work at all using only a belief-propagation decoder, since
it lacks any encoded symbols of degree one. A more detailed analysis
appears in [9], where an expectation analysis is provided for finite values
of k and for the case where the neighbors of an encoded symbol are
chosen without replacement. The distribution derived there is given by

Ω(x) =
x

k
+
∑

k≥d≥2

xd

d · (d − 1)
,

and is called the Soliton distribution. The Soliton distribution above
and the limit degree distribution are very similar, and they are identical
in the limit of k → ∞.

As was mentioned above, the limit degree distribution does not work
well using only a belief-propagation decoder in the sense that for any
given value of k the variance in the decoding process will cause it to fail.
A more robust degree distribution is given by Luby [9], where degree
distributions are exhibited, which, for a target error probability of δ,
have an overhead of O(log2(k/δ) · √

k), and each encoded symbol has
an average degree of O(log(k/δ)). Thus, the average number of sym-
bol operations per encoded symbol generated is O(log(k/δ)) and the
average number of symbol operations to decode the k source symbols
is k · O(log(k/δ))

The Soliton distribution and any of its robust variants have one
feature in common: the average degree of an encoded symbol under any
of these distributions is O(log(k)). This means that on average every
encoded symbol needs O(log(k)) symbol operations for its generation,
and that the decoding algorithm needs O(k log(k)) symbol operations.
Is it possible to reduce the former running time to a constant, and the
latter one to O(k), perhaps by changing the degree distribution, or the
decoding algorithm? It turns out that the answer to this question is
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NO. A very simple argument, laid out in [9, 20, Proposition 1] based
on a simple coupon collector analysis, shows that even if maximum-
likelihood ‘decoding is used the average degree of an encoded symbol
has to be at least of the order of log(k) to guarantee a failure probability
of the order of 1/kc for constant c > 0.

2.2 Raptor Codes

Initially motivated by the objective of improving the encoding and
decoding complexity, Raptor codes were invented in late 2000, and a
patent was filed in 2001 [23]. An extension of LT codes, Raptor codes
are a class of fountain codes that have extremely fast encoding and
decoding algorithms, i.e, a small constant average number of symbol
operations per encoded symbol generated, and a similar small constant
number of symbol operations per source symbol recovered. Thus, over-
all Raptor codes achieve an optimal encoding and decoding complexity
to within a constant factor.

The key to the invention of Raptor codes is the insight alluded to
at the end of the present section explaining why it is difficult to design
LT codes for which the average degree of the output symbols is con-
stant: in this case there is, with high probability, a constant fraction of
the source symbols that do not contribute to the values of any of the
collected encoded symbols. These source symbols can therefore never
be recovered, no matter what algorithm is used. The basic idea behind
Raptor codes is to use a (normally high-rate) code to precode the source
symbols. These symbols will be called intermediate symbols. Next, a
suitable LT-code with constant average degree is applied to the inter-
mediate symbols to produce the encoded symbols. Once the LT decoder
finishes its operation, a small fraction of the intermediate symbols will
still be unrecovered. If the precode is chosen appropriately, then this set
can be recovered using an erasure decoding algorithm for the precode.

One example of a Raptor code construction described and analyzed
in [20] has the following properties: For any constant ε > 0 one can
construct a Raptor code such that for source blocks with k source sym-
bols the average number of symbol operations per generated encoded
symbol is O(log(1/ε)), the number of symbol operations to decode the
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source block is O(k · log(1/ε)), and for overhead ε · k the failure prob-
ability is 1/kc for a constant c > 1 that is independent of ε.

All versions of Raptor codes outperform LT codes in terms of
computational complexity. More advanced Raptor codes have better
overhead-failure curves than LT codes in practice. For example, the
Raptor code described in [15] exhibits an overhead-failure curve that
essentially is that of a random binary fountain code. The most advanced
Raptor codes, the RQ code described in [16], have an even much better
overhead-failure curve.

Raptor codes achieve linear time encoding and decoding perfor-
mance based on a simple idea: an appropriate binary block code C is
used to encode the vector (x1, . . . ,xk) of source symbols to generate
redundant symbols (z1, . . . ,zn−k), where n − k is a small fraction of k.
The concatenation (x1, . . . ,xk,z1, . . . ,zn−k) of the source symbols and
the redundant symbols is called the intermediate block, and we also refer
to the n symbols in the intermediate block as the intermediate symbols.
There are n − k constraints that define the relationship between the
source symbols and the redundant symbols of the intermediate block,
and these constraints can be viewed as symbols, hereafter called con-
straint symbols. The value of each constraint symbol is zero, i.e., the
constraint symbol constrains the sum of its neighboring intermediate
symbols to be equal to zero.

Why is precoding a potentially good strategy? An appropriate LT
code is applied to the intermediate block to obtain the encoded symbols.
The intuitive advantage of precoding is that the redundancy amongst
the intermediate symbols allows recovery of all the intermediate sym-
bols using the decoder for C if most of the intermediate symbols are
known. Suppose, for example, that the precode C is capable of cor-
recting up to a δ-fraction of erasures among the intermediate symbols.
Then, the LT decoder only needs to recover a (1 − δ)-fraction of the
intermediate symbols from the received encoded symbols. From the
description of the LT code provided earlier, this intuitively implies that
the average degree used by the LT code can be O(log(1/δ)).

Both the received encoded symbols and the constraint symbols are
used for decoding the intermediate block, where the constraint sym-
bol values are known at the decoder to be zeros. Thus, if N encoded
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symbols are received then N + (n − k) symbols can be used to decode
the n intermediate symbols. Note that decoding can occur from k

received encoded symbols, i.e., with overhead 0, if the k received
encoded symbols and n − k constraint symbols are linearly indepen-
dent (though the decoder may not be the belief-propagation decoder
of Section 2.1, see Section 2.4).

A toy example is given in Figure 2.1, where the precode C generates
two redundant symbols from six source symbols. The values of the
two redundant symbols z1 and z2 for this code can be derived from
the relationship between the constraint symbols and the intermediate
symbols as shown in the lower part of the left box.

The right interplay between the precode C and the LT code used
to create the encoded symbols is crucial for obtaining codes with good
overhead-failure curves. For example, LT codes form a special subclass
of Raptor codes: for these codes the precode C is trivial, i.e., n = k,
no redundant symbols are added to the intermediate block and thus
the intermediate block is the same as the original source block. At the
other extreme, there are the precode only (PCO) codes [20] for which

Fig. 2.1 Toy example of a Raptor code. The seven received encoded symbols are shown
on the left, together with the relations among the intermediate symbols defined by the
two constraint symbols. The intermediate symbols are partitioned into the source symbols
x1, . . . ,x6 and the redundant symbols z1,z2. The top graph is the one between the encoded
symbols and the intermediate symbols, and as can be seen source symbol x2 is not a
neighbor of any encoded symbol and cannot be directly recovered by LT decoding alone. In
the lower graph, the constraint symbols are added to the graph, and the source symbol x2
is a neighbor of a constraint symbol and can be potentially recovered.
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the degree distribution Ω is trivial (it assigns a probability of 1 to
degree 1, and zero probability to all other degrees). The paper [20]
gives a thorough analysis of these codes. All Raptor codes in use are
somewhere between these two extremes: they use a non-trivial (high-
rate) precode, and they have a degree distribution that is typically an
intricate variation of the limit degree distribution for which the average
degree is constant.

The asymptotic design of Raptor codes uses the tree analysis of [12],
nowadays also called density evolution. Suppose that the Raptor codes
are to be designed so that decoding with overhead k + ε · k is successful
with high probability. The analysis of the LT decoding process, applied
to this case, reveals that asymptotically the expected fraction of inter-
mediate symbols connected to encoded symbols of reduced degree one
is 1 − x − e−(1+ε)Ω′(x) if x is the fraction of intermediate symbols that
have already been recovered. Additionally, the analysis of [12] reveals
that if x0 is the smallest root of the equation 1 − x − e−(1+ε)Ω′(x) in
the interval [0,1), then asymptotically the expected fraction of inter-
mediate symbols still undecoded at the end of the LT decoding process
is 1 − x0, and for each instantiation of the decoding graph the real
fraction is sharply concentrated around this value. (More details can
be found in [20, Section VI].) It follows that, asymptotically, the degree
distribution Ω has to be designed in such a way as to ensure that

sup{x ∈ [0,1) | 1 − x − e−(1+ε)Ω′(x) > 0} (2.1)

is maximized. From this, Shokrollahi [20] constructs Raptor codes with
an average encoded symbol degree of O(log(1/ε)), a decoding com-
plexity of O(k · log(1/ε)), and a failure probability that is inversely
polynomially in k for an overhead of ε · k.

Using the heuristic that the changes in the ripple size follow a ran-
dom walk, the finite length inequality

1 − x − e−(1+ε)Ω′(x) ≥ γ

√
1 − x

k

for x ∈ [0,1 − δ] was derived to ensure that the decoding process will
continue with high probability until it has recovered all but a δ-fraction
of the intermediate symbols. Here, γ is a positive design parameter; the
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larger it is, the more probable will it be for the decoder to decode all but
a δ-fraction of the intermediate symbols. At the same time, however, the
larger γ, the smaller the maximum possible achievable δ will be. Using
this approach, good finite length Raptor codes were designed. These
codes typically perform with an overhead of a few percent (3–5%) of
k with a failure probability of 10−14 or less, but only for values of k

in the range of 50,000 or higher. An example is furnished by the code
with degree distribution

Ω(x) = 0.007969 + 0.49357x2 + 0.1662x3 + 0.072646x4

+0.082558x5 + 0.056058x8 + 0.037229x9 + 0.05559x19

+0.025023x65 + 0.003135x66 (2.2)

for k = 65536. The plot of

1 − x − e−(1+ε)Ω′(x) − γ

√
1 − x

65536

for various values of γ and ε = 0.038 is given in Figure 2.2(a). As can be
seen, the values γ = 2.5 and 3 are not reliable, since their corresponding
curves intersect the x-axis fairly early on. To see the effect of the over-
head ε, Figure 2.2(b) shows plots of the function 1 − x − e−(1+ε)Ω′(x)

for various values of ε. As can be seen, asymptotically this degree dis-
tribution can afford an overhead of less than 0.005k, but more than
0.002k.

2.3 Systematic Version

A code is called systematic if the encoded symbols include the source
symbols, e.g., from a source block of source symbols (x1, . . . ,xk) the
encoder generates encoded symbols y1,y2, . . . , such that yi = xi for
i = 1, . . . ,k. Up until now, the LT codes and Raptor codes that we
have introduced have been non-systematic.

Systematic codes are important in a variety of applications. For
example, suppose that the deployment of a Raptor code is done in
phases during which some receivers are equipped with a decoder, and
others are not. Suppose further that a broadcast network is used to send
data to the receivers. If a non-systematic Raptor code is used for this
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Fig. 2.2 Evolution of the asymptotic and finite length behavior.

application, then the application needs to transmit a stream of source
symbols to be used by receivers without a decoder and another stream
of encoded symbols to be used by receivers equipped with a decoder.
This strategy wastes network resources, i.e., the network resource usage
can be essentially double of what it would be if a systematic Raptor
code was used instead. There are a variety of other applications for sys-
tematic Raptor codes, and thus systematic Raptor codes are preferable
to non-systematic Raptor codes.

For systematic Raptor codes, the symbols among the encoded sym-
bols that are not source symbols are called repair symbols. A systematic
Raptor code designed to successfully decodewith overhead ε · k withhigh
probability should have the following decoding property: For any m ≤ k,



244 Foundations

reception of m source symbols among x1, . . . ,xk and k · (1 + ε) − m

repair symbols among yk+1,yk+2, . . . is sufficient to decode x1, . . . ,xk with
high probability. In other words, the overhead-failure curve should be
independent of the mix of received source symbols and repair symbols.
This decoding property is analogous to the decoding property for non-
systematic Raptor codes and has the feature that the mix between the
received number of source symbols and repair symbols has no impact on
the decodability of the source block; it is only the total number of encoded
symbols received that determines decodability.

One possible trivial construction of a systematic Raptor code is
to simply use the encoded symbols generated from a non-systematic
Raptor code as the repair symbols and then just designate the source
symbols of the source block to also be encoded symbols. This trivial
construction works very poorly with respect to the systematic decod-
ing property described above, i.e., the overhead-failure curve depends
strongly on the mix of received source symbols and repair symbols, and
is particularly bad when among the received encoded symbols a small
fraction are source symbols and a large fraction are repair symbols.
Details are provided in [21].

An entirely different approach is thus needed to design systematic
Raptor codes. Such an approach is outlined in [20, 24]. The main idea
behind the method is the following: Suppose we want to construct a
systematic Raptor code S to encode a source block with k source sym-
bols (x1, . . . ,xk) to generate repair symbols (yk+1,yk+2, . . .), and thus
the encoded symbols are (y1, . . . ,yk,yk+1,yk+2, . . .), where (y1, . . . ,yk) =
(x1, . . . ,xk). We use a non-systematic Raptor code R in an unusual way.
Suppose that from a source block of k source symbols (z1, . . . ,zk), R can
generate encoded symbols (w1,w2, . . .). Furthermore, suppose R has the
property that the first k encoded symbols (w1, . . . ,wk) can be used to
decode the source block. The encoding of repair symbols for S proceeds
as follows using the encoder and decoder for R.

• Set (w1, . . . ,wk) = (x1, . . . ,xk).
• Use the decoder for R to decode the values of

its source block (z1, . . . ,zk) from the encoded symbols
(w1, . . . ,wk)=(x1, . . . ,xk).
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• Use the encoder for R to generate wk+i from source block
(z1, . . . ,zk), and then set yk+i = wk+i, to generate repair
symbol yk+i.

Thus, the systematic Raptor code S for encoding uses a non-systematic
Raptor code R to first decode and then to encode.

Suppose that a receiver has received encoded symbols (yi1 , . . . ,yin)
generated according to the encoding algorithm for S as described above,
i.e., there are n ≥ k encoded symbols received in total. Suppose further
that m of the encoded symbols (yi1 , . . . ,yim) are original source symbols
of S, i.e., (xi1 , . . . ,xim) = (yi1 , . . . ,yim), and that the remaining n − m

encoded symbols yim+1 , . . . ,yin are repair symbols generated using the
encoder for S described above. Decoding of the source block for S

proceeds as follows using the encoder and decoder for R.

• For � = 1, . . . ,n, set wi� = yi� .
• Use the decoder for R to decode the values of its source block

(z1, . . . ,zk) from the encoded symbols (wi1 , . . . ,win).
• Use the encoder for R to generate (w1, . . . ,wk) from source

block (z1, . . . ,zk), and then set (x1, . . . ,xk) = (w1, . . . ,wk) to
recover the original source block.

Thus, the systematic Raptor code S for decoding also uses the non-
systematic Raptor code R to first decode and then to encode. There are
many optimizations possible, including not encoding to recover already
received source symbols in the last step.

An example of a systematic Raptor code together with its encoding
procedure is provided in Figure 2.3.

The basic idea behind this approach is that the source symbols of
the systematic Raptor code S can be viewed as randomly generated
encoded symbols of the non-systematic Raptor code R, i.e., they are
indistinguishable in terms of how they were generated from the other
randomly generated encoded symbols of R that are used as the repair
symbols for S. In terms of decodability of the intermediate block of R,
it does not matter what mix of source and repair symbols are received;
they are all just randomly generated encoded symbols. Once the inter-
mediate block of R has been decoded, any missing source symbols of
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Fig. 2.3 Toy example of a systematic Raptor code S constructed from a non-systematic
Raptor code R. The top diagram shows the six source symbols x1, . . . ,x6 of S placed at the
first six encoded symbol values of R, and the constraint symbols s1, s2 describe the relations
dictated by the precode C of R, and their values are 0. In a first step, the intermediate
symbols z1, . . . ,z8 of R are obtained from the source symbols of S by applying the decoder
for R. The sequence of operations leading to the zi is given on the left. The bottom diagram
shows how the repair symbols of S are generated from these intermediate symbols of R.
In this example, three repair symbols y1,y2,y3 are generated. Note that by construction
the xi are also XOR’s of those zi to which they are connected.

S can be recovered using the encoder for R applied to this block. This
is intuitively why the systematic Raptor code has the decoding prop-
erty described previously, i.e., the systematic Raptor code S essentially
inherits the overhead-failure curve of the non-systematic Raptor code R

upon which it is based, but with the additional feature that the source
symbols of S are among the encoded symbols that R generates.

Note that the trivial construction described previously did not have
the property that the source symbols were generated from the same
distribution as the repair symbols, and this is at the heart of why it
performs so poorly in terms its overhead-failure curve.

One very important assumption in the design of the systematic Rap-
tor code construction described above is that the first k encoded sym-
bols generated by the non-systematic Raptor code R should be able to
decode the source block of k source symbols.We call such a code construc-
tion a systematic code construction. We describe methods for generating
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a systematic code construction for k from a value J(k), which we call the
systematic index. The quality of systematic code constructions can differ
in terms of the goodness of the overhead-failure curve and in terms of com-
putational complexity of the encoder anddecoder. For each relevant value
of k, finding a systematic index J(k) that generates a good systematic
construction can be done offline. Then, the systematic indices that have
been found can be incorporated into the specification of the systematic
Raptor code S to provide a full specification. For example, for the stan-
dardized Raptor code R10 [1, Annex B] discussed in Section 3.1, there is a
16-bit systematic indexJ(k) specified for each k between 1 and 8,192.The
specific designs of Raptor codes provided in Section 3 describe systematic
indices in more detail.

2.4 Inactivation Decoding

2.4.1 Outline and an Example

As discussed earlier, using belief-propagation decoding could require
a large overhead for small values of k to achieve a reasonably small
failure probability. To remedy this situation, a different decoding algo-
rithm has been devised [22]. Called inactivation decoder, this decoder
combines the optimality of the Gaussian elimination with the efficiency
of the belief-propagation algorithm. It has been inspired by the algo-
rithm in [8, 17] and has some similarities to the algorithms in [19].

It is best to describe inactivation decoding using matrix notation.
We refer to the received encoded symbols and the constraint symbols
as row symbols, and we refer to the intermediate symbols, which are a
combination of the source symbols and redundant symbols, as column
symbols. From the decoding graph of the code, we can obtain a matrix
representation in a straightforward manner: the rows of the matrix cor-
respond to the row symbols and the columns of the matrix correspond
to the column symbols. There is a one at position (i, j) of the matrix if
and only if column symbol j contributes to the value of row symbol i,
and otherwise there is a zero. The decoding then corresponds to solving
a system of linear equations: the goal is to use the row symbols to solve
for the column symbols, where there are at least as many row symbols
as column symbols.
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Inactivation decoding is useful in conjunction with the scheduling
process alluded to in Section 2.1 and outlined in [1, Annex C], and belief
propagation is used in a modified form. Initially, all column symbols
are active and all row symbols are unpaired. At each belief-propagation
step, the degree of an unpaired row symbol is the number of active
column symbols upon which it depends, and thus initially the degree
of each row symbol is its original degree. Belief propagation is used to
find an unpaired row symbol of degree one, at which point this unpaired
row symbol can be paired with the one remaining active column symbol
upon which it depends. Then, the paired row symbol is subtracted from
the values of all other unpaired row symbols that depend on that active
column symbol, thereby removing their dependence on that active col-
umn symbol and thus reducing their degree by one.

Belief propagation repeats this process until either all active col-
umn symbols are paired, or until there is no unpaired row symbol of
degree one. In the latter case, when there is no unpaired row symbol
of degree one but there are still active column symbols that are not
paired with a row symbol, an unmodified belief propagation would be
stuck and decoding would fail, even if is mathematically possible to
decode all of the column symbols. Instead, the modified belief propa-
gation used for inactivation decoding continues decoding as follows: if
all unpaired row symbols are of degree zero then it is not mathemati-
cally possible to decode all of the column symbols and the process fails;
if instead there is at least one unpaired row symbol of degree two then
one of the active column symbols upon which this row symbol depends
is declared inactivated, and thus the degree of the unpaired row sym-
bol is reduced from two to one and belief propagation can continue
to pair remaining active column symbols with unpaired row symbols
as described above. (One may have to inactivate more than one col-
umn symbol because the smallest degree of an unpaired row symbol
may be greater than two; this happens rarely for a Raptor code with
a good degree distribution.) Belief propagation finishes successfully if
all of the active column symbols are paired with row symbols by this
process.

Unlike when belief propagation is used without inactivation, the
final value at the end of this process of each active column symbol is not
necessarily the value of the row symbol with which it is paired, as the
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row symbol may still depend on some inactivated column symbols, but
it is the case that the row symbol does not depend on any active column
symbols other than the one with which it is paired. Thus, the paired
row symbols can be used to remove the dependency of the unpaired row
symbols on the active column symbols: for each unpaired row symbol
and for each active column symbol upon which it depends, subtract
from the unpaired row symbol the value of the row symbol paired with
that active column symbol.

At this point the unpaired row symbols depend only on the inacti-
vated column symbols, and this defines a linear system of equations that
can be used to solve for the values of the inactivated column symbols,
for example, using the Gaussian elimination. If this system of equations
cannot be used to solve for the inactivated column symbols then it is
not mathematically possible to decode all of the column symbols.

Finally, the values for the active column symbols can be solved using
another round of belief propagation based on the original values of the
paired row symbols and the values of the inactivated column symbols.
This process is guaranteed to recover all of the active column symbols
if the previous belief propagation and Gaussian-elimination processes
were successful.

The main motivation behind inactivation decoding is to provide a
much more powerful decoding algorithm, i.e., decode whenever mathe-
matically possible, but at the same time employ efficient belief propa-
gation decoding as much as possible. The key to the design of the linear
system of equations is to ensure that the matrix is full rank with high
probability (this guarantees successful decoding), while at the same
time minimizing the total number of decoding symbol operations. For
example, a design is good if the average degree of a row symbol is con-
stant and if the number of inactivated column symbols is proportional
to the square root of the total number of column symbols, as this means
that the total number of symbol operations for inactivation decoding is
linearly proportional to the number of column symbols. This is because
the number of symbol operations to solve for the inactivated column
symbols using the Gaussian elimination is bounded by the square of
the number of inactivated column symbols, and the number of symbol
operations for the belief propagation decoding steps is linear in the
number of non-zero entries in the original matrix.
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One can view the Gaussian elimination as a special case of inacti-
vation decoding in which inactivation is done at every step. Successful
decoding using only the belief-propagation decoding algorithm is also
a special case: here the number of inactivations is zero.

For example, the decoder for the graph shown below

corresponds to finding the solution x of the system of equations


0 0 1 0 0 1 0
1 1 1 1 0 1 0
0 0 1 0 1 0 1
1 0 1 1 1 1 1
1 0 1 1 1 0 0
0 1 0 1 0 1 1
0 0 1 0 0 0 0




·




x1

x2

x3

x4

x5

x6

x7




=




y1

y2

y3

y4

y5

y6

y7




.

Our first goal is to bring this matrix into almost triangular form using a
series of row and column permutations, following the belief-propagation
decoding algorithm described in Section 2.1. To begin with, we identify
a row of degree one, remove it from the set of rows, and continue with
identifying another row of degree one, etc. In this particular case, this
process can be repeated twice:

The circled numbers in the rows show the order in which the rows
are chosen, whereas the circled numbers under the columns show the
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order in which the xi are recovered. A column is colored pink if it
has been recovered. After the second step, the process seems to termi-
nate since there are no rows that have exactly one 1 outside the pink
columns. This is where the inactivation kicks in. We inactivate one
of the columns, for example, the last, and color it light blue. We call
the light blue columns inactive. In contrast, we call the pink columns
active. This has the effect that a row of degree one outside the pink
and the blue columns is created.

Again, we are in a situation where no row has exactly one 1 outside
the pink and the blue columns. We inactivate another column, say
column number 4.

Now we can find a row of degree one for two consecutive iterations.
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Reordering rows and columns of this matrix according to the circled
numbers (and assuming that the non-numbered rows get the numbers
6 and 7, and that the columns i1 and i2 are the last two columns of the
matrix), we obtain the following matrix:

Now, the key is that the matrix given by the active columns (the
pink part) is lower triangular and sparse. We start eliminating the rows
of the entire matrix by following the columns of the active part of the
matrix.
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The final matrix has a very simple form: the active columns contain
only one 1, and the last 2 rows of the active part are zero. Performing
the permutations of columns on the vector x, and the permutation of
rows as well as the elimination steps on the vector y to obtain the
vector ŷ, we arrive at the following simple system of linear equations:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 1 0
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 1 0

·




x3

x6

x5

x2

x1

x7

x4




=




ŷ7

ŷ1

ŷ3

ŷ6

ŷ4

ŷ2

ŷ5




. (2.3)

From this, we can recover x7 and x4 using the lower right 2 × 2-
submatrix of the matrix above:

1 1
1 0

·
(

x7

x4

)
=
(

ŷ2

ŷ5

)
.

We obtain x7 = ŷ5, and x4 = ŷ2 + ŷ5. Going back to (2.3), we obtain
further

x3 = ŷ7, x6 = ŷ1, x5 = ŷ3 + x7, x2 = ŷ6 + x4 + x7,

x1 = ŷ4 + x4.

2.4.2 The General Case

In general, the goal of the inactivation decoding is to use row
and column permutations to transform the decoding matrix to the
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following form:

Then, we eliminate the entries below the diagonal of the left part
of the matrix to obtain another one:

The darker tone of blue on the right figure is to indicate that the
corresponding matrices have become denser during the elimination pro-
cess. In practice, we only need to keep track of the matrices on the right
since we do know the final form of the matrices on the left. This leads
to a reduction in memory. This elimination step is accompanied by
XORing the row symbols yi, which can potentially be costly. However,
as the matrices on the left are sparse, the cost of this step in terms of
XOR’s of row symbols is linear in the number of row symbols.

The decoding process boils down to solving a system of equations
of the form

T · u = v, (2.4)

wherein u is a subvector of x, and v is a subvector of ŷ, and ŷ is
the vector obtained from y after permuting the rows and applying the
elimination process. If T is full-rank, this system can be solved using
the Gaussian elimination. Once it is solved, the entries of u are used
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in conjunction with the matrix C to obtain the values of the other
entries of the unknown vector x. In practice, the solution of the system
of Equation (2.4) is not costly, if T has a number of columns that is
at most of the order of square root of the number k of source symbols,
and the symbol size is not too small. To do so, an invertible square
submatrix of T is chosen whose number of columns, g, equals that of
T , its inverse is calculated and multiplied with a suitable subvector of
v to obtain u. This multiplication requires O(g2) XOR’s of symbols;
hence, if g is of the order of

√
k, then this cost is linear in k.

For a detailed description of other techniques and inactivation
strategies, we refer the reader to [22].



3
Standardized Raptor Codes

This section discusses the design and implementation of two of the
most successful commercial versions of Raptor codes: the R10 code
and the RQ (RaptorQ) code. They are codes of different natures: the
R10 code was designed for range of applications with relatively mod-
est requirements, e.g., mobile broadcast applications where fast encod-
ing and decoding, reasonable overhead-failure curves, and support for
medium-sized source blocks are sufficient. The RQ code, on the other
hand, was designed for a much larger range of applications with more
stringent requirements, e.g., high-end streaming applications where fast
encoding and decoding and exceptional overhead-failure curves are cru-
cial, or large mobile data delivery applications where support for large
source blocks is mandatory.

3.1 Standardization

The R10 code has already been adopted into a number of different
standards:

(1) 3GPP Multimedia Broadcast Multicast Service (3GPP TS
26.346), where the R10 code together with associated file

256
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delivery and streaming technology was adopted for broad-
cast/multicast file delivery and streaming applications.

(2) IETF RFC 5053, where the R10 code together with asso-
ciated file delivery technology was adopted for broadcast/
multicast file delivery applications.

(3) OMA Mobile Broadcast Services V1.0 — Broadcast
Distribution System, where the R10 code together with
associated file delivery and streaming technology was
adopted for broadcast/multicast file delivery and stream-
ing applications.

(4) BMCO Forum Recommendation for Implementation
Profile: OMA BCAST, where the R10 code together with
associated file delivery and streaming technology was
adopted for broadcast/multicast file delivery and stream-
ing applications.

(5) IP Datacast (DVB-IPDC) (ETSI TS 102 472 v1.2.1) for
DVB-H and DVB-SH, where the R10 code together with
associated file delivery technology was adopted for broad-
cast/multicast file delivery applications.

(6) IPTV (DVB-IPTV) (ETSI TS 102 034 v 1.3.1) Streaming,
where the R10 code together with associated streaming
technology was adopted for broadcast/multicast stream-
ing applications.

(7) MPE IFEC Satellite Handheld (DVB-SH) (DVB Bluebook
A131), where the R10 code together with associated link
layer technology was adopted for broadcast/multicast data
delivery applications.

(8) DVB Bluebook A054r4, “Interaction channel for Satellite
Distribution Systems (draft EN 301 790 V1.5.1 — DVB-
RCS+M), where the R10 code together with associated
link layer technology was adopted for broadcast/multicast
data delivery applications.

(9) IPTV (DVB-IPTV) (DVB A086r7, draft ETSI TS 102 034
v 1.4.1) Content Download, where the R10 code together
with associated file delivery technology was adopted for
broadcast/multicast file delivery applications.
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(10) ATIS IIF Media Formats and Protocols specification
(WT 18), where the R10 code together with associated
streaming technology was adopted for broadcast/multicast
streaming applications.

(11) Recommendation ITU-T H.701 (2009), Content delivery
error recovery for IPTV services, and Recommendation
ITU-T H.721 IPTV terminal devices: Basic model, where
the R10 code together with associated streaming tech-
nology was adopted for broadcast/multicast streaming
applications.

Some other standard bodies are adopting the R10 code and the RQ
code as well, among them ATSC NRT, 3GPP2 BCMCS, and the IETF
FECFRAME working group.

We present the basic design principles behind R10 and RQ, and
discuss some of the properties of these codes. We also make explicit
references to the specifications of these codes used for their standard-
ization.

3.2 The R10 Code (Raptor 10)

3.2.1 Theoretical Background

In this section, we introduce the first Raptor code that has been
adopted into a number of different standards, called either the Rap-
tor 10 code or the R10 code. The first standard to adopt the R10 code
was 3GPP MBMS [1]. Thereafter, other standards such as IETF [15],
DVB [6], and others followed.

The R10 code is designed to work on source blocks of up to 8,192
source symbols, and supports up to 65,536 encoded symbols. The R10
code overhead-failure curve is designed so that it drops off quickly to
achieve a failure probability of around 10−6 with an overhead of a few
symbols, for the entire range of supported number of source symbols
per source block.

Perhaps the first question to ask is what could be expected in the
best case for the overhead-failure curve of the decoder and the number
of overhead symbols. As received encoded symbols are generated by
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a random process that is independent between encoded symbols, it
is natural not to expect a better failure probability than that of a
random binary fountain code. One of the ideas that one might have
would be to actually use a random binary fountain code, at least when
the number of source symbols is not large. However, this only shifts
the problem because there will be an intermediate range where the
encoding/decoding complexity of the random binary fountain code is
prohibitive, and the number of source symbols is still not large enough
for the random processes involved to concentrate tightly around their
expectations. Moreover, it is also unclear how to best switch from a
random binary fountain code to whatever other solution we may find
for larger numbers of source symbols.

For these reasons, it is better to have a uniform description of the
code for the entire range of the number of source symbols.

Inactivation decoding described in Section 2.4 is key to the design of
the R10 code. It not only offers improved decoding, but it also shifts the
analysis from belief-propagation decoding to that of the rank deficiency
of the decoding matrix. The latter may in some cases be easier to
analyze, at least heuristically. On the other hand, the design of short
fountain codes (or LDPC codes, for that matter) that can decode at
very low overheads with a small failure probability using the belief-
propagation algorithm alone remains a tough, and to a large extent
unsolved, problem.

How can we go about designing a Raptor code that behaves like
a random binary fountain code, but is much more efficient? The key
to this solution is a simple observation: to obtain the decoding failure
probability of a random binary fountain code it suffices to choose the
neighbors of only some of the constraint symbols like in a random binary
fountain. In the following, we are going to justify (and also qualify) this
assertion.

To begin with, suppose that we have a Raptor code that uses a
sparse LT code and a sparse precode represented by an N × n decode
matrix A, where N is the total number of encoded symbols and con-
straint symbols represented by A and n is the number of intermediate
symbols. Suppose A does not represent all the encoded and constraint
symbols, i.e., N = n − H, and we add another matrix B with H rows
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Fig. 3.1 Adding dense rows to mimic the failure probability of a random binary fountain
code.

to the matrix A representing encoded or constraint symbols chosen
uniformly and independently from F2, so that we have n encoded and
constraint symbols in total. The situation is depicted in Figure 3.1.

What is the rank of this new combined matrix? This problem has
been discussed in detail in Appendix A. Suppose that t is the probabil-
ity that the rank of the matrix A is N , i.e., that A is full rank. Then, the
probability that the combined matrix is full rank n is t ·∏H

i=1(1 − 1
2i ).

Note that
∏H

i=1(1 − 1
2i ) is the probability that an H × H-matrix with

uniform and independent elements from F2 is invertible. Hence, if t ≈ 1,
then the probability that the combined matrix is invertible (and hence
of rank n) is almost the same as the probability that a random square
F2-matrix is invertible.

A first idea would be to modify the LT distribution used for the
Raptor code to allow for the generation of completely uniformly gener-
ated random linear combinations every once in a while, so that in the
combined matrix there are H such rows with high probability. The idea
is straightforward, but not great. First, the number of “heavy symbols”
(those corresponding to matrix B) is not deterministic and has a vari-
ance. This leads to an uncertainty of the rank of the combined matrix.
Second, the symbols generated by the fountain code may not have a
particular structure, and their generation (and later elimination from
the matrix) may not be efficient.

3.2.2 Dense Rows, and the Design

A much better idea is to have these heavy symbols as constraint
symbols. More precisely, we choose the constraint matrix of the precode
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of our Raptor code to have the matrix B shown in Figure 3.1 as a sub-
matrix. (We call the code used to generate the redundant symbols of
the intermediate symbols the precode.) In this manner, we are sure that
B is always a part of the decoding matrix. A similar idea had already
been proposed for one of the first versions of Raptor codes, e.g., the
one appearing in [20]. There, B was chosen to be the check matrix of a
Hamming code.

For reasons of computational efficiency, it is important that B is not
really uniformly random. In fact, what is important is that B behaves
as if it were uniformly random in terms of its rank properties, and that
there is a fast algorithm for multiplying B with a vector of length n. To
see why this is, we remind the reader of inactivation decoding in Sec-
tion 2.4. After a suitable rearrangement of the columns of the decoding
matrix, we arrive at a system of linear equations of the following type:

Here, L is a lower triangular matrix, and P and Q are permutation
matrices. The task is to eliminate all the entries below L. This is done by
multiplying the above system from the left with an appropriate matrix:




L−1 0(
C1

P · B · Q1

)
· L−1 −I


 ·


 L A1

C1 C2

P · B · Q1 P · B · Q2


 ·




x1

x2
...

xn




=




L−1 0(
C1

P · B · Q1

)
L−1 −I


 ·




y1

y2
...

yN


.
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Here Q1 is the matrix consisting of the first � columns of Q where � is
the size of L, and Q2 is the matrix consisting of the last n − � columns
of Q. In practice, what is important is how fast we can calculate the
right-hand side of this equation. There are three quantities to calculate

z = L−1 ·




y1
...
y�


, C1 · z, P · B · Q1 · z.

The first one, z, is easy to calculate, as L is sparse and lower triangular
(essentially, we will use the belief-propagation algorithm). The second
one is also easy to calculate as C1 is sparse. It is the third quantity for
which we need an efficient algorithm for the multiplication of B with a
generic vector: as P is a permutation matrix, and Q1 is also almost a
permutation matrix (it consists of the first � columns of a permutation
matrix), the algorithm for B can be used to efficiently calculate the
third quantity as well.

To design a matrix B that “looks” random and has an efficient
multiplication algorithm, we proceed as follows. We set

B̂ = (T1 | T2 | · · · | Tn−H) ·




1 1 0 · · · 0 0
0 1 1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 1
0 0 0 · · · 0 1




−1

, B = (B̂ | IH),

(3.1)

where T1, . . . ,Tn are (mostly) sparse. A judicious, yet efficient, choice
of the Ti will ensure that the columns of the matrix B̂ have a Hamming
weight that is roughly half of the length of the columns. To do this, a
binary reflected Gray code is used. Details are found in Section 3.2.3.
The algorithm for multiplying B with a given vector is essentially the
same as the one given on Equation (3.3).

For the above ideas to work, it is imperative that the matrix A of
Figure 3.1 is such that it has rank n − H with high probability. In fact,
to obtain the same performance as a random binary fountain code also
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in terms of the decay of the failure probability as a function of the
overhead, it is important that the first few terms in the rank profile1 of
the matrix A behave as the first few terms of a random binary matrix
of the same size. (It is not possible to get the same performance as
that of a random binary matrix for a sparse matrix over the entire
length of the rank profile; however, it is possible to do so for an initial
segment of it, and this is mostly sufficient in practice.) To achieve this,
a combination of a good LT code and a good precode is needed.

As the dense part of the constraint matrix of the precode is already
fixed, we need to specify the sparse part of the constraint matrix. A lot
of designs are possible for this part. What is important is to make sure
that all the intermediate symbols are covered more or less the same
number of times, and that this number is not too small (in practice, 3
works quite well, and this is what the R10 code does).

The design of the LT code is the most challenging task. We do not
expect to use a degree distribution that is very much like the ideal
distribution, because such a distribution often leads to various defi-
ciencies in terms of the rank of the corresponding matrix. On the other
hand, the distribution should not be too far from the ideal distribution
either, because otherwise the decoding will not be very efficient and we
would need a lot of inactivations. The actual design follows a number
of heuristics and proceeds to some extent using trial and error. The
final outcome of the design is given in Section 3.2.3.

3.2.3 Construction

In this section, we give the details of the construction of the R10 code.
In doing so, we make references to the specification of this code [15]
and use the same terminology. The R10 code is systematic fountain
code designed to support a number of source symbols K between 4 and
8,192.

Associated with each encoded symbol of the R10 code is an ESI,
which is a 16-bit value that identifies the encoded symbols of a
source block. As the R10 code is a systematic code, the source sym-
bols are among the possible encoded symbols: the source symbols are

1 We refer the reader to Appendix A for a definition of the rank profile of a matrix
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C ′
0, . . . ,C

′
K−1 with corresponding ESIs 0, . . . ,K − 1, and the repair sym-

bols are C ′
K ,C ′

K+1, . . . with corresponding ESIs K,K + 1, . . . .

The encoding and decoding for the R10 code is defined by two types
of relationships: constraint relationships among the intermediate sym-
bols and LT relationships between the intermediate symbols and the
encoded symbols. Encoding proceeds by determining the intermediate
symbol values based on (1) the source symbol values, (2) LT relation-
ships between the source symbols and the intermediate symbols, and
(3) the constraint relationships among the intermediate symbols. The
values of repair symbols can be generated from the intermediate sym-
bols based on LT relationships between the intermediate symbols and
the repair symbols.

Similarly, decoding proceeds by determining the intermediate sym-
bol values based on (1) the received encoded symbol values, (2) LT
relationships between the received encoded symbols and the interme-
diate symbols, and (3) the constraint relationships among the interme-
diate symbols. The values of missing source symbols can be generated
from the intermediate symbols based on LT relationships between the
intermediate symbols and the missing source symbols. Thus, encoding
and decoding are essentially symmetric procedures.

The R10 encoder produces L = K + S + H intermediate symbols
C0, . . . ,CL−1 from the K source symbols C ′

0, . . . ,C
′
K−1, wherein S is the

number of LDPC redundant symbols and H is the number of HDPC
redundant symbols. The term HDPC stands for “High Density Parity
Check” and refers to the fact that these symbols depend on a large
number of source symbols. As described in [15, Section 5.4.2.3], the
number of LDPC symbols S is the smallest prime number greater than
or equal to 
0.01 · K� + X where X is the smallest positive integer
such that X · (X − 1) ≥ 2K; the number of HDPC symbols H is the
smallest integer such that(

H


H/2�
)

≥ K + S.

H is chosen like this so that the columns of the matrix B in Figure 3.2
are all distinct.

Another important parameter for the code is the systematic index
J(K), This list of systematic indices for the supported values of K is
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Fig. 3.2 The constraint matrix of the precode and the LT degree distribution for the
R10 code.

provided in the table shown in [15, Section 5.7]. The systematic index
J(K) is used to define the LT relationships that guarantee that the
R10 code is a good systematic code for a source block with K source
symbols, i.e., that the L intermediate symbols can be decoded from the
K source symbols, and that the overhead-failure curve is good.

The constraint matrix described below defines the constraint rela-
tionships among the L intermediate symbols C0, . . . ,CL−1. The con-
straint matrix overall structure is given in Figure 3.2. It consists of two
submatrices: the top one, consisting of S rows, describing the LDPC
relations, and the second one, consisting of H rows, describing the
HDPC relations.

We now describe the two submatrices of the constraint matrix
in Figure 3.2 in more detail. In [15], the structure of this matrix is
described implicitly in Section 5.4.2.3 as the “For” loop describing the
first part of the precoding relations. The first K + S columns of the
upper part of the constraint matrix consist of circulant matrices and
an S × S identity matrix. The circulant matrices are composed of K

of the columns, and each (except possibly the last) has S columns. The
number of these circulant matrices is 
K/S�. The columns in these cir-
culant matrices all have degree 3. The first column of the ith circulant
matrix has ones at positions 0, (i + 1)mod-S, and (2 · i + 1)mod-S and
zeros elsewhere. The other columns are cyclic shifts of the first, wherein
by a shift we mean a cyclic down-shift.
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The lower H rows of the matrix in Figure 3.2 mimic the behavior
of a matrix in which entries are chosen uniformly and independently
from F2. In the specification [15], the symbols obtained by multiply-
ing the non-identity part of the matrix with intermediate symbols are
called “Half-Symbols,” mostly because the columns of this matrix have
a relative weight of 1/2 (when H is even, and very close to 1/2 when
H is odd).

As was mentioned above, for efficiency reasons, the matrix B̂ is cho-
sen to have a form described in Equation (3.1). Because we want the
columns of B̂ to have weight equal to 
H/2�, we proceed as follows: we
enumerate vectors of this weight and length H using a binary reflected
Gray Code in such a way that the Hamming distance between con-
secutive columns is exactly 2. Specification [15] describes at the end
of Section 5.4.2.3 a method of how to obtain these columns using the
Gray enumeration of binary vectors of length H. A more efficient algo-
rithm is given in [2]. Denote the columns of B̂ by G1,G2, . . . ,GK+S .
For i ≥ 2, if Ti denotes the vector of weight 2, which contains ones in
positions in which Gi and Gi−1 differ, and if T1 is the vector consist-
ing of 
H/2� ones followed by consecutive zeros, then Equation (3.1) is
indeed satisfied for B̂, since



1 1 0 · · · 0 0
0 1 1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 1
0 0 0 · · · 0 1




−1

=




1 1 1 · · · 1 1
0 1 1 · · · 1 1
0 0 1 · · · 1 1
...

...
...

. . .
...

...
0 0 0 · · · 1 1
0 0 0 · · · 0 1




.

We give an example of the constraint matrix of the precode for K = 10.
In this case, H = 6, S = 7, and thus there are L = K + S + H = 23
intermediate symbols. The specific constraint matrix for the R10 code
for K = 10 is shown in Figure 3.3, which is a specific instance of the
general form of the R10 code constraint matrix shown in Figure 3.2.

We now describe the LT relationship between the encoded
symbols C ′

0, . . . ,C
′
K−1,C

′
K ,C ′

K+1, . . . , and the intermediate symbols
C0, . . . ,CL−1. The LT relationship is defined by the Triple Generator

described in [15, Section 5.4.4.4], which depends on the systematic
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Fig. 3.3 Constraint matrix of the precode of the R10 code for K = 10.

index J(K). An ESI X is mapped to a non-negative integer Y = (B +
X · A)mod-Q, where Q = 65,521, A = (53,591 + 997 · J(K)) mod Q

and B = 10,267 · (J(K) + 1)mod-Q. Then, the value of Y is mapped
to a triple (d,a,b) using the pseudo-random function Rand defined in
[15, Section 5.4.4.1]. The input to Rand is Y , a non-negative integer
i < 256, and a positive integer m, and it produces an integer between 0
and m − 1. The value of i varies in different calls to Rand to ensure that
the outputs from calls to Rand with the same value of y as input are
largely independent of one another. To generate the LT degree d, Rand
is called to generate a random integer v between 0 and 220 − 1, and then
the function Deg is called with input v to choose a degree d using a table
lookup based on v and Table 1 shown in [15, Section 5.4.4.2], where the
degree distribution that this generates is as shown in Figure 3.2. The
values of a and b are also generated using Rand.

The number d is the LT degree of the encoded symbol and a and b

are used to select the subset of size d from the intermediate symbols.
More specifically, d is an integer in the set {1,2,3,4,10,11,40} and a

and b are integers between 0 and L′ − 1 (and a is non-zero), where L′

is the smallest prime number greater than or equal to L.
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The triple (d,a,b) is used to define the LT relationships between
encoded symbols and intermediate symbols: the value of the encoded
symbol C ′

X satisfies the following: We generate the numbers r0 = a,r1 =
(a + b)mod-L′, r2 = (2 · a + b)mod-L′, . . . until d of these numbers fall
in the interval [0,L′ − 1]. If these numbers are denoted �1, . . . , �d, then
C ′

X is the XOR of C�1 ,C�2 , . . . ,C�d
. An efficient method of computing

the value of encoded symbol C ′
X based on the triple (d,a,b) is described

in [15, Section 5.4.4.3].

3.2.4 Some Properties

One of the most amazing properties of the R10 code is that its
performance is close to that of a random binary fountain code, in terms
of its overhead-failure curve for a wide range of values of K and for a
wide range of loss probabilities. The following figure provides a plot
of the overhead-failure curve for the R10 code for K = 1,000 and loss
rates of 10% and 50%, as well as for the random binary fountain. As the
R10 code is systematic, its performance is somewhat sensitive to the
loss probability; this is not surprising, since for a loss probability of
zero all of the source symbols are received and thus decoding is always
successful. As can be seen, in the given range the overhead-failure curve
decreases exponentially fast, i.e., the failure probability decreases by
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almost a factor of two for each increase of one in the overhead. For
values of K up to around 2,000, the overhead-failure curve is essentially
the same as that of a random binary fountain code. For values of K

larger than 2,000 the overhead-failure curve starts to deviate from that
of a random binary fountain code; however, it is still the case that the
% overhead-failure curve for these larger values of K is at least as good
as the % overhead-failure curve for K = 2,000, and thus overall in a
practical sense the overhead-failure curve is quite good.

The R10 code uses a well-designed structured approach that allows
fast encoding and decoding, i.e., orders of magnitude faster encoding
and decoding than is possible using a random binary fountain code.

The degree distribution of the R10 code is specifically designed to
work well with inactivation decoding. To see this, let us look at the
condition in (2.1), i.e., at the smallest root of 1 − x − e−(1+ε)Ω′(x) in
the interval [0,1). On the right is a plot of this function for various
values of ε. It shows that asymptotically an overhead of about 2% is
needed for the code to function properly (at least in order to recover
around 98% of the intermediate symbols). If we take K = 1,000, for
example, then the number of intermediate symbols of the LT code
equals 1,072 (the value of X from the caption of Figure 3.2 is 47,
the value of S is 59, and the value of H is 13) and if we use the
heuristic described at the end of Section 2.2 and look at the plot of
1 − x − e−(1+ε)Ω′(x) − γ

√
(1 − x)/1072 for ε = 60%, say, and various
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values of γ, we obtain the figure below:

We see that even with such a huge overhead it is unlikely that the
belief-propagation decoding succeeds if we choose K = 1,000. The plots
also tell us where the process is worst: at the start. This is because the
fraction of encoded symbols of degree one is very small, and there is a
good chance that there are very few such encoded symbols received.

Figure 3.4 shows the distribution of the number of inactivations of
the R10 code for the case K = 1,000 for varying overheads. As can be
seen, for small overheads the distribution on the number of inactivations

Fig. 3.4 Distribution of the number of inactivations of the R10 code for K = 1,000 and
various overheads o.
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is close to normal. For an overhead of 0, we expect (and see) the largest
mean which is at approximately 63 inactivations. The average number
of inactivations is considerably smaller when the overhead is 50: it is
roughly 35. As we increase the overhead, we expect the number of
inactivations to decrease, and this can also be seen in Figure 3.4.

3.3 The RQ code

In this section, we introduce the most advanced Raptor code that is
available commercially, called either the RaptorQ code or the RQ code.
The RQ code is improved compared with the R10 code in many ways.
The RQ code supports source blocks of up to 56,403 source symbols,
and supports up to 16,777,216 encoded symbols. These limits on sup-
ported values for the RQ code were set due to practical considerations
based on perceived application requirements, and not due to limitations
of the RQ code design.

The RQ code has an overhead-failure curve that essentially mimics
that of a random fountain code over the field F256, for the entire range
of supported number of source symbols per source block and for any
loss probability. The RQ code is a fountain code, i.e., as many encoded
symbols as needed can be generated by the encoder on-the-fly from the
source symbols of a source block. The RQ code is a systematic code,
meaning that all the source symbols are among the encoded symbols
that can be generated, and thus encoded symbols can be considered
to be a combination of the original source symbols and repair symbols
generated by the encoder.

A full specification of the RQ code is provided in [16].
Before describing the RQ code, we describe some properties of the

R10 code and the practical implications of these properties that moti-
vated the design and development of the RQ code. Although R10 is a
very good systematic fountain code, there are some improvements that
would increase its practical application. Two potential improvements
of importance are a steeper overhead-failure curve and a larger number
of supported source symbols per source block. As we have seen, the
R10 overhead-failure curve is essentially that of a random binary foun-
tain code (up to K = 2,000). In some applications, the overhead-failure
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curve of a random binary fountain code is not ideal. For example, in
a streaming application, the range of the number of source symbols
in a source block can be wide, e.g., K = 40,200,1000, and 10,000. To
provide a good streaming experience, the failure probability is required
to be low, e.g., a failure probability of 10−5 or 10−6. As bandwidth is
often at a premium for streaming applications, the percentage of repair
symbols sent as a fraction of the source symbols should be minimized.
Suppose, for example, that the network over which the stream is sent
should be protected against up to 10% packet loss when using source
blocks with K = 200, and the failure probability is required to be at
most 10−6. The R10 code requires an overhead of 24 to achieve a fail-
ure probability of 10−6, i.e., the receiver needs 224 encoded symbols.
A total of 249 encoded symbols need to be sent for each source block
to meet the requirements, as 224/(1 − 0.1) rounded up is 249. Thus,
the repair symbols add an extra 24.5% to the bandwidth requirements
for the stream. If instead the RQ codes were used, an overhead of 2
ensures a failure probability of less than 10−6. Thus, then only a total of
225 encoded symbols need to be sent for each source block to meet the
requirements, since 202/(1 − 0.1) rounded up is 225. In this case, the
repair symbols add an extra 12.5% to the bandwidth requirements for
the stream, i.e., essentially a factor of two smaller bandwidth overhead
than required by the R10 code. Thus, the RQ code overhead-failure
curve that is an improvement over the R10 overhead-failure has some
very positive practical consequences.

R10 supports up to 8,192 source symbols per source block. However,
there are applications where support for more source symbols per source
block is desirable. For example, in a mobile file broadcast application,
it is advantageous from a network efficiency point of view to encode the
file as a single source block or, more generally, to partition the file into
as few source blocks as is practical. Suppose, for example, that a file of
50 million bytes is to be broadcast, and that the available size within
each packet for carrying an encoded symbol is 1,000 bytes. To encode
the file as a single source block requires K = 50,000 be supported. (Note
that there are sub-blocking techniques, for example, as described in [15]
which allow decoding using substantially less memory than the source
block size.)
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There are a few reasons that the number of source symbols is limited
to 8,192 for R10. One reason is that with the R10 degree distribution
the failure probability at zero overhead increases to almost 1 as K

increases beyond 8,192, making it harder to find systematic indices
that yield a good systematic code construction. In contrast, because
the overhead-failure curve for the the RQ code design is so steep for
all values of K, it is easily possible to find good systematic indices and
thus to support much larger values of K.

The RQ code combines two major new ideas to achieve its perfor-
mance: the first is the use of symbols over larger alphabets, and the
second is the use of a technique called “permanent inactivation.” In
this section, we explain these two concepts, elaborate on the design of
the RQ code, and highlight some of the properties of this code.

3.3.1 Non-binary Alphabets

To obtain a better overhead-failure curve, one can use a random foun-
tain code over the field Fq for larger q. The following simple argument
gives an upper bound on the failure probability of such a code as a
function of the overhead.

Theorem 3.1. Suppose that m ≥ n, and that A is an m × n matrix in
which each entry is independently and uniformly chosen from the field
Fq. Then, we have

Pr[rk(A) < n] ≤ 1
(q − 1)qm−n

.

Proof. We define an equivalence relation ∼ on F
n
q \ {0} defined as x ∼ y

iff there exists 0 �= α ∈ Fq such that αx = y, and we let V denote a set
of representatives of ∼-classes. By the union bound, we have

Pr[rk(A) < n] = Pr[∃0 �= x ∈ F
n
q : A · x = 0],

= Pr[∃x ∈ V : A · x = 0],

≤
∑
x∈V

Pr[A · x = 0].
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Since ∼-classes contain q − 1 elements, and for x ∼ y the conditions
A · x = 0 and A · y = 0 are equivalent, we have∑

x∈V

Pr[A · x = 0] = (q − 1)
∑

0�=x∈Fn
q

Pr[A · x = 0].

Suppose that x is a fixed non-zero element of F
n
q , and that v is a

vector chosen uniformly at random from F
n
q . Then, Pr[〈v | x〉 = 0] =

1/q, where 〈· | ·〉 denotes the standard scalar multiplication of vectors.
Hence, we have for any fixed 0 �= x ∈ F

n
q :

Pr[A · x = 0] =
1

qm
.

It follows that

Pr[rk(A) < n] ≤ 1
q − 1

∑
0�=x∈Fn

q

Pr[A · x = 0] =
qn − 1

(q − 1)qm
<

1
(q − 1)qm−n

,

which proves the assertion.

Even though this theorem only gives an upper bound on the prob-
ability that the matrix A is rank deficient, this bound is astonishingly
close to the exact result. The following is a plot of Pr[rk(A) < n] for a
random m × n matrix A over Fq as a function of the overhead m − n

for various values of q.
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As can be seen, the failure probability, i.e., the probability of rank
deficiency, as a function of the overhead can be substantially improved
by passing to larger alphabets.

How can this observation be used? A naive way would be to use a ran-
dom fountain code over Fq. However, this leads to a huge penalty in terms
of the computational efficiency of the code: on the one hand, as was the
case for randombinary fountain codes, the randomstructure of thematri-
ces involved will make it difficult to encode and decode efficiently. On the
other hand, the larger finite fieldswill lead to a further deterioration of the
speed of encoding and decoding because of the complications involved in
performing arithmetic operations in such fields.

One of the main ideas for the design of the RQ code is to use as
part of the precoding a code over Fq, which looks like a random code,
but is computationally efficient. To begin with, consider a matrix of
the following type:

Herein, B is a binary (m − h) × n matrix, which is sampled from
some probability distribution D on F

(m−h)×n
2 , and Q is a q-ary h × n

matrix in which each entry is sampled independently and uniformly
from Fq. What is the probability that this combined matrix has rank
less than n?

This problem is studied in Appendix A, and solved in Theorem A.2.
Suppose that (pn,pn−1, . . . ,p0) is the rank profile of the matrix B, i.e.,
pi is the probability that the rank of B is i. As the rank of a matrix does
not change when operations are allowed over a larger field than the field
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from which the elements of the matrix are chosen, pi is the probability
that the rank of B is i, even if we view B as a matrix over Fq. Denote
by p′

i the probability that the rank of the combined matrix is i. Then,
we have by Lemma A.1 in Section A:



p′
n

p′
n−1
...
p′
1

p′
0


 = Mn(q)H ·




pn

pn−1
...
p1

p0


. (3.2)

In particular, the probability that the combined matrix above has rank
less than n is 1 − p′

n. How does the rank profile of the combined matrix
develop as random rows are added to Q starting with zero rows in Q?
Let us look at an example.

Example 3.1. Let K = 1,000, S = 59, H = 13, n = K + S + H =
1,072, and m = n. Suppose that B is a matrix of the following form:
the first K = 1,000 rows are created according to the degree distribu-
tion Ω for the R10 code (see Figure 3.2 and [15]). The next S rows
constitute the upper matrix, i.e., the upper S rows, of the R10 precode
shown in Figure 3.2. The resulting matrix B has 1,072 − 13 = 1,059
rows and n = 1,072 columns. After extensive simulations, we obtain
the following graph for the rank profile of this B matrix:
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In this plot, the horizontal axis is the index �, and the y-axis is
pn−�. Values � for which there is no corresponding point correspond
to pn−� = 0. Obviously, pn−� > 0 implies � ≥ 13, since B has 13 more
columns than rows. Note that this is a qualitative graph only. In partic-
ular, it is possible that a larger number of simulations reveal a non-zero
probability for even larger values of �.

If the matrix Q is binary, then addition of every row of Q to the
combined matrix changes the rank profile in the following way:

As it moves from right to left, the solid red curve tracks the evo-
lution of pn−13+� for � = 0,1, . . . ,13, where � is the number of ran-
dom binary rows in B. In particular, the leftmost point of the solid
red curve is at pn when the number of rows in B is 13, i.e., it gives
the probability of successful decoding (or alternatively, the probability
that the matrix is full rank) at zero reception overhead. Note that the
value of pn at this leftmost point is around 0.1, which means that the
failure probability of the R10 code for K = 1,000 at zero overhead is
almost 0.9 if the redundant symbols are generated completely randomly
from F2.

What is interesting about this result is that pn−13+� decreases sig-
nificantly as � increases from 0 to 13 (which at the index 13 will be the
probability of successful decoding at zero reception overhead).
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Now suppose that q = 256. In this case, the previous plot looks very
different:

In contrast to the case in which the entries of B are chosen from F2,
when the entries of B are chosen from F256, the initial curve is almost
replicated from one round to the next as rows are added to B, and
in particular, the solid red curve that tracks the evolution of pn−13+�

for � = 0,1, . . . ,13, where � is the number of random binary rows in B,
is almost perfectly level, i.e., it basically stays at the same value as �

increases from 0 to 13.
Thus, for q = 256, the rank profile of the combined matrix almost

has the property that p′
n ≈ pn−h.

What we saw in the previous example is not an isolated event. If q

is large, then the matrix in (3.2) is the upper shift matrix, and left
multiplication by this matrix has the effect of shifting the elements of
the vector to the left by one position almost perfect, i.e., with almost
no deterioration from the previous vector.

Motivated by this result, the RQ code uses a precode that is similar
to that of the R10 code in which the HDPC symbols are replaced by
pseudo-random symbols over F256. The field F256 was chosen because
it offers excellent trade-offs with respect to the failure probability and
computational efficiency: its members can be represented by one byte,
its multiplication table is not too large, and, as can be seen in the
previous example, it is large enough to lead to a shift of the rank
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profile. An exact description of the design of the RQ code is provided
in Section 3.3.3.

The idea of using symbols over a larger alphabet is a powerful one.
However, it has its limitations. In the following, we will describe some
of these limitations and exemplify them using a particular instantiation
of a Raptor code. This code is identical to R10, except that the part of
the constraint matrix of the precode is replaced by a uniform random
matrix over F256. For the purposes of this section, we call this code the
R10-256 code.
Failure probability at low overheads. For cases when the overhead is
small, but still a significant fraction of the number of source symbols,
the failure probability of the R10-256 code can be an issue for some
applications. The plots in Figure 3.5 illustrate this. Each of these is a

Fig. 3.5 Plot of failure probability versus loss for R10-256 and two different values of K.



280 Standardized Raptor Codes

plot of the failure probability versus the number of overhead symbols,
at various loss rates. The left plot depicts the case K = 100 whereas
the right one does so for K = 1,000. As can be seen, only at low loss
probabilities do we see a failure probability behavior that is close to that
of a random fountain over F256 (dotted line). When the loss rate grows,
the failure probability behavior changes dramatically. This behavior
becomes worse as the number of source symbols grows.
Failure probability is a function of the loss rate. In general, in any sys-
tematic fountain code the failure probability of the decoder will be a
function of the loss rate. After all, if the loss rate is zero, the decoder
never produces a failure. What one would like is a graceful degradation
of the failure probability as the loss rate grows, terminating at the fail-
ure probability that is equal to that of the non-systematic version of
the code. The following plot depicts this problem. It shows the failure
probability of the code as a function of the loss rate when the over-
head is zero. One would like these zero overhead-failure probabilities
to remain basically level as the loss rate increases from 0 to 1, and this
is not the case in the shown plot. Similar plots can be produced when
the overhead is any small number, not necessarily zero.

Systematic indices. For construction of the systematic version of the
R10-256 code, we need to find for each value of K a set of K encoded
symbols that can be used to decode the K source symbols. The above
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plot shows that a random set of K encoded symbols is unlikely to be
able to decode the K source symbols, particularly when K is large (this
corresponds to decoding at zero overhead and loss rate 1). Therefore,
for large K, a systematic code construction will be far from the average
construction. This will inevitably lead to discrepancies in the behavior
of the code when different loss rates are applied, as can be seen in the
above plots.

In summary, we would like to construct a code that is very efficient
in terms of its encoding and decoding speeds, is predictable in terms
of its failure probability as a function of overhead, and for which the
dependency of the failure probability on the loss rate is minimal, and
which behaves like a random fountain over F256 for a large range of
overheads.

3.3.2 Permanent Inactivation

The second main ingredient of the RQ code is the use of, what we call,
permanent inactivation. This technique is able to overcome many of
the shortcomings that the R10-256 exhibits.

Recall the definition of inactivation given in Section 2.4, which we
hereafter call dynamic inactivation to distinguish from the concept of
permanent inactivation introduced in this section. Recall that the basic
idea behind dynamic inactivation is to designate an intermediate sym-
bol in the decoding matrix as dynamically inactive whenever belief-
propagation decoding is stalled because there is no encoded symbol
or constraint symbol with remaining degree 1. To restart the belief-
propagation decoding process again, one or more intermediate sym-
bols are designated to be considered as “decoded” for the remainder of
belief-propagation decoding. The intermediate symbol(s) that is desig-
nated to be “decoded” is chosen in such a way that, without them, there
is an encoded symbol of remaining degree 1 that allows belief propa-
gation to continue. The designated intermediate symbol(s) is declared
to be dynamically inactive. The Gaussian elimination at the end of the
process is used to recover the values of the dynamically inactive sym-
bols, and these in turn determine the values of the other intermediate
symbols.
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For permanent inactivation, we designate a part of the intermediate
symbols as inactive already before decoding starts. We call these inter-
mediate symbols permanently inactive (PI) symbols. To distinguish
them from the PI symbols, we call the remaining intermediate sym-
bols LT symbols. The terminology choice will become obvious below.

In addition, we also change the way encoded symbols are generated
from the intermediate symbols, differentiating between the set of LT
symbols and the set of PI symbols. In the most general form, we would
do the following to generate an encoded symbol. Let W denote the
number of LT symbols, x1, . . . ,xW denote the LT symbols, P denote the
number of PI symbols, and y1, . . . ,yP denote the PI symbols. As usual,
Ω(x) will denote the encoded degree distribution of the corresponding
LT code; it is a probability distribution on {1, . . . ,W}. In addition, we
also use a probability distribution Π(x) on {1, . . . ,P}.

(1) Sample from Ω to obtain a degree d1 in {1, . . . ,W}.
(2) Choose a subset S of size d1 from {1, . . . ,W} uniformly at

random.
(3) Use d1 and Π to sample a number d2 in {1, . . . ,P}.
(4) Choose a subset T of size d2 from {1, . . . ,P} uniformly at

random.
(5) Calculate the value of the encoded symbol as

z =
∑
i∈S

xi +
∑
j∈T

yj ,

i.e., encoded symbol z is of degree d = d1 + d2.
The following is a pictorial description of the encoding:

Why is this method beneficial? To answer this question, we first
discuss the case where Π(x) = (1 + x)P /2P , which defines the uniform
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distribution on F
P
2 . Let us look at a typical decoding matrix. It has the

following form:

The last P columns of this matrix, i.e., the submatrix P, corre-
spond to the PI symbols, and each column of P is chosen uniformly
at random from F

P
2 . Suppose that pn,pn−1, . . . ,p0 is the rank profile of

the matrix A. As W is the number of columns of A (so n = W + P ),
pn = · · · = pW+1 = 0.

We are interested in analyzing pW when N = n − H = P + W − H

for some non-negative integer H that is small relative to P and n. Recall
that A is the decoding matrix of an LT code on the LT symbols, and
thus the overhead on the LT symbols defined by the A matrix would
be n − H − W = P − H symbols. We want to have P large enough so
that A has a good chance of being full rank W , i.e., pW is close to 1.
For moderate P and small H, this is quite a large overhead for an LT
code, and thus with a good LT code design it will be the case that A
has rank W with overwhelming probability, i.e., pW is close to 1. For
example, setting P = c · √

n for a constant c > 0 assures that pW ≈ 1
if the degree distribution is chosen properly, and if n is not too large.

What is the rank profile of the combined matrix? Using Equa-
tion (A.1), this is equal to

MN (2)P · (0, . . . ,0,pW ,pW−1, . . . ,p0)�.

It follows that pN , the probability that the rank of the combined matrix
is N is equal to

pN = pW ·
P−H−1∏

i=0

(
1 − 2i−P

)
.
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Hence, pN is approximately equal to pW · (1 − 2−H), and thus pN is
almost equal to pW for values of H that are relatively small, e.g., if
H = log2(n) then pN is approximately pW · (1 − 1/n). Note that H = 0
corresponds to N = n, i.e., decoding with zero overhead, in which case
the failure probability is approximately the same as that of a random
binary fountain code as long as pW is close to 1.

The usage of permanent inactivations as just described provides
some benefits. For example, the overhead-failure probability curve of
the resulting code constructed using permanent inactivation is similar
to that of a random binary fountain code, whereas the constructed
decoder matrix potentially only has a small number of dense columns,
the PI columns, compared with a random binary fountain code where
all of the decoder matrix columns are dense.

The usage of permanent inactivations becomes even more com-
pelling when we combine it with HDPC rows defined over Fq for q > 2,
for example, F256. To appreciate this approach, we give an example that
will serve as a roadmap for the design of the RQ code in the following
section. Consider the following diagram:

Here, Q is a matrix with H rows in which every entry is inde-
pendently and uniformly sampled from Fq. Suppose that N = n − H;
hence, the matrix corresponds to decoding at zero overhead. In this
case, the combined matrix (A|P) has n − H rows, and thus from the
discussion above, the matrix (A|P) has rank n − H with probability t,
where t ≈ pW · (1 − 2−H). As an example, if H is set to log2(q) (and
pW ≈ 1 as described above), then t ≈ 1 − 1/q.

Thus, the combined matrix ((A|P)/Q) has rank n with probability

t ·
H∏

i=1

(
1 − 1

qi

)
.
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If t is close to 1 then this quantity is very close to the probability
that a random square matrix with entries in Fq has full rank:

∏H
i=1

(1 − 1/qi) ≈ exp(1/(q − 1)) ≈ (q − 2)/(q − 1). By Lemma 3.1, the lat-
ter number is essentially equal to the probability that a random square
matrix with entries in Fq has full rank. For example, setting q = 256,
then the failure probability at zero overhead is proportional to 1/255.

This reasoning is also valid when N > n − H (in fact, it is even
more valid, as the matrix A will have an even higher probability of
being of rank W in this case). We have thus created a matrix that is
largely sparse and consists almost entirely of symbols over F2 (with
only a small number of symbols that are over a larger field Fq), and yet
exhibits almost the failure probability of a random matrix over Fq.

In practice, we cannot choose the matrix P to be completely ran-
dom (binary), because this would lead to inefficiencies in encoding and
decoding. However, for the arguments above to be valid, we only need
that each column of P has (in absolute numbers) many non-zero entries.
This can be achieved by assigning as little as 2–3 non-zero positions
to every row of P. The fraction of ones in every columns of P would
then be 2/P or 3/P , which is often sufficient to simulate the random
behavior of the columns. For example, if P = c · √

n and there are n

rows, then on average there are O(
√

n) ones in each column.
The decoding of this code is very similar to the decoding described

for the general inactivation decoding. We just consider the PI symbols
as additional inactive symbols.

3.3.3 Construction

In this section, we give the details of the construction of the RQ code. In
doing so, we make references to the specification of this code [16]. The
RQ code is a systematic fountain code designed to support a number
of source symbols K between 1 and 56,403.

The RQ code limits the number of source block sizes that are sup-
ported within this range as follows. Given a source block with K source
symbols to be encoded or decoded, a K ′ value is selected based on the
table shown in [16, Section 5.6]. The first column in the table lists
the possible values for K ′. The value of K ′ selected is the smallest
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value among the possibilities such that K ≤ K ′. The K source symbols
C ′

0, . . . ,C
′
K−1 are padded with K ′ − K symbols C ′

K , . . . ,C ′
K′−1 with val-

ues set to zeros to produce a source block consisting of K ′ source sym-
bols C ′

0, . . . ,C
′
K′−1, and then encoding and decoding are performed on

this padded source block.
The above approach has the benefit of reducing the number of sys-

tematic indices that need to be supported. There is no disadvantage
in terms of the overhead-failure curve for K, as it is the same as the
overhead-failure curve for the selected K ′: Given the value of K, the
decoder can compute the value of K ′ and set the values of C ′

K , . . . ,C ′
K′−1

to zeros, and thus it only has to decode the remaining K of the K ′

source symbols of the source block. The only potential disadvantages
are that slightly more memory or computational resources might be
needed for encoding and decoding with slightly more source symbols.
However, the spacing between consecutive values of K ′ is roughly 1%
for larger values of K ′, and thus the potential disadvantage is negligible.

Because of the padding of the source block from K to K ′, the iden-
tifier for encoded symbols C ′

0,C
′
1, . . . within the RQ code is called the

Internal Symbol Identifier (ISI), where C ′
0, . . . ,C

′
K′−1 are the source

symbols and C ′
K′ ,C ′

K′+1, . . . are the repair symbols. External applica-
tions employing the encoder and decoder use an ESI that ranges from
0 to K − 1 to identify the original source symbols C ′

0, . . . ,C
′
K−1 and

that continues K,K + 1, . . . to identify repair symbols C ′
K′ ,C ′

K′+1, . . . .

Thus, a repair symbol C ′
X identified with ISI X within the RQ code is

identified externally with an ESI X − (K ′ − K). This is described in
more detail in [16, Section 5.3.1].

The encoding and decoding for the RQ codes are defined by two
types of relationships: constraint relationships among the intermediate
symbols and LT–PI relationships between the intermediate symbols
and the encoded symbols. Encoding proceeds by determining the inter-
mediate symbol values based on (1) the source symbol values, (2) LT–PI
relationships between the source symbols and the intermediate symbols,
and (3) the constraint relationships among the intermediate symbols.
The values of repair symbols can be generated from the intermediate
symbols based on LT–PI relationships between the intermediate sym-
bols and the repair symbols.
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Similarly, decoding proceeds by determining the intermediate sym-
bol values based on (1) the received encoded symbol values, (2) LT–PI
relationships between the received encoded symbols and the interme-
diate symbols, and (3) the constraint relationships among the interme-
diate symbols. The values of missing source symbols can be generated
from the intermediate symbols based on LT–PI relationships between
the intermediate symbols and the missing source symbols. Thus, encod-
ing and decoding are essentially symmetric procedures.

Wenowdescribehowsomeof thekeyparameters arederivedandused.
In the specification [16], the values of J , S, H, and W are determined
based on the table shown in [16, Section 5.6]: J , S, H, and W are deter-
mined by the entries in the row of this table associated with K ′.

The value J is the systematic index to use to define the code con-
struction with respect to K ′. In the specification, J is the second entry
in the row associated with K ′. For each value of K ′, the value of J has
been precomputed so that the values of the intermediate symbols are
uniquely determined by the values of the source symbols C ′

0, . . . ,C
′
K′−1,

the constraint relationships among the intermediate symbols, and the
LT–PI relationships between the intermediate symbols and the source
symbols.

The number S is the number of LDPC symbols, and it is a prime
number that is approximately 0.01 · K ′ +

√
2 · K ′. In the specification,

S is the third entry in the row associated with K ′.
The number H is the number of HDPC symbols, and it is also

the width of the F256-part of the constraint matrix of the precode. The
value of H is between 10 and 16, and H grows very slowly as a function
of K ′. In the specification, H is the fourth entry in the row associated
with K ′.

The number of intermediate symbols is L = K ′ + S + H.
The intermediate symbols are partitioned into LT symbols and PI

symbols. The number W of LT symbols of the intermediate block is
chosen so that the number P of PI symbols is proportional to

√
K ′,

and so that W is a prime number so as to simplify the tuple generation
from the LT symbols of the intermediate block. In the specification, W

is the fifth entry in the row associated with K ′ and then the number
of PI symbols is P = L − W .
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All of the LDPC symbols are classified as LT symbols, and all of
the HDPC symbols are classified as PI symbols. The number of LT
symbols that are not LDPC symbols is B = W − S, and the number
of PI symbols that are not HDPC symbols is U = P − H.

Overall, the structure of the intermediate symbols C0, . . . ,CL−1 is
that the first B symbols are the LT symbols that are not LDPC sym-
bols, the next S symbols are the LDPC symbols, the next U symbols
are the PI symbols that are not HDPC symbols, and the last H sym-
bols are the HDPC symbols. Thus, the first W = B + S symbols are
LT symbols, and the remaining P = U + H are PI symbols.

The calculation of the other parameters is described at the begin-
ning of [16, Section 5.3.3.3].

The constraint matrix described below defines the constraint rela-
tionships among the L intermediate symbols C0, . . . ,CL−1. The con-
straint matrix overall structure is given in Figure 3.6. It consists of two
submatrices: the top one, consisting of S rows, contains binary entries,
and the second one, consisting of H rows, contains a mixture of entries
from F256 (matrix Q) and binary entries (identity matrix IH).

We now describe the two submatrices of the constraint matrix in
Figure 3.6 in more detail. The upper submatrix consisting of the first
S rows has two parts: the submatrix consisting of the last P columns
of this matrix (the part that is in pink) corresponds to the PI part of
this matrix. It consists of two consecutive (modulo P ) ones in each
row. In [16], the structure of this matrix is described implicitly in

Fig. 3.6 The constraint matrix of the precode of the RQ code.
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Section 5.3.3.3 as the second “For” loop describing the first part of
the precoding relations. The first W columns of the upper part of the
constraint matrix consist of circulant matrices and an S × S identity
matrix. The circulant matrices are composed of B of the columns, and
each (except possibly the last) has S columns. The number of these
circulant matrices is 
B/S�. The columns in these circulant matrices
all have degree 3. The first column of the ith circulant matrix has ones
at positions 0, (i + 1)mod-S, and (2 · i + 1)mod-S and zeros elsewhere.
The other columns are cyclic shifts of the first, wherein by a shift we
mean a cyclic down-shift.

The lower H rows mimic the behavior of a matrix in which entries
are chosen uniformly and independently from F256. For efficiency rea-
sons to be described later, the matrix Q (which is the most important
part) is constructed in such a way that there is an efficient algorithm
for the multiplication Q · z for a generic input vector z. More explicitly,
the matrix Q is given as

Q = (∆1 | ∆2 | · · · | ∆K′+S−1 | Y ) · Γ,

Γ =




1 0 0 · · · 0 0
α 1 0 · · · 0 0
0 α 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · α 1




−1

,

Y =




α0

α1

...
αH−2

αH−1


,

(3.3)

where α is an element of F256 with minimal polynomial x8 + x4 +
x3 + x2 + 1 over F2. ∆1, . . . ,∆K′+S−1 are pseudo-random columns
of degree 2. This matrix is described toward the end of [16, Sec-
tion 5.3.3.3]. The matrix Γ is called GAMMA there.

Because of the structure of the matrix Q, multiplication of this
matrix with a given vector z of length W is quite efficient. To describe
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it, suppose that for i = 1, . . . ,K ′ + S − 1 the 2 non-zero positions of ∆i

are denoted by p(i) and q(i), and suppose that

(u1, . . . ,uH)� = Q · (z1, . . . ,zK′+S)�.

In a first step, we compute (v1, . . . ,vK′+S)� = Γ · (z1, . . . ,zK′+S)�. This
can be done via the following simple algorithm:

(1) v1 = z1.
(2) For i = 2, . . . ,K ′ + S, set vi = α−1(vi−1 + zi).

Next, we initialize the values u1 = α0vK′+S , . . . ,uH = αH−1vK′+S .
Thereafter, we proceed as follows:

(1) For i = 1, . . . ,K ′ + S − 1 do

(1.1) up(i) = up(i) + vi,

(1.2) uq(i) = uq(i) + vi.

We give an example of the constraint matrix of the precode for K ′ = 10.
In this case, H = 10, S = 7, and thus there are L = K ′ + S + H = 27
intermediate symbols. The number of LT symbols is W = 17 of which
B = W − S = 10 are not LDPC symbols. The number of PI symbols
is P = 10 of which U = P − H = 0 are not HDPC symbols (and thus
in this example all of the PI symbols are HDPC symbols). The specific
constraint matrix for the RQ code for K ′ = 10 is shown in Figure 3.7,
which is a specific instance of the general form of the RQ constraint
matrix shown in Figure 3.6.

Fig. 3.7 Constraint matrix of the precode of the RQ code for K′ = 10.
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The matrix Q that simulates a random matrix over F256 is given
by Equation (3.3). The elements of F256 are represented by octets,
as described in [16, Section 5.7], and these octets are represented by
two hexadecimal integers in Figure 3.7. More precisely, the finite field
F256 is represented using the irreducible polynomial f(x) = x8 + x4 +
x3 + x2 + 1 over F2. The polynomial a0 + a1x + a2x

2 + a3x
3 + a4x

4 +
a5x

5 + a6x
6 + a7x

7 is mapped to the integer a0 + 2a1 + · · · + 27a7,
and this integer is represented by two hexadecimal digits, wherein the
first digit is the less significant one. Hence, for example, the hexadec-
imal number AF corresponds to the integer 10 + 16 · 15 = 250, which
has the binary expansion 2 + 23 + 24 + 25 + 26 + 27, and hence corre-
sponds to the polynomial x + x3 + x4 + x5 + x6 + x7.

We now describe the LT–PI relationship between the encoded sym-
bols C ′

0, . . . ,C
′
K′−1,C

′
K′ , . . . and the intermediate symbols C0, . . . ,CL−1.

The symbols C ′
0, . . . ,C

′
K′−1 are composed of the source symbols whereas

C ′
K′ ,C ′

K′+1, . . . are composed of the repair symbols. The LT–PI rela-
tionship is defined by the TupleGenerator described in [16, Sec-
tion 5.3.5.4]. The relationship between an encoded symbol and ISI X

depends on the systematic index J . The systematic index J can be
used to generate a non-negative integer y from X and K ′ as described
in [16, Section 5.3.5.4]. The value of y is then used to derive a tuple
(d,a,b,d1,a1, b1). The number d is the LT degree of the encoded sym-
bol, and a and b are used to select the subset of size d from the LT
symbols. More specifically, d is an integer between 1 and 30, and a

and b are integers between 0 and W − 1 (and a is non-zero). Similarly,
the number d1 is the PI degree of the encoded symbol, and a1 and
b1 are used to select the subset of size d1 from the PI symbols. More
specifically, d1 is an integer that is either 2 or 3, and a1 and b1 are
integers between 0 and P1 − 1, where P1 is the smallest prime greater
than or equal to P (and a1 is non-zero).

A pseudo-random generator, called Rand and defined in [16, Sec-
tion 5.3.5.1], is used to generate the tuple. The input to Rand is y, a
non-negative integer i < 256, and a positive integer m, and it produces
an integer between 0 and m − 1. The value of i varies in different calls
to Rand to ensure that the outputs from calls to Rand with the same
value of y as input are largely independent of one another. To generate
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Fig. 3.8 The degree distribution used for the RQ code.

the LT degree d, Rand is called to generate a random integer v between
0 and 220 − 1, and then as described in [16, Section 5.3.5.2] the function
Deg is called with input v to choose a degree d using a table lookup
based on v and Table 1 shown in [16, Section 5.3.5.2], where the degree
distribution that this generates is as shown in Figure 3.8.

The output of the tuple generator is used to define the relation-
ship between the encoded symbol and the intermediate symbols: If
C0,C1, . . . ,CW−1,CW , . . . ,CW+P−1 are the intermediate symbols, then
the value of the encoded symbol C ′

X is the XOR of A and B, where

• A is the XOR of Ca,C(b+a) mod W , . . . ,C(b+(d−1)·a)mod-W .
• We generate the numbers r0 = a1, r1 = (a1 + b1)-mod-

P1, r2 = (2 · a1 + b1)mod-P1, . . . until d1 of these numbers
fall in the interval [0,P − 1]. If these numbers are denoted
�1, . . . , �d1, then B is the XOR of CW+�1 ,CW+�2 , . . . ,CW+�d1 .

An efficient method of computing the value of encoded symbol C ′
X from

the tuple (d,a,b,d1,a1, b1) is described in [16, Section 5.3.5.3].
Figure 3.9 shows a schematic of a decoding matrix for the RQ code.

The PI part corresponding to the LT encoded symbols consists of 2 or 3
ones per row. This means that every encoded symbol contains an XOR
of 2 or 3 PI symbols. In the specific design, the exact number depends
on the degree of the LT part of the encoded symbol: if it is 2 or 3, then
the degree of the PI part is chosen to be 2 or 3 with probability 1/2.
If the degree of the LT part is 4 or larger, then the degree of the PI
part is always 2. More information and the exact design details can be
found in [16].
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Fig. 3.9 The matrix structure of the RQ code. The top part of the matrix corresponds to
the LT part, i.e., each row in the upper part corresponds to an encoded symbol.

3.3.4 Duplicates

It is interesting to note why we chose the degree of the PI part of RQ
to be 2 or 3 if the degree of the LT part is 2 or 3. The reason is the
avoidance of what we call duplicates and which turns out to be one of
the main reasons for the failure probability at low overheads.

We call two encoded symbols’ duplicates if they have the same
neighbors among the PI symbols and LT symbols. If the overhead is
zero, then duplicates will account for part of the failure probability.
If this part is a meaningful fraction of the overall failure probability,
then duplicates should be avoided.

What is the probability that two encoded symbols are duplicates?
Let us turn the question around. What is the probability that among
all the received encoded symbols there are no duplicates?

Let D denote the PI degree of the encoded symbols. We will analyze
the probability that the encoded symbols have duplicates for different
values of D in order to show why we chose D the way we did.

Obviously, if two encoded symbols have different LT degrees, they
cannot be duplicates. Hence, it makes sense to calculate the proba-
bility of having duplicates among encoded symbols of the same LT
degree only. Suppose that this degree is �. We are going to calculate
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the probability ΠK,m(�,D) that there are at least two duplicate encoded
symbols among m received encoding symbols of LT degree �. Note that
we choose the LT neighbors and the PI neighbors of an encoded sym-
bol according to the tuple generator. Hence, two encoded symbols with
the same values for (a,b,a1, b1) have the same neighbors (though they
could also have the same neighbors if the tuples are different). More-
over, if the LT degrees of the encoded symbols are one, then it suffices
for them to have the same (b,a1, b1) triples if D ≥ 2, and it suffices for
them to have the same (b,b1) pair if D = 1.

Even though in the actual neighbor generation process the degrees
and the quadruples (a,b,a1, b1) are correlated, we will disregard this
correlation in our analysis and assume that the LT degrees are cho-
sen independently using a perfect source of randomness. If the LT
degree is 2, then the quadruples (a,b,a1, b1) and ((a + b)mod-W,−a-
mod-W,a1, b1) generate the same subset of LT symbols. We will make
another simplifying assumption: for D = 2, we will assume that PI
neighbors are sampled uniformly among all 2-subsets of the set of PI
neighbors. For D > 2, we assume that the possible set of PI neighbors
is P (P − 1) (i.e., we discount the rare cases when two (a1, b1)-pairs
give rise to the same set of neighbors). In summary, if σK(�,D) denotes
the number of possible pairs of subsets of size � of the LT symbols and
of size D of the PI symbols, then we will approximate

σK(�,D) ≈




WP , if D = � = 1,(
W
2

)
P, if D = 2, � = 1,

W
(
P
2

)
, if D = 1, � = 2,(

W
2

)(
P
2

)
, if D = � = 2,

W (W − 1)P (P − 1), if D,� > 2.

Note that K appears indirectly on the right-hand side as well, since W

and P depend on K.
The analysis resembles now that of the birthday paradox. We have

ΠK,m(�,D) ≈ 1 −
m−1∏
i=0

(
1 − i

σK(�,D)

)
.

The probability that there are m encoded symbols of degree � among
the K received encoded symbols is

(
K
m

)
Ωm

� (1 − Ω�)K−m. Hence, the
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probability ΠK(�,D) that there are at least two duplicates among the
received encoded symbols of degree � is

ΠK(�,D) = 1 −
K∑

m=0

(
K

m

)
Ωm

� (1 − Ω�)K−mΠK,m(�,D). (3.4)

The table below lists these numbers for some exemplary values of � and
D for K = 10:

D = 1 D = 2 D = 3 D = 4

� = 1 8.7e − 6 1.9e − 6 9.6e − 7 9.6e − 7
� = 2 9.6e − 3 2.1e − 3 1.1e − 3 1.1e − 3
� = 3 5.4e − 4 1.2e − 4 6.0e − 5 6.0e − 5
� = 4 1.3e − 4 3e − 5 1.5e − 5 1.5e − 5

whereas the following table shows the same values for K = 101:

D = 1 D = 2 D = 3 D = 4

� = 1 7.4e − 5 1.1e − 5 5.3e − 6 5.3e − 6
� = 2 1.3e − 2 1.9e − 3 9.5e − 4 9.5e − 4
� = 3 7.4e − 4 1.1e − 4 5.3e − 5 5.3e − 5
� = 4 1.0e − 48 2.6e − 5 1.3e − 5 1.3e − 5

As the failure probability of a random fountain code over F256 at zero
overhead is about 0.0039, we want the failure probability caused by
duplicates to be smaller than this amount, without paying too much in
terms of the number of XOR’s we need to perform. This shows that we
need to have D at least 2, and even better, D = 3 if � = 2. However, the
choice of D = 3 for � = 2 results in about 0.5 more XOR’s per source
symbol compared with when D = 2 (because half of the symbols are of
LT weight 2). Therefore, we choose D = 2 or 3 with equal probability
when � = 2 or 3.

3.3.5 Some Properties

In this section, we will report on some of the properties of RQ and show
that we have largely solved the design goals laid out in Section 3.3.1.
Further properties of RQ can be found in Appendix B.
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Fig. 3.10 Plot of failure probability versus loss for RQ and two different values of K.

We start with studying the failure probability of RQ as a function
of the number of overhead symbols, analogous to what we did for the
code R10-256 in Figure 3.5. The results are summarized in Figure 3.10.
These results are for 108 runs for each K and each loss probability. The
dotted line is the behavior of the random fountain over F256. As can
be seen, the performance of RQ is essentially the same as that of the
random fountain over F256.

The failure probability of RQ for 0 overhead as a function of the
loss rate for various values of K is given in the next two plots. The
following plot depicts the case of small K values.
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As can be seen, the failure probability is well concentrated around
the failure probability of the random fountain over F256, which is about
0.0039. This is in stark contrast to R10-256 for which the failure
probability depends heavily on the loss rate. Interestingly, the same
observation holds also for larger K values.

A figure of merit for any Raptor code is the number of XOR’s the
decoder performs for a given number K of source symbols. We choose
to normalize this number by K, and look at the number of XOR’s per
source symbol. We call this number the decoding cost of the code. The
decoding cost depends on many parameters: typically, the larger the
overhead, the smaller the decoding cost. For a systematic Raptor code,
the decoding cost also depends on the loss rate: the smaller the loss
rate, the smaller the decoding cost, as fewer source symbols are lost
and need to be recovered in the last step of decoding.

RQ has an interesting behavior with respect to the number of
XOR’s. The following two plots provide a representative description of
this behavior. The left plot depicts the average decoding cost in 1000
runs as a function of the number of overhead symbols for K = 1000
and loss rate 0.8. The right plot overlays the standard deviation of the
decoding cost.
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As we can see, the average decoding cost starts high, and then
at around 10 overhead symbols it drops sharply, and then continues
decreasing but at a slower rate than at the beginning. The drop occurs
at a value of 10. This is the number of HDPC symbols of RQ, and
there is a reason that the decoding cost decreases at around this value:
once 10 or more overhead symbols are received, the HDPC symbols
are likely not to be used for decoding. The plot on the right provides a
more accurate view: the standard deviation of the decoding cost is much
larger between 10 and 16 overhead symbols than for any other number
of overhead symbols. The points for which the standard deviation is
unusually high are marked with pink circles.

The following plots show that the situation depicted in the last
plots are typical and qualitative results depend neither on the number
of source symbols, nor on the loss rate:
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Next, we concentrate on the average cost of the decoder when the
overhead is a fixed fraction of K, the number of source symbols. We
expect that for larger overheads, this cost is largely independent of K.
The following plots suggest that this is indeed the case:

The average number of XOR’s is also a function of the loss rate.
This is because of the particular way the systematic decoder works:
first, a decoding algorithm for the non-systematic version is applied to
the received symbols in order to determine the intermediate symbols.
Thereafter, for every source symbol that has not been received, the
symbols in the intermediate block are used to encode those source sym-
bols. The difference in the number of XOR’s stems from the last step:
the more source symbols need to be recovered, the more XOR opera-
tions need to be performed. On average, the difference in decoding cost
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between the case where p-fraction of the source symbols need to be
recovered and the case where a q-fraction needs to be recovered should
be (p − q)α in expectation, where α is the average encoding cost of
a repair symbol. For RQ, α is the average degree of the LT-part of a
symbol, plus the average degree of the PI-part. The former is roughly
4.8173, whereas the latter is 2 + 0.333 = 2.333. Hence, we expect the
difference in the decoding cost between the two cases outlined above to
be (p − q) × 7.1506. The situation is exemplified in the following plots.

The number of dynamic inactivations is another important and
interesting parameter for the performance of the RQ-code. The average
number of dynamic inactivations is generally a decreasing function of
the overhead. Its dependency on the loss rate is, however, slightly more
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complicated and depends to a large extent on the systematic indices
chosen. The graph below shows on the vertical axis the average number
of dynamic inactivations, as a function of the overhead, for various loss
rates.

The plot below essentially shows the same information, except that
now the horizontal axis is the loss rate, and each plot belongs to one
specific overhead.
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Unlike the number of XORs, the number of dynamic inactivations
is subject to a large variance. To a large extent, the variance does not
depend on the loss rate; however, it does depend on the overhead. The
following plots show the average number of dynamic inactivations and
their variance as a function of the number of overhead symbols for
various loss rates and for the example of K = 10,000. Other values for
K produce very similar plots.

One of the advantages of working with the degree distribution given
in Figure 3.8 is that the average number of dynamic inactivations goes
quickly toward zero as the relative overhead grows. This is particularly
true for large values of K. This situation is depicted in the following
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figures that show the average number of dynamic inactivations as a
function of the relative overhead for different values of K.

More information on properties of RQ is given in Appendix B.



A
Rank of Random Matrices

In the following, we assume that m,n are fixed positive integers, m ≥ n,
and that D is a probability distribution on F

m×n
q .

Definition A.1. The rank profile of the distribution D is the vector
(pn,pn−1, . . . ,p0), where

pi = Pr[rk(A) = i],

A being a random matrix sampled from the distribution D. We some-
times refer to the vector (pn, . . . ,p0) also as the rank profile of the
matrix A.

We are interested in the rank profile of uniform random matrices
over Fq. These are matrices for which every entry is chosen indepen-
dently and uniformly over the field Fq.

The rank profile is such matrices can be computed using a sim-
ple dynamic programming approach. The procedure is as follows: we
start with the unifform distribution on F

0×n
q , which has rank profile

(0,0, . . . ,0,1). Thereafter, we increase the number m of rows and go
from the uniform distribution on F

(m−1)×n
q to the uniform distribution
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on F
m×n
q . To calculate the evolution of the rank profile, we will need

the matrix Mn(q) defined as

Mn(q) :=




1 1 − 1
q

0 · · · 0 0

0
1
q

1 − 1
q2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1
qn−1 1 − 1

qn

0 0 0 · · · 0
1
qn




. (A.1)

The following result is well-known. We include its proof for complete-
ness.

Lemma A.1. Let Dm,n be the uniform distribution on F
m×n
q . Then,

the rank profile of D is given by the last column of the matrix Mn(q)m,
i.e., by the vector

Mn(q)m




0
0
...
0
1


.

Proof. The proof uses induction on m. For m = 0, the rank profile
of D0,n is obviously (0,0, . . . ,0,1). Suppose now that the rank profile
of Dm,n is (pn,pn−1, . . . ,p0). To assess the rank profile of Dm+1,n, we
sample from Dm,n to obtain a matrix A, and add to A a row x in
which every entry is chosen uniformly at random from Fq. The resulting
matrix, A′, is a matrix that is sampled from Dm+1,n. For � ≥ 1, we have

Pr[rk(A′) = �] = Pr[rk(A) = �&x ∈ Im(A)]

+Pr[rk(A) = � − 1&x �∈ Im(A)],

= Pr[rk(A) = �]Pr[x ∈ Im(A) | rk(A) = �]

+Pr[rk(A) = � − 1]Pr[x �∈ Im(A) | rk(A) = � − 1],
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where Im(A) denotes the vector space generated by the rows of A. As x

is chosen uniformly at random from F
n
q , the probability that x belongs

to a given subspace of dimension d is qd−n, and the probability that it
is not in this subspace is 1 − qd−n. Hence, we have

p′
� := Pr[rk(A′) = �] = p�q

�−n + p�−1(1 − qd−1−n).

For � = 0, we have

p′
0 := Pr[rk(A′) = 0] =

1
qnm

,

as in this case A′ has to consist of all zeros. Putting everything together,
we see that 



p′
n

p′
n−1
...
p′
1

p′
0


= Mn(q) ·




pn

pn−1
...
p1

p0


.

The result follows.

The above theorem is often used in the following more general form.

Theorem A.2. Let D be a probability distribution on F
m×n
q and A be

a matrix in F
(m+t)×n
q of the form A = (C/D), where C is sampled from

D and the entries of D are chosen independently and uniformly over Fq.
Let (p′

n,p′
n−1, . . . ,p

′
0) denote the rank profile of D, and (pn,pn−1, . . . ,p0)

that of A. Then, we have


pn

pn−1
...
p1

p0


= Mn(q)h




p′
n

p′
n−1
...
p′
1

p′
0


.

This theorem is obviously a generalization of Lemma A.1: In the
situation in the lemma m = 0. The proof of the theorem is essentially
identical to that of the lemma. It also uses induction; however, the
induction start is at the case where A = D (i.e., h = 0).



B
Failure Probability of R10 and RQ

In this section, we will present overhead-failure curves of R10 and RQ
for various loss rates and many different values of K.

B.1 Methodology

B.1.1 Computing the Failure Probability

For both R10 and RQ, we are going to provide results of a large number
of simulations and report the observed failure rates. For R10, we are
going to use the list of K-values given in Table B.1, whereas for RQ,
we are going to use the K-values given in Tables B.2 and B.3.

For R10, we tested each of the K-values for loss probabilities 0.1,
0.2, 0.4, 0.6, and 0.85 (results for the last three loss rates are still in
the making). The number of overhead symbols was between 0 and 40.

For RQ, we tested each of the K-values in Tables B.2 and B.3 for loss
probabilities 0.1, 0.2, 0.5, 0.6, and 0.85, and with a number of overhead
symbols between 0 and 10. The reason for a smaller number of overhead
symbols in the case of RQ is the much smaller failure probability as
compared with R10. With the number of experiments, we were running
for each value of K, it is very unlikely to see an error event beyond 10
overhead symbols.
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Table B.1. Values of K used for the failure probability estimation of R10.

10 40 70 100 130 160 190 230
260 290 320 350 380 410 440 470
500 530 560 590 620 670 700 730
760 790 820 850 880 910 940 970

1,000 1,030 1,060 1,090 1,122 1,155 1,188 1,222
1,258 1,294 1,332 1,371 1,410 1,452 1,494 1,538
1,583 1,629 1,677 1,726 1,777 1,829 1,883 1,939
1,996 2,055 2,115 2,178 2,242 2,308 2,377 2,448
2,520 2,595 2,672 2,751 2,833 2,917 3,004 3,094
3,186 3,281 3,379 3,480 3,584 3,691 3,801 3,915
4,032 4,153 4,277 4,405 4,537 4,673 4,813 4,958
5,107 5,261 5,419 5,582 5,749 5,922 5,981 6,100
6,284 6,473 6,668 6,869 7,076 7,289 7,508 7,734
7,967 8,126

Table B.2. Values of K used for the failure probability estimation of RQ.

10 11 12 13 18 19 20 21
26 27 30 31 32 33 36 37
42 43 46 47 48 49 50 55
56 60 61 62 63 69 70 75
76 84 85 88 89 91 92 95
96 97 98 101 102 114 115 119

120 125 126 127 128 138 139 140
141 149 150 153 154 160 161 166
167 168 169 179 180 181 182 185
186 187 188 200 201 213 214 217
218 225 226 236 237 242 243 248
249 257 258 263 264 269 270 280
281 295 296 301 302 305 306 324
325 337 338 341 342 347 348 355
356 362 363 368 369 372 373 380
381 385 386 393 394 405 406 418
419 428 429 434 435 447 448 453
454 466 467 478 479 486 487 491
492 497 498 511 512 526 527 532
533 542 543 549 550 557 558 563
564 573 574 580 581 588 589 594
95 600 601 606 607 619 620 633

634 640 641 648 649 666 667 675
676 685 686 693 694 703 704 718
719 728 729 736 737 747 748 759
760 778 779 792 793 802 803 811
812 821 822 835 836 845 846 860
861 870 871 891 892 903 904 913
914 926 927 938 939 950 951 963
964 977 978 989 990 1,002 1,003 1,020

(Continued )
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Table B.2. (Continued )

1,021 1,032 1,033 1,050 1,051 1,074 1,075 1,085
1,086 1,099 1,100 1,111 1,112 1,136 1,137 1,152
1,153 1,169 1,170 1,183 1,184 1,205 1,206 1,220
1,221 1,236 1,237 1,255 1,256 1,269 1,270 1,285
1,286 1,306 1,307 1,347 1,348 1,361 1,362 1,389
1,390 1,404 1,405 1,420 1,421 1,436 1,437 1,461
1,462 1,477 1,478 1,502 1,503 1,522 1,523 1,539
1,540 1,561 1,562 1,579 1,580 1,600 1,601 1,616
1,617 1,649 1,650 1,673 1,674 1,698 1,699 1,716
1,717 1,734 1,735 1,759 1,760 1,777 1,778 1,800
1,801 1,824 1,825 1,844 1,845 1,863 1,864 1,887
1,888 1,906 1,907 1,926 1,927 1,954 1,955 1,979
1,980 2,005 2,006 2,040 2,041 2,070 2,071 2,103
2,104 2,125 2,126 2,152 2,153 2,195 2,196 2,217
2,218 2,247 2,248 2,278 2,279 2,315 2,316 2,339
2,340 2,367 2,368 2,392 2,393 2,416 2,417 2,447
2,448 2,473 2,474 2,502 2,503 2,528 2,529 2,565
2,566 2,601 2,602 2,640 2,641 2,668 2,669 2,701
2,702 2,737 2,738 2,772 2,773 2,802 2,803 2,831
2,832 2,875 2,876 2,906 2,907 2,938 2,939 2,979
2,980 3,015 3,016 3,056 3,057 3,101 3,102 3,151

Table B.3. Values of K used for the failure probability estimation of RQ.

3,152 3,186 3,187 3,224 3,225 3,265 3,266 3,299
3,300 3,344 3,345 3,387 3,388 3,423 3,424 3,466
3,467 3,502 3,503 3,539 3,540 3,579 3,580 3,616
3,617 3,658 3,659 3,697 3,698 3,751 3,752 3,792
7,93 3,840 3,841 3,883 3,884 3,924 3,925 3,970

3,971 4,015 4,016 4,069 4,070 4,112 4,113 4,165
166 4,207 4,208 4,252 4,253 4,318 4,319 4,365

4,366 4,418 4,419 4,468 4,469 4,513 4,514 4,567
5,68 4,626 4,627 4,681 4,682 4,731 4,732 4,780

4,781 4,838 4,839 4,901 4,902 4,954 4,955 5,008
009 5,063 5,064 5,116 5,117 5,172 5,173 5,225

5,226 5,279 5,280 5,334 5,335 5,391 5,392 5,449
450 5,506 5,507 5,566 5,567 5,637 5,638 5,694

5,695 5,763 5,764 5,823 5,824 5,896 5,897 5,975
976 6,039 6,040 6,102 6,103 6,169 6,170 6,233

6,234 6,296 6,297 6,363 6,364 6,427 6,428 6,518
519 6,589 6,590 6,655 6,656 6,730 6,731 6,799

6,800 6,878 6,879 6,956 6,957 7,033 7,034 7,108
109 7,185 7,186 7,281 7,282 7,360 7,361 7,445

7,446 7,520 7,521 7,596 7,597 7,675 7,676 7,770
771 7,855 7,856 7,935 7,936 8,030 8,031 8,111

8,112 8,194 8,195 8,290 8,291 8,377 8,378 8,474
475 8,559 8,560 8,654 8,655 8,744 8,745 8,837

(Continued )
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Table B.3. (Continued )

8,838 8,928 9,019 9,111 9,206 9,303 9,400 9,497
601 9,708 9,813 9,916 10,017 10,120 10,241 10,351

10,458 10,567 10,676 10,787 10,899 11,015 11,130 11,245
1,358 11,475 11,590 11,711 11,829 11,956 12,087 12,208

12,333 12,460 12,593 12,726 12,857 13,002 13,143 13,284
3,417 13,558 13,695 13,833 13,974 14,115 14,272 14,415

14,560 14,713 14,862 15,011 15,170 15,325 15,496 15,651
5,808 15,977 16,161 16,336 16,505 16,674 16,851 17,024

17,195 17,376 17,559 17,742 17,929 18,116 18,309 18,503
8,694 18,909 19,126 19,325 19,539 19,740 19,939 20,152

20,355 20,564 20,778 20,988 21,199 21,412 21,629 21,852
2,073 22,301 22,536 22,779 23,010 23,252 23,491 23,730

23,971 24,215 24,476 24,721 24,976 25,230 25,493 25,756
6,022 26,291 26,566 26,838 27,111 27,392 27,682 27,959

28,248 28,548 28,845 29,138 29,434 29,731 30,037 30,346
0,654 30,974 31,285 31,605 31,948 32,272 32,601 32,932

33,282 33,623 33,961 34,302 34,654 35,031 35,395 35,750
6,112 36,479 36,849 37,227 37,606 37,992 38,385 38,787

39,176 39,576 39,980 40,398 40,816 41,226 41,641 42,067
2,490 42,916 43,388 43,840 44,279 44,729 45,183 45,638

46,104 46,574 47,047 47,523 48,007 48,489 48,976 49,470
9,978 50,511 51,017 51,530 52,062 52,586 53,114 53,650

54,188 54,735 55,289 55,843 56,403

Testing was done by performing the following procedure for a given
pair of K and loss probability p. The parameter N will be discussed
below, and the parameter O is 40 for R10 and 10 for RQ.

(1) Create a vector nfail of length 11 and set its entries to
zero.

(2) For j = 1,2, . . . ,N, do
(3) Create K + O ESIs according to the following process:

go through the list of all possible ESIs, and drop each
one independently with probability p until K + O ESIs
(e0, . . . ,eK+9) are created.

(a) For i = 0,1, . . . ,O, do:

(i) Test whether the decoder works when input
with the set of ESIs (e0,e1, . . . ,eK+i).

(ii) If not, then increase nfail[i] by one.

(iii) If decoding works, then increase j by one
and go to Step 3.
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At the end of this procedure, nfail[i] gives the number of runs in
which a code overhead of i was not sufficient for recovery. The plots
below give for every value of K the estimated failure probability, which,
for an overhead of i symbols, is nfail[i]/N .

For R10, the value of N is always between 107 and 108. More pre-
cisely, the value of N was chosen according to the following rule in
order to keep the running time of the whole experiment manageable:

N =




108, if K < 500,

5 × 107, if 500 ≤ K < 2,000,

107, if K ≥ 2,000,

In total, 33,145,200,000 tests were performed for the R10 code.1

For RQ, the value of N is always between 107 and 2 × 107. In total,
39,901,000,000 tests were performed for the RQ code.

More details on the results are given in the following sections.

B.2 The Failure Probability of R10

We used the methodology described in Section B.1.1 to estimate the
failure probability of R10. Results are gathered in the following sections.

B.2.1 Failure Probability Over the Entire Range

The following plots show the failure probability of R10 over the range
of values of K given in Table B.1.

1 For loss rates 0.1 and 0.2, we performed tests for sets of K-values that included those in
Table B.1, but were substantially larger.
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As can be seen, the failure probability is not quite smooth, though
for quite a lot of values it is very close to the failure probability of the
random binary fountain.

The following plot gives the failure probabilities for overhead sym-
bols between 0 and 22:

Some of the K-values behave worse than others, as can be seen. The
plot below shows the performance of R10 when the loss rate is 0.2. The
overhead is between 0 and 22:

The plot below shows the performance of R10 when the loss rate is 0.4.
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The plot below shows the performance of R10 when the loss rate is 0.6.

The plot below shows the performance of R10 when the loss rate is 0.85.
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B.3 The Failure Probability of RQ

In this section, we provide results of a large number of simulations of
the RQ code and report the observed failure rates. We refer the reader
to Section B.1.1 for the methodology of our failure tests.

The number of failure events seen depends on the overhead used:
for an overhead of zero, the number of failure events was of the order of
4 × 104, which gives us a fairly good confidence in the estimated failure
rates. For a code overhead of one symbol, the number of failure events
was of the order of 2 × 102, which still provides a good confidence in
the estimated values. The number of failure events seen for a code
overhead of 2 was never larger than 8, and in fact equal to 0 most of
the time; hence, the numbers do not give a confident estimate of the
failure probability with two overhead symbols.

More details on the results are given in the following sections.

B.3.1 Failure Probability at Zero Overhead

We first discuss the failure probability of RQ when the overhead is zero,
that is, the number of received symbols equals K, the number of source
symbols. In all cases, we compare the performance against that of the ran-
dom fountain over F256 for which the failure probability is the red line.

It is interesting to see that for a loss rate of 0.1 and when K is
below 100, the failure probability of RQ is often better than that of the
random fountain. The reason for this behavior lies in the choice of the
systematic indices, and the fact that for a loss rate of 0.1 the received
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symbols are very close to the original source symbols, which would lead
to a failure probability of 0.

The following plots give the failure rates for loss rates of 0.5, 0.6, and
0.85. For these loss rates, we do not see the above effect anymore. More-
over, as we can see, the performance of the RQ-code is almost exactly like
that of a random fountain over F256, especially for larger values of K.

The failure probability approaches that of a random fountain over
F256 (red line) as K grows; however, it does so in “steps.” The reason for
these steps lies in the different numbers of HDPC symbols for different
values of K. The switching points for this value are given below. They
coincide with the observed drops of the failure probability:

K 10 1,032 10,899 20,778 30,654 40,398 50,511
# HDPC 10 11 12 13 14 15 16
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B.3.2 Failure Probability with One Overhead Symbol

As was discussed before, our failure probability estimates when the num-
ber of overhead symbols is one are less reliable than the corresponding
estimates for zero overheads.This is simplybecause the absolute numbers
of error events observed are almost 200 times smaller. In the plots below,
this is manifested by the rather strong “jitter” in the curves.

These two plots are very similar to their corresponding plots in
the case of zero overhead symbols. As before, the red line is the failure
probability of the random fountain over F256 when there is one overhead
symbol. In some cases, e.g., at K = 1032, we see a drop of the failure
probability as a result of a change in the number of HDPC symbols.
The next drops are not prominent, though, because of the strong jitter
in the plots.

The following three plots depict the behavior for loss rates equal to
0.5, 0.6, and 0.85.
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Here, too, the behavior is similar to the case in which the overhead
is 0. However, we see a number of cases where the failure probability
is lower than that of a random fountain, even when the loss rate is
large. This is mainly due to the increased jitter of the curves, caused
by the relatively small number of failure events observed. Looking at
the average of these curves, it is reasonable to expect that the fail-
ure probability is practically the same as that of a random fountain,
especially when K is large.

B.3.3 Two Overhead Symbols

With two overhead symbols, we expect to see 0.598 errors in 107 runs;
hence, the number of runs that we have chosen (between 107 and 2 ×
107) is too small to yield a reliable estimate of the failure probability.
Nevertheless, we include the graphs for completeness.
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These graphs only plot the cases where the number of observed
failures is larger than zero. Among the total number of 3,865 cases
considered, we observed 2,427 cases in which the number of failures
was larger than zero. Based on these results, we expect that the failure
probability with two overhead symbols is close to that of a random
fountain over F256.

Unfortunately, the number of cases tested does not allow an accu-
rate estimate of the failure probability when the number of overhead
symbols is larger than 2.
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